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Abstract. We show that from infinitely many supercompact cardinals
one can force a model of ZFC where both the tree property and the
stationary reflection hold at ℵω2+1.

1. Introduction

One of the most fruitful research areas in set theory concerns the inves-
tigation of models of set theory where properties of large cardinals hold at
small cardinals. The results presented in this paper focus on two properties
of weakly compact cardinals that, under large cardinal assumptions, can be
forced at small cardinals, the tree property and the reflection of stationary
sets. To get a model of the tree property at the double successor of a regular
cardinal it is enough to assume the consistency of a weakly compact cardinal
and force with a classical poset due to Mitchell (see [6]). Forcing the tree
property at the successor of a singular cardinal is harder and requires much
stronger assumptions. The first model of the tree property at the successor
of a singular cardinal, was defined by Magidor and Shelah in [4] who proved
from large cardinals the consistency of the tree property at ℵω+1. The hy-
potheses used in such result have the consistency strength of a large cardinal
between a huge cardinal and a 2-huge cardinal; this was later improved by
Sinapova [11] who was able to force the tree property at ℵω+1 from weaker
large cardinal assumptions, namely assuming the consistency of infinitely
many supercompact cardinals. Another paper by Neeman [7] shows that,
assuming the consistency of infinitely many supercompact cardinals, one can
force a model where the tree property holds simultaneously at ℵω+1 and at
every ℵn with n ≥ 2. All these constructions can be adapted to force the tree
property at the successor of any singular cardinal κ of countable cofinality,
however in all these models the reflection of stationary sets fails at κ+. In the
case of ℵω+1, for instance, these forcing constructions all add a bad scale. So
it is natural to ask whether the tree property and the reflection of stationary
sets are incompatible at the successor of a singular cardinal. In this paper
we answer this question for a particular cardinal, namely ℵω2+1. We show
that, assuming the consistency of infinitely many supercompact cardinals,
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one can force a model where both the tree property and the stationary set
reflection hold at ℵω2+1. Whether the same can be proven for ℵω+1 remains
an open problem.

We will use a forcing construction due to Magidor and Shelah [5] that
was introduced to define a model where ℵω2+1 satisfies a strong reflection
principle, denoted ∆ℵω2 ,ℵω2+1

. The principle is defined as follows.

Definition 1.1. Given two cardinals κ < λ, ∆κ,λ is the statement that for

every cardinal µ < κ, for every stationary set S ⊆ Eλ<κ := {α < λ; cof(α) <
κ} and for every algebra A on λ with µ operations, there exists a subalgebra
A′ of order type a regular cardinal η < κ such that S ∩ A′ is stationary in
sup(A′).

Let us denote by ∆<λ,λ the principle ∀κ < λ ∆κ,λ. Under this principle it
is possible to prove several ‘compactness’ results, namely theorems where,
given a structure of size λ, properties of substructures of size ≤ κ imply a
global property for the whole structure. For instance, assuming ∆<λ,λ one
can prove that every almost free Abelian group of size λ is free (where ‘al-
most free’ means that every subgroup of smaller size is free). Magidor and
Shelah proved in [5] that assuming the consistency of infinitely many super-
compact cardinals, there exists a model of ZFC + GCH where ∆ℵω2 ,ℵω2+1

holds. The results presented in [5] combined with other previous results
(see [9], [10], [1]) showed also that ℵω2+1 is the smallest regular cardinal
λ that can consistently satisfy ∆<λ,λ. In this paper we prove that in the
Magidor-Shelah’s model, ℵω2+1 satisfies even the tree property.

Theorem 1.2. Assuming the consistency of infinitely many supercompact
cardinals, there exists a model of ZFC where both ∆ℵω2 ,ℵω2+1

and the tree

property at ℵω2+1 hold.

The principle ∆κ,λ expresses a strong form of reflection, in particular
∆<λ,λ implies the reflection of stationary subsets of λ. It follows from Theo-
rem 1.2 that, assuming the consistency of infinitely many supercompact car-
dinals, ℵω2+1 can consistently satisfy both the tree property and ∆ℵω2 ,ℵω2+1

,

hence the stationary set reflection.
In the second part of this paper we show that ∆ℵω2 ,ℵω2+1

does not imply

the tree property at ℵω2+1. More precisely, we prove the following theorem.

Theorem 1.3. Assuming the consistency of infinitely many supercompact
cardinals, we can force a model of ZFC where ∆ℵω2 ,ℵω2+1

holds while the tree

property fails at ℵω2+1.

The paper is organized as follows. In Section 2 we recall some classical
results that will be used repeatedly in the proofs of Theorem 1.2 and The-
orem 1.3. In Section 3 and Section 4 we present Magidor-Shelah’s forcing
construction for building a model of ∆ℵω2 ,ℵω2+1

. In Section 5 we prove that

in the Magidor-Shelah’s model the tree property holds at ℵω2+1, so we prove
Theorem 1.2. Finally, Section 6 is devoted to the proof of Theorem 1.3.
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2. Preliminaries

In this section we list some classical results about forcing that preserve
Aronszajn trees. We recall that a κ-Aronszajn tree is a κ-tree with no cofinal
branches. To simplify the notation, we will always assume that our κ+-trees
are subsets of κ+ × κ, and that for every α < κ+ the α-th level of the tree
Levα(T ) is a subset of {α} × κ.

A simple argument shows that if T is a κ-Aronszajn tree and P is a κ-
Knaster forcing notion, then T remains Aronszajn after forcing with P :
otherwise, if ḃ is a name for a cofinal branch on T, then we can pick for
every α < κ a condition pα deciding the value of ḃ ∩ α. By the Knaster
property there exists a cofinal subset I ⊆ κ such that the conditions in the
sequence 〈pα; α ∈ I〉 are pairwise compatible. Say that pα  ḃ ∩ α = tα
for each α, then {tα; α ∈ I} is a cofinal branch for T, contradicting T is
κ-Aronszajn. The following lemma by Unger show that for a forcing P to
preserve κ-Aronszajn trees it is enough that P×P has the κ-chain condition.

Lemma 2.1. (Unger [12]) Let P be a forcing notion such that P×P is κ-c.c.
Then P has the κ-approximation property, i.e. given a set of ordinals A in
a P-generic extension V [G], if A ∩ x ∈ V for every x ∈ V of size < κ, then
A ∈ V. In particular, if T is a κ-tree and P× P is κ-c.c., then forcing with
P does not add cofinal branches to T.

Proof. Suppose for a contradiction that for some ordinal τ there exists a
P-name Ȧ such that

P Ȧ ⊆ τ, ∀x ∈ [τ ]<κ(Ȧ ∩ x ∈ V ) and Ȧ /∈ V

We inductively define conditions 〈p0
i , p

1
i 〉i<κ in P × P, sets 〈d0

i , d
1
i 〉i<κ in

[τ ]<κ and a ⊆-strictly increasing sequence 〈xi〉i<κ in [τ ]<κ such that

(1) for ε ∈ {0, 1}, pεi  Ȧ ∩ xi = dεi ;
(2) d0

i 6= d1
i and d0

i ∩ (
⋃
j<i xj) = d1

i ∩ (
⋃
j<i xj)

Suppose we have constructed 〈p0
i , p

1
i 〉i<j , 〈d0

i , d
1
i 〉i<j and 〈xi〉i<j successfully.

Let x :=
⋃
i<j xi and let p be any condition in P deciding the value of

Ȧ ∩ x to be d ∈ [τ ]<κ. As Ȧ does not belong to V, we can find p0
j , p

1
j ≤ p,

distinct d0
j , d

1
j and xj ⊃ x such that pεj  Ȧ ∩ xj = dεj for ε ∈ {0, 1}. Then

pεj  d = Ȧ ∩ x = dεj ∩ x hence d0
j ∩ x = d = d1

j ∩ x.
Now we claim that 〈p0

i , p
1
i 〉i<κ is an antichain, contradicting the κ-chain

condition at P× P. Suppose that for some i < j, the conditions (p0
i , p

1
i ) and

(p0
j , p

1
j ) are compatible. Then d0

j ∩xi = d0
i and d1

j ∩xi = d1
i . By construction

d0
j ∩ (

⋃
l<j xl) = d1

j ∩ (
⋃
l<j xl), in particular d0

j ∩ xi = d1
j ∩ xi, contradicting

d0
i 6= d1

i . �

The following results by Magidor and Shelah shows that forcings with
σ-closure preserve Aronszajn trees over successors of singular cardinals of
countable cofinality.
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Lemma 2.2. (Magidor and Shelah [4, Theorem 5.2]) Let λ be a singular
cardinal of countable cofinality and let T be a λ+-tree. Assume that P is a
σ-closed poset, then forcing with P does not add cofinal branches to T.

Proof. Let ḃ be a P-name for a cofinal branch of T, and suppose for a contra-
diction that such a branch is not in V. We can inductively define for every
n < ω, conditions 〈ps; s ∈ nλ〉 and ordinals 〈αs; s ∈ nλ〉 in λ+ such that

(1) s v t implies pt ≤ ps,
(2) psa0 and psa1 force contradictory information about ḃ ∩ Levαs(T )

Then, we let α be the limit of all αs and, for each f ∈ ωλ, we let pf be a lower

bound for the sequence 〈pf�n; n < ω〉 that decides the value of ḃ ∩ Levα(T )
as xf . By construction the xf ’s are pairwise distinct. This implies that
Levα(T ) has size λω, a contradiction. �

When we work with a κ+-tree Ṫ in a generic extension by some forcing
notion P, it is often useful to consider the following relations <p on κ+ × κ
where p ∈ P : for (α, ζ), (β, η) ∈ κ+ × κ, we let (α, ζ) <p (β, η) when
p  (α, ζ) <T (β, η). This lead us to the notion of system introduced by
Magidor and Shelah in [5].

Definition 2.3. (Magidor and Shelah [5]) Let D be a set of ordinals and τ a
cardinal. A system over D×τ is a collection of transitive, reflexive relations
{Ri}i∈I on D × τ such that:

(1) if (α, ζ) Ri (β, η) and (α, ζ) 6= (β, η), then α < β;
(2) if (α0, ζ0) and (α1, ζ1) are both below (β, η) in Ri, then (α0, ζ0) and

(α1, ζ1) are comparable in Ri (by condition (1) this implies that
(α0, ζ0) Ri (α1, ζ1) if α0 < α1, (α1, ζ1) Ri (α0, η0) if α1 < α0, and
ζ0 = ζ1 if α0 = α1);

(3) for every α < β both in D, there is i ∈ I and ζ, η ∈ τ such that
(α, ζ) Ri (β, η).

If R := {Ri}i∈I is a system over D × τ, then every element of D × τ is a
node of R. For every α ∈ D, the α-th level of R, denoted Levα(R), is the
set {α} × κ.

Definition 2.4. (Sinapova [11]) Let {Ri}i∈I be a system on D×τ. A branch
through some Ri is a partial function from b : D → τ such that for any
β ∈ dom(b) and any α < β in D, α ∈ dom(b) if and only if there exists ζ
such that (α, ζ) Ri (β, b(β)) and b(α) is equal to the unique ζ witnessing
this (ζ is unique by condition (2) of the definition of system). We say that
b is a cofinal if dom(b) is cofinal in D.

Sinapova proved a useful preserving theorem for systems.

Theorem 2.5. (Sinapova [11]) Suppose that ν is a singular cardinal of
countable cofinality and R = {Ri}i∈I is a system on D × τ with D cofinal
in ν+ and max(|I|, τ) < ν. Suppose that P is a χ-closed forcing notion with
χ > max(τ, |I|)+ and G is a generic filter for P over V. Suppose that in
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V [G] there are (not necessarily all cofinal) branches 〈bi,δ; i ∈ I, δ < τ〉 such
that

(1) every bi,δ is an Ri-branch, and for some (i, δ), bi,δ is cofinal;
(2) for all α ∈ D, there is (i, δ) such that Levα(R) ∩ bi,δ is non empty.

Then R has a cofinal branch in V.

3. The Main Forcing

In this section we present Magidor-Shelah’s forcing construction for build-
ing models of ∆ℵω2 ,ℵω2+1

. We assume that 〈κn〉n<ω is an increasing sequence

of supercompact cardinals which are indestructible by directed closed forc-
ings (i.e. if P is a κn-directed closed forcing notion, then κn is still super-
compact in V P, see Laver [3]). We let λ := limn<ω κn and we assume that,
for every n < ω, we have 2κn = κ+

n . For every n < ω, we let

Sn :=
∏
m≥n

Coll(κ+2
m , < κm+1).

Since every Sn is κn-directed closed, κn remains supercompact in V Sn so we
can fix, for every n < ω, an Sn-term Ḟn for a normal ultrafilter on Pκn(λ+)

in V Sn . Ḟn has a natural projection to a normal ultrafilter Un on κn. The
poset Sn is actually κ+2

n -closed and we assumed 2κn = κ+
n , therefore forcing

with Sn does not introduce new sets which are hereditarily of size ≤ κ+
n ,

hence we have Un ∈ V. We let πn : V → Nn be the elementary embedding
corresponding to Un. Consider CollNn(κ+ω+2

n , < πn(κn)), this forcing has the
πn(κn)-chain condition in Nn and π(κn) is inaccessible. Therefore, there are
πn(κn) many dense subsets of this forcing which are in Nn. On the other
hand |πn(κn)| = κ+

n and the forcing is κ+
n -closed in Nn. Therefore, one can

inductively define in V a generic filter Kn for CollNn(κ+ω+2
n , < πn(κn)) over

Nn by meeting each dense set in Nn. We define the main forcing P.

Definition 3.1. Conditions of P are sequences of the form

p = 〈α0, g0, f0, ... αn−1, gn−1, fn−1, An, gn, Fn, ... 〉

such that:

(1) every αi is an inaccessible cardinal between κi−1 and κi (with κ−1 :=
ω);

(2) g0 ∈ Coll(ω, α+ω
0 ) and for 0 < i < n, gi ∈ Coll(κ++

i−1, < αi);

(3) fi ∈ Coll(α+ω+2
i , < κi);

(4) Aj ∈ Uj and every element of Aj is an inaccessible cardinals;
(5) for j ≥ n, gj ∈ Coll(κ++

j−1, < α) for the least α in Aj (hence for every

α ∈ Aj);
(6) Fj is a function with domain Aj such that Fj(α) ∈ Coll(α+ω+2, < κj)

for every α ∈ Aj , and such that [Fj ]Uj ∈ Kj ([Fj ]Uj is the equivalence
class of Fj as a member of the ultrapower Ult(V,Uj))
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Given two conditions

p = 〈αp0, g
p
0 , f

p
0 , ... α

p
n−1, g

p
n−1, f

p
n−1, A

p
n, g

p
n, F

p
n , ... 〉

q = 〈αq0, g
q
0, f

q
0 , ... α

q
m−1, g

q
m−1, f

q
m−1, A

q
m, g

q
m, F

q
m, ... 〉

we say that p ≤ q if and only if, the following hold

(1) m ≤ n and for i < m, αpi = αqi and fpi ≤ f
q
i ;

(2) for every i < ω, gpi ≤ g
q
i ;

(3) for m ≤ j < n, αpj ∈ A
q
i and fpi ≤ F

q
i (αpj );

(4) for j ≥ n, Apj ⊆ A
q
j and F pj (α) ≤ F qj (α) for all α ∈ Apj .

The only difference with the forcing defined in [5] is in the definition of the
g0 coordinates. Magidor and Shelah showed that forcing with P determines
a model of ∆ℵω2 ,ℵω2+1

, so in order to prove Theorem 1.2 we just need to show

that there exists a generic extension by P where the tree property holds at
ℵω2+1.

Given a condition

p = 〈α0, g0, f0, ... αn−1, gn−1, fn−1, An, gn, Fn, ... 〉

we say that

(1) n is the length of p, and we denote it lg(p);
(2) the subsequence 〈α0, g0, f0, ... αn−1, gn−1, fn−1〉 is called the lower

part of p or the stem of p, denoted stem(p);
(3) 〈α0, . . . αn−1〉 is the α-part of p;
(4) 〈g0, . . . gn−1〉 is the g-part of p;
(5) 〈f0, . . . fn−1〉 is the f -part of p;
(6) 〈Aj : j ≥ n〉 is the A-part of p;
(7) 〈gj : j ≥ n〉 is the S-part of p and for k ≥ n, 〈gj : j ≥ k〉 is the

Sk-part of p;
(8) 〈Fj : j ≥ n〉 is the F -part of p;

Given two conditions p and q, we write p ≤k q when p ≤ q, lg(p) = lg(q),
p � k = q � k and gpk = gqk.

4. Basic properties of P

We list some basic properties of P.

Proposition 4.1. (Magidor Shelah [5, Lemma 2 and Lemma 3]) The fol-
lowing hold for P :

(1) every ≤n-decreasing sequence 〈pζ : ζ < η〉 of less than κn-many
conditions each of length n has a lower bound;

(2) every ≤k-decreasing sequence 〈pζ : ζ < η〉 of at most αp0k -many
conditions each of length n > k has a lower bound;
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(3) P satisfies the Prikry property in the following version: given a for-
mula ϕ and a condition p ∈ P of length n and given k ≤ n, there
exists a condition q such that q ≤k p and q decides ϕ modulo k,
that is if r ≤ q decides ϕ and q′ is the condition obtained from q by
replacing q � k with r � k, then q′ decides ϕ the same way r does.

(4) P preserves λ+;
(5) forcing with P turns λ+ into ℵω2+1.

We fix a generic filter G for S0 over V. In V [G], we define

P∗ := {p ∈ P; the S-part of p is in G}
ordered as a subposet of P. We should point out that if the length of p ∈ P is
k > 1, then its S-part formally does not belong to S0 but to Sk+1; however
Sk+1 naturally embeds into S0 in such a way that G naturally induces an
Sk+1-generic filter.

Lemma 4.2. (Magidor and Shelah [5, Lemma 6] V P ⊆ V S0∗P∗ .

We will perform the proof of Theorem 1.2 in V S0 where we will work
with conditions of P∗. The nice feature of V S0 is that in this model κ0 is still
supercompact and, for every n < ω, we can easily get a generic supercompact
embedding with critical point κn. Moreover, working with conditions of P∗
allow us to use the following nice property.

Remark 4.3. Every two conditions of P∗ with the same stem are compatible.

It is convenient to introduce a notation for the S-part of a condition p
in P∗, say Spart(p). For a condition p ∈ P∗ and for j ≥ lg(p) we denote by
Spart(p)(j) the j-th coordinate of the sequence Spart(p).

A stem h and a condition r ∈ S0 determine a unique condition p ∈ P
that we call the closure of h with r and we denote it cl(h, r). This is the
condition p = 〈α0, g0, f0, ... αn−1, gn−1, fn−1, An, gn, Fn, ... 〉 whose stem
is h and such that for all j above n, gj = r(j), Apj = κj and F pj is the

function that associate to every α ∈ Apj = κj the maximal condition of

Coll(α+ω+2, < κj).
Assume 〈gn〉n<ω and 〈hn〉n<ω are two conditions in S0, we let

〈gn〉n<ω ∼ 〈hn〉n<ω :⇐⇒ for large enough i, gi = hi.

For g ∈ S0, we denote by [g] its equivalence class. Define S0/ ∼:= {[g]; g ∈
S0}, with the ordering [g] ≤ [h] if and only if for large enough i, gi ≤ hi.
Let G∗ := {[g]; g ∈ G}, then V [G] is a generic extension of V [G∗] via the
forcing S0/G

∗.

Lemma 4.4. (Magidor and Shelah [5]) If H is a generic filter for P∗ over
V [G∗], then V [G∗][H] = V [H].

Proof. It is enough to show that G∗ can be defined in V [H]. We prove that

G∗ = {[r] ∈ S0/ ∼; ∃p ∈ H ([Spart(p)] ≤ [r])}.
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If p ∈ H, then by definition of P∗ we have Spart(p) ∈ G, hence [Spart(p)] ∈
G∗. Conversely, if [r] ∈ G∗, then an easy density argument shows that there
exists p ∈ H such that [Spart(p)] ≤ [r]. Indeed, if q ∈ P∗, then [Spart(q)] is
in G∗ and it is therefore compatible with [r]; then, one can easily extend q
to a condition p ∈ P∗ such that [Spart(p)] ≤ [r]. �

We now define in V [G∗] the poset

P∗∗ := {p ∈ P; [Spart(p)] ∈ G∗}.

Proposition 4.5. In V [G∗], the product P∗∗ × S0/G
∗ × S0/G

∗ has the λ+-
chain condition.

Proof. Assume that for some r ∈ S0,

[r]  Ȧ ⊆ P∗∗ × S0/G
∗ × S0/G

∗ is a maximal antichain.

For every m < ω, we define two sets Qm and Hm as follows:

• Qm :=
∏
i<m Coll(κ+2

i , < κi+1).
• Hm is the set of all sequences of the form

(α0, g0, f0 . . . αk−1, gk−1, fk−1, gk, . . . gm−1)

where k ≤ m and there is p ∈ P of length k with stem

(α0, g0, f0 . . . αk−1, gk−1, fk−1)

such that gi = gpi for k ≤ i < m.

For a condition p ∈ P of length k ≤ m, we denote by hm(p) the sequence

(αp0, g
p
0 , f

p
0 . . . α

p
k−1, g

p
k−1, f

p
k−1, g

p
k, . . . g

p
m−1).

Note that hm(p) belongs to Hm.
As every Hm×Qm×Qm has size κm, the union

⋃
m<ωHm×Qm×Qm has

λ-many elements and we can enumerate this poset as {(hβ, s0
β, s

1
β); β < λ},

where for κi < β < κi+1, (hβ, s
0
β, s

1
β) belongs to Hi+1 × Qi+1 × Qi+1. For

q ∈ S0 and p ∈ Qm, we denote by q ∗ p the unique condition u ∈ S0 such
that u � m = p and u(i) = q(i), for every i ≥ m. We inductively define a
decreasing sequence 〈rβ; β < λ〉 of conditions in S0, such that for all β, γ
between κi and κi+1, we have rβ � i+ 1 = rγ � i+ 1.

We let r0 := r. For β limit, rβ is defined by rβ(i) :=
⋃
γ<β rγ(i), for every

i (the inductive hypothesis and the closure of Coll(κ+2
i , < κi+1), for κi > β,

guarantee that rβ is a condition in S0).
Suppose that rβ has been defined, we want to define rβ+1. Let m be the

least such that β < κm, and let ϕβ be the following statement:

“There exists (p, q0, q1) ∈ Ȧ such that

(1) hm(p) = hβ (hence p is a condition of length m)
(2) q0 � m = s0

β and q1 � m = s1
β,

(3) for j ≥ m the conditions q0(j), q1(j), rβ(j) and gpj (the j-th coordi-

nate of the S-part of p) are pairwise compatible”
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There exists a condition rβ+1 such that [rβ+1] ≤ [rβ] and [rβ+1] decides
the statement ϕβ. We can assume without loss of generality that rβ+1 �
m + 1 = rβ � m + 1 or we replace rβ+1 by an equivalent condition. So the
inductive hypothesis is satisfied.

If [rβ+1]  ϕβ, then let (pβ, q
0
β, q

1
β) witness it. The condition [rβ+1] forces

that [q0
β], [q1

β], [rβ] and the class of the S-part of pβ are in G∗, hence [rβ+1]
must be stronger than all of them. It follows that for all j above some k,
we have

rβ+1(j) ≤ q0
β(j), q1

β(j), rβ(j), g
pβ
j .

If m < k, then for j between m and k the conditions q0
β(j), q1

β(j), rβ(j) and

g
pβ
j are compatible by item 3, hence q0

β(j)∪ q1
β(j)∪ rβ(j)∪ gpβj is a condition

in Coll(κ++
i , < κi+1). Since we can replace rβ+1 by an equivalent condition,

we can assume without loss of generality that for all j between m and k, we
have rβ+1(j) = q0

β(j) ∪ q1
β(j) ∪ rβ(j) ∪ gpβj . It follows that

(1) rβ+1 ∗ s0
β ≤ q0

β

(2) rβ+1 ∗ s1
β ≤ q1

β

(3) for all j ≥ m, rβ+1(j) ≤ gpβj
Now, we let r∞ ∈ S0 be defined by r∞(i) :=

⋃
β<λ rβ(i). We define

E := {(pβ, q0
β, q

1
β); β < λ, [rβ+1]  ϕβ}

We show that [r∞] forces that every element of Ȧ is compatible with an
element of E. Since E has size λ, this will prove that the size of the antichain
is at most λ.

Assume that for some s ∈ S0 and for some (p, q0, q1) we have [s] ≤ [r∞]

and [s] forces that (p, q0, q1) ∈ Ȧ. Without loss of generality s ≤ r∞. Also
[s] forces that [q0], [q1] and the class of the S-part of p are in G∗, hence
[s] is stronger than all those conditions. For some m, we have s(i) ⊇
q0(i) ∪ q1(i) ∪ gpi for every i ≥ m. The triple (hm(p), q0 � m, q1 � m) ap-
pears in our enumeration as (hβ, s

0
β, s

1
β) for some β < κm. Clearly (p, q0, q1)

witnesses the truth of ϕβ thus [s]  ϕβ because [s] ≤ [rβ+1]. So [s] forces
that both (p, q0, q1) and (pβ, q

0
β, q

1
β) are in the antichain. We prove that

they are compatible, hence they are equal. The conditions p and pβ have

the same stem, let i be their common length. We claim that gpi and g
pβ
i

are compatible. For i < m this is true because s(i) extends both gpi and

g
pβ
i . Similarly q0 and q1 are compatible with q0

β and q1
β respectively. This

completes the proof. �

Corollary 4.6. P∗∗ S0/G
∗ × S0/G

∗ is λ+-c.c.

Proof. Suppose for a contradiction that for some p ∈ P∗∗, we have

p  Ȧ is an antichain of size λ+.

For every α < λ+, we fix a condition pα ≤ p that decides the value of the
α-th element of Ȧ as a pair (s0

α, s
1
α) ∈ S0/G

∗ × S0/G
∗. For α < β < λ+, if
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(q, t0, t1) ≤ (pα, s
0
α, s

1
α), (pβ, s

0
β, s

1
β), then

q  (s0
α, s

1
α), (s0

β, s
1
β) ∈ Ȧ and (t0, t

1) ≤ (s0
α, s

1
α), (s0

β, s
1
β)

contradicting the fact that Ȧ is an antichain. It follows that {(pα, s0
α, s

1
α); α <

λ+} is an antichain of P∗×S0/G
∗×S0/G

∗. By Proposition 4.5 this product
has the λ+-chain condition, so we have a contradiction. �

5. forcing the tree property at ℵω2+1 with P

In this section, we prove that there exists a P-generic extension of V in
which ℵω2+1 has the tree property, thus we demonstrate Theorem 1.2. In the
proof we will use a technique described in Sinapova’s paper [11] for getting
the tree property at the successor of a singular from a diagonal Prikry-
type forcing. However, Sinapova’s approach is based on a typical property
of diagonal Prikry-type forcings, namely that any two conditions with the
same stem are compatible; this is not true for the forcing P. The forcing P∗
on the contrary does satisfy this property, so we will work with P∗ over V [G]
and make the relevant changes to apply Sinapova’s technique to our case.

Suppose for a contradiction that no P-generic extension of V forces the
tree property at λ+, then we can find a P-name Ṫ such that

∅ P Ṫ is a λ+-Aronszajn tree

We can assume that Ṫ is a name for a subset of λ+ × λ.
We are going to prove that in V [G] there exists a sequence of pairwise com-

patible conditions 〈pβ; β ∈ J〉 in P∗ and a sequence of elements 〈uβ; β ∈ J〉
in λ+ × λ, where J is a cofinal subset of λ+, such that for all β < β′ in J
the weakest common extension of pβ and pβ′ forces uβ <Ṫ uβ′ . Once those
sequences are defined, we get a contradiction with the following argument.
We claim that there exists a generic filter H for P∗ over V [G] such that
{β; pβ ∈ H} is cofinal in λ+. Indeed, if no such filter exists, then we would

have ∅ P∗ {β; pβ ∈ Ġ} is bounded. As P∗ is λ+-c.c. there would be δ < λ+

such that ∅ P∗ {β; pβ ∈ Ġ} ⊆ δ. Let δ′ ∈ J above δ, then pδ′  pδ′ /∈ Ġ, a
contradiction. It follows that B := {uβ; pβ ∈ H} is a cofinal branch for the
tree in V [G][H]. We recall that H was P∗-generic over V [G], it is also P∗∗-
generic over V [G∗]. We have V [G][H] = V [G∗][H][G/G∗] = V [H][G/G∗],
namely V [G][H] can be seen as a generic extension of V [H] via the forcing
S0/G

∗. By Corollary 4.6, we know that S0/G
∗ × S0/G

∗ is λ+-c.c. in V [H].
Since B is approximated, we can apply Lemma 2.1, thus B exists in V [H].

So we found a cofinal branch for Ṫ in a P-generic extension of V, contradict-
ing the assumption ∅ P Ṫ is Aronszajn.

The first step is to prove the following.

Lemma 5.1. In V [G] there are n,m < ω and a cofinal set I ⊆ λ+ such
that for all α < β in I, one can find ζ, η < κm and a condition q ∈ P∗ of
length n such that q  (α, ζ) <Ṫ (β, η)
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Proof. We let j : V [G]→M be the elementary embedding corresponding to

ḞG0 . So the critical point of j is κ0, j(κ0) > λ+ and M is closed by sequences
of length λ+. We fix H̄ a generic filter for j(P∗) over V [G] such that the first
element of the α-sequence added by H̄ is κ0. This implies that λ+ is not
collapsed, because λ+ = κ+ω+1

0 and, by definition of our forcing, H̄ does not

collapse any cardinal between κ+ω
0 and κ+ω+2

0 . Fix any ordinal γ between

sup j′′λ+ and j(λ+). Let T ∗ := j(Ṫ )H̄ . T ∗ is a j(λ+)-tree, so we can fix a
node u of T ∗ on level γ. For every β < λ+, there are mβ < ω, ζβ < j(κmβ )

and a condition pβ ∈ H̄ such that

pβ j(P∗) (j(β), ζβ) <j(Ṫ ) u.

For some n,m < ω and for a cofinal I∗ ⊆ λ+, we have lg(pβ) = n and
mβ = m, for every β ∈ I∗. We can write each condition pβ with β ∈ I∗ as

pβ = 〈κ0, g
β
0 , f

β
0 , . . . α

β
n−1, g

β
n−1, f

β
n−1, A

β
n, g

β
n , F

β
n , . . .〉.

As the pβ’s are pairwise compatible conditions, they satisfy the following
properties:

(1) the pβ’s have the same α-part 〈α0, . . . αn−1〉;
(2) we can assume that for some g0 ∈ Coll(ω, κ+ω

0 ), we have gβ0 = g0 for
all β∗ (we can shrink I∗ if necessary);

(3) for every 0 < i < n, the sequence 〈gβi 〉β∈I has a lower bound gi
(indeed Coll(j(κi−1), < αi) has closure > λ+);

(4) for i < n, the sequence 〈fβi 〉β∈I has a lower bound fi (these are

conditions in Coll(α+ω+2
i , j(κi)) which has closure > κ+ω+1

0 = λ+).

So we defined a stem

s := 〈κ0, g0, f0, . . . , αn−1, gn−1, fn−1〉

such that for all β ∈ I∗, there exists a condition p ∈ j(P∗) with stem s
forcing (j(β), ζβ) <T ∗ u. By letting

I := {β < λ+; ∃p ∈ j(P∗)(stem(p) = s ∧ ∃ζ < j(κm)(p  (j(β), ζ) < u))}

we get a cofinal subset of λ+ which is in V [G] and has the desired property.
Indeed, if β < β′ are in I, then there are p, p′ ∈ j(P∗) with stem s and
ζ, η < j(κm) such that

(1) p  (j(β), ζ) <j(Ṫ ) u

(2) p′  (j(β′), η) <j(Ṫ ) u

As they have the same stem, the two conditions are compatible, so there
exists a condition q∗ ≤ p, p′ forcing (j(β), ζ) <j(Ṫ ) u and (j(β′), η) <j(Ṫ ) u.

It follows that q∗  (j(β), ζ) <j(Ṫ ) (j(β′), η). By elementarily, we can

find a condition q ∈ P∗ of length n and two ordinals ζ, η < κm such that

q V [G]
P∗ (β, ζ) <Ṫ (β′, η). That completes the proof of the lemma. �



12 LAURA FONTANELLA AND MENACHEM MAGIDOR

We fix n,m and I as in the conclusion of the above lemma, without loss
of generality n ≤ m. In V [G] we say that a stem s ‘forces’ a statement ϕ
and we write s  ϕ, when there is a condition p ∈ P∗ with stem s such that
p  ϕ. We prove the following.

Lemma 5.2. In V [G], there exists a cofinal J ⊆ I, a stem h of P∗ length
n and a sequence 〈uβ; β ∈ J〉 with uβ ∈ {β} × κm for β ∈ J, such that for
every β < β′ in J, we have h  uβ <Ṫ uβ′ .

Proof. Let l = m + 2. If Vl is the Sl-generic extension determined by G,
then κl is supercompact in Vl and there is a λ+-supercompact elementary
embedding j : Vl → Ml with critical point κl. Let GC be the generic filter
for Coll(κ+2

0 , < κ1)× . . .×Coll(κ+2
l−1, < κl) determined by G, then by forcing

with CTail := Coll(κ+2
l−1, < j(κl) \ κl) over V [G] we get a generic object H∗

such that j[G] ⊆ GC ∗H∗, hence we can lift j to an embedding j∗ : V [G]→
Ml[GC ][H∗] that we rename j.

Let γ ∈ j(I) be above sup j′′λ+. For every β ∈ I, we fix ζβ, ηβ < κm and
a condition pβ ∈ j(P∗) of length n with stem hβ such that

pβ  (j(β), ζβ) <j(Ṫ ) (γ, ηβ).

In V [G] we define a system {Rh; h is a stem } over λ+ × κm by letting

Rh := {〈u, v〉; ∃p ∈ P, stem(p) = h, p  u <Ṫ v}.

Every Rh is transitive, because in V [G] two conditions of P with the same
stem are compatible. We also define for every stem h and for every η < κm
a set

bh,η := {(β, ζ) ∈ λ+×κm; ∃p ∈ j(P)(stem(p) = h∧p  (j(β), ζ) <j(Ṫ ) (γ, η)}.

Note that every bh,δ is an Rh-branch. Moreover, in V [G] λ+ is regular and

the stems of j(P) of length n are < κn. The forcing CTail is κ+2
l−1-closed, hence

it doesn’t add < κn-sequences. So we can find in V [G][H∗] a cofinal J ⊆ I,
a stem h∗ and two ordinals ζ∗, η∗ such that for β in J, we have hβ = h∗,
ζβ = ζ∗ and ηβ = η∗. Thus bh∗,η∗ is a cofinal Rh∗-branch and we can apply
Theorem 2.5. We get that the system has a cofinal branch in V [G], i.e. for
some stem h, there exists a cofinal J ⊆ I, and a sequence 〈σβ; β ∈ J〉 such
that for β < β′ in J, h  (β, σβ) <Ṫ (β′, σβ′). Set uβ := (β, σβ) for β ∈ J,
then J and 〈uβ; β ∈ J〉 are as required. �

Let h, J and α 7→ uα be as in the conclusion of the above lemma. By
shrinking J, we may assume that for some ζ < κm, we have uα = (α, ζ) for
each α ∈ J.

Lemma 5.3. Suppose that s is a stem of length k, L ⊆ λ+ is unbounded
and for all α < β with α, β ∈ L, s  uα <Ṫ uβ. Then, there are ρ < λ+

and sets 〈Aα, gα, Fα〉α∈L\ρ in V [G] such that:
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(1) Aα is in Uk, g
α is in the generic filter for Coll(κ++

k−1, < min(Aα))
induced by G, Fα is a function of domain Aα such that for every
x ∈ Aα, Fα(x) ∈ Coll(κ+ω+2

x , < κk) and [Fα]Uk ∈ Kk;
(2) for every α < β in L \ ρ, for all x ∈ Aα ∩Aβ,

s a 〈x, gα ∪ gβ, Fα(x) ∪ F β(x)〉  uα <Ṫ uβ.

Proof. Let l be k + 3. If Vl is the Sl-generic extension determined by G,
then κl is supercompact in Vl and there is a λ+-supercompact elementary
embedding j : Vl → Ml with critical point κl. Let GC be the generic filter
for Coll(κ+2

0 , < κ1) × . . . × Coll(κ+2
l−1, < κl) determined by G, then forcing

with Ctail := Coll(κ+2
l−1, < j(κl) \ κl) over V [G] we get a generic object H∗

such that j[G] ⊆ GC ∗H∗, hence we can lift j to an embedding j∗ : V [G]→
Ml[GC ][H∗] that we rename j. Note that the forcing Ctail is κl−1-closed,
that is κk+2-closed. Choose γ ∈ j(L) above j[λ+]. By elementarily, we can
pick for all α ∈ L a condition pα ∈ j(P∗) with stem s such that

pα  (j(α), ζ) <j(Ṫ ) (γ, ζ)

Every pα is of the form s a (Aαk , g
α
k , F

α
k , . . .) where Aαk ∈ j(Uk) = Uk ⊆

P(κk), g
α
k is in the generic filter for Coll(κ++

k−1, < min(Aαk )) induced by G,
and Fαk is a function with domain Aαk such that for every β ∈ Aαk , Fαk (β) is a
condition in Coll(β+ω+2, < κk) and [Fαk ]Uk ∈ Kk There are |P(κk)| = κk+1-
many possible triples (A, g, F ) in the range of the function α 7→ (Aαk , g

α
k , F

α
k ).

Since λ+ is regular in V [G][H∗] and Ctail adds no sequences of length less
than κk+2, the function α 7→ (Aαk , g

α
k , F

α
k ) must be constant on an unbounded

subset L′ of L. So there is (A∗, g∗, F ∗) such that (A∗, g∗, F ∗) = (Aαk , g
α
k , F

α
k )

for every α ∈ L′.
Now we step back to V [G] where we define E as the set of all triples

(A, g, F ) such that A ∈ Uk, g is in the generic filter for Coll(κ++
k−1, < min(A))

derived by G, and F is a function with domain A such that [F ]Uk ∈ Kk and
F (x) ∈ Coll(x+ω+2, < κk) for all x ∈ A. For every (A, g, F ) ∈ E, we define
a relation RA,g,F on L × {ζ}, by letting a RA,g,F b when there exists a
condition p such that p � k + 1 = s a (A, g, F ) and p  a <Ṫ b. Then
{RA,g,F }(A,g,F )∈E is a system, because for every two conditions p, p′ ∈ P∗
extending s a (A, g, F ) and forcing a statement ϕ, we can find a third
condition q ≤ p, p′ extending s a (A, g, F ) and forcing the same statement
ϕ.

Now in V [G][H∗] we can define a system of branches for {RA,g,F }(A,g,F )∈E
as follows. We let bA,g,F be the set of all pairs (α, ζ) such that there is a
condition p in j(P) such that p � k+1 = s a (A, g, F ) and p  (j(α), ζ) <j(Ṫ )

(γ, ζ)) The triple (A∗, g∗, F ∗) defined above determines a cofinal branch
bA∗,g∗,F ∗ . By Theorem 2.5 (applied to Ctail which is κk+2-closed), a cofinal
branch for the system exists also in V [G]. So there exists L∗ ⊆ L and
(A, g, F ) such that for all α < β in L∗, there exists a condition p ∈ P∗
extending s a (A, g, F ) that forces uα <Ṫ uβ.
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Let ρ be the least element of L∗ and, for every α ∈ (L \ ρ) \L∗, let α∗ be
the least element of L∗ above α. For α ∈ (L\ρ)\L∗ there exists (Āα, ḡα, F̄α)
such that some condition extending s a (Āα, ḡα, F̄α) forces uα <Ṫ uα∗ . So
given α ∈ L \ ρ, we define (Aα, gα, Fα) as follows. If α ∈ L∗, then we let
(Aα, gα, Fα) be (A, g, F ). If α /∈ L∗, then we let Aα be a subset of A ∩ Āα
such that for every x ∈ Aα, F̄α(x) and F (x) are compatible; we let gα be
a condition in the generic filter for Coll(κ++

k−1, < min(A ∩ Āα)) induced by

G, and we let Fα(x) = F̄α(x) ∪ F (x). The sequence 〈Aα, gα, Fα〉α∈L\ρ is as
required. �

We are now ready for the final step.

Lemma 5.4. In V [G] there exists a sequence of pairwise compatible condi-
tions 〈pβ; β ∈ J \ ρ〉 in P∗ with stem h where ρ < λ+ and for all β < β′ in
J the weakest common extension of pβ and pβ′ forces in P∗ that uβ <Ṫ uβ′ .

Proof. By induction on k < ω, we define 〈ρk; k ≥ n〉, and 〈Aαk , gαk , Fαk ; k ≥
n, α ∈ J \ ρk〉 such that:

(1) for all α ∈ J \ ρk, we have Aαk ∈ Uk, gk is in the generic filter for

Coll(κ++
k−1, < min(Aαk )) induced by G, and Fαk is a function with

domain Aαk with [Fαk ]Uk ∈ Kk such that Fαk (β) ∈ Coll(β+ω+2, < κk)
for every β ∈ Aαk ;

(2) for all β < β′ in J \ ρk, if s is a stem of the form

h a 〈αn, gn, fn, . . . αk, gk, fk〉

such that for n ≤ i ≤ k, αi ∈ Aβi ∩ A
β′

i , gi is in the generic filter for

Coll(κ++
i−1, αi) derived from G, and fi ≤ F βi (αi) ∪ F β

′

i (αi), there is a
condition of P∗ with stem s that forces uβ <Ṫ uβ′

ρn and 〈Aαn, gαn , Fαn ; α ∈ J \ ρn〉 are given by the above lemma applied
to h. Assume that we have defined ρk, and 〈Aαk , gαk , Fαk ; α ∈ J \ ρk〉, we
want to define ρk+1, and 〈Aαk+1, g

α
k+1, F

α
k+1; α ∈ J \ ρk+1〉. For a stem s =

〈α0, g0, f0, . . . αk, gk, fk〉 extending h we let

Js := {α ∈ J \ ρk; ∀i ≤ k, αi ∈ Aαi , gi ≤ gαi and fi ≤ Fαi (αi)}
We define ρs as follows: if Js is bounded in λ+, then ρs is a bound; otherwise
we let ρs and 〈As,α, gs,α, F s,α; α ∈ Js \ ρs〉 be given by the above lemma
applied to s and Js. Let

ρk+1 := sup{ρs; s is a stem of length k + 1 extending h}.
For each α ∈ J \ ρn+1, let

Hα(k + 1) := {s; s is a stem of length k + 1 such that h v s and α ∈ Js}.
Note that the set Aαk+1 :=

⋂
s∈Hα(k+1)A

s,α is in Uk+1 and [Fα]Uk+1
:=⋃

{[F s,α]Uk+1
; s ∈ Hα(k+ 1)} is in Kk+1. By shrinking Aαk+1 we can assume

that for all x ∈ Aαk+1, F
α(x) =

⋃
{F s,α(x); x > αk}. We let gα be the

condition
⋃
s∈Hα(k+1) g

s,α.We check that (1) and (2) hold for k+1. Condition
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(1) holds by construction. For condition (2), consider α < β both in J \ρk+1

and suppose that s = h a 〈An, gn, Fn, . . . Ak+1, gk+1, Fk+1〉 is a stem of
length k + 2 such that α, β ∈ Js. As both α and β are in Js and ρk+1 <
α, β, we have that Js is unbounded and ρs was obtained by applying the
previous lemma. Therefore s ∈ Hα(k + 1) ∩Hβ(k + 1), αk+1 ∈ As,α ∩ As,β,
gk+1 ≤ gs,α, gs,β and fk+1 ≤ F s,α(αk+1)∪F s,β(αk+1). So by construction of
As,α, As,β, F s,α, F s,β we have s  uα <Ṫ uβ.

This completes the definition. Finally, we let ρ := supn<ω ρn and for ev-
ery α ∈ J \ρ, we let pα be the condition h a 〈Aαn, gαn , Fαn , . . . Aαj , gαj , Fαj , . . .〉.
Then 〈pα; α ∈ J \ ρ〉 is as desired. Indeed, if α < β are in J \ ρ, then pα
and pβ are compatible in P∗ and if q ≤ pα, pβ is in P∗, then by construction
stem(q)  uα <Ṫ uβ, i.e. there is a condition of P∗ with the same stem as
q that forces uα <Ṫ uβ. Two conditions of P∗ with the same stem are com-
patible, hence q 6 uα 6<Ṫ uβ. It follows that the weakest common extension
of pα and pβ forces uα <Ṫ uβ. �

That completes the proof of Theorem 1.2.

6. Stationary set reflection and the failure of the tree
property at ℵω2+1

In this section we show that the stationary set reflection at ℵω2+1 does not
imply the tree property. We force from large cardinals a model of ∆ℵω2 ,ℵω2+1

where the tree property at ℵω2+1 fails, thus we demonstrate Theorem 1.3.
The proof combines Magidor and Shelah’s technique for getting ∆ℵω2 ,ℵω2+1

with some ideas from Kunen’s paper (see [2]).
We start by assuming the existence of infinitely many supercompact car-

dinals 〈κn〉n<ω; as usual we assume that the sequence is increasing and that
the supercompactness of each κn is indestructible by κn-directed closed forc-
ings. We let λ := limn<ω κn and we assume that 2κn = κ+

n for every n < ω.
We consider the following forcing notion R: a condition t of R is either the

one-point tree {0} or an homogeneous tree t ⊆ λ+2 of successor height such
that 〈0〉 and 〈1〉 are in t. R is partially ordered by end-extension. It is proven
in Kunen’s paper that forcing with R adds a Suslin tree, let T be such a tree.
Kunen observed that the iterated forcing R ∗ T is equivalent to a λ+-closed
forcing

Q := {(r, t); r ∈ R, t ∈ r, ht(r) = dom(t) + 1, and r  t ∈ Ṫ}.

We observe that Q is even λ+-directed closed: if 〈rα, tα〉α<λ is a directed
sequence of conditions in Q, then r :=

⋃
α<λ rα is an homogeneous tree

of height γ := supα<λ ht(rα) and t :=
⋃
λ tα is a path through r. We can

extend r to an homogeneous tree of height γ + 1 by adding at level γ all
sequences s a (t \α) such that s ∈ r, where t \α denotes the unique s′ such
that t � α a s′ = t. This provides a common extension for the sequence
〈rα, tα〉α<λ.
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Since we assumed that the supercompactness of each κn is indestructible
by directed closed forcing, κn remains supercompact in V R∗T as well as in
the model V (R∗T )×Sn (Sn denotes the same poset as in the previous sections).
We use this fact to define in V a variation of the forcing P discussed in the
previous sections: each Ḟn is replaced by an (R ∗T )×Sn-name for a normal
ultrafilter on Pκn(λ+), and Un denotes now the projection of such ultrafilter
to a normal utrafilter on κn. Since 2κn = κ+

n and forcing with (R ∗ T )× Sn
does not add sets which are hereditarily of size ≤ κ+

n , once again we have
Un ∈ V. The generic filters Ki are defined as before.

We want to prove that forcing with R ∗ P we obtain the desired model.
Let be S := Coll(ω,< κ0)× S0, and let GS0 be a generic filter for S0 over V.
As before, we denote by P∗ the poset whose conditions are the conditions p
of P such that the S-part of p is in GS0 .

We will need the following lemma.

Lemma 6.1. T is λ+-strategically closed in V R.

Proof. T is λ+-strategically closed if Even has a winning strategy in the game
Gλ+(T ) where two players Odd and Even take turns to play conditions tβ for
λ+ many moves with Odd playing at odd stages and Even playing at even
and limit stages. Even must play the maximal condition of T at move zero
and, at move β, the condition tβ must be stronger than any condition played
until then. Even wins the game if he can respond at any move. We describe
the strategy as follows. At each move β, Even chooses a condition rβ ∈ R
in addition to tβ ∈ T in such a way that tβ ∈ rβ and ht(rβ) = dom(tβ) + 1.
It follows that for every β even or limit, the pair (rβ, tβ) belongs to Q. The
closure of Q ensures that Even can chose (rβ, tβ) at each stage. �

Theorem 6.2. The tree property at ℵω2+1 fails in V R∗P.

Proof. T is λ+-Suslin in V R, we prove that forcing with S ∗P∗ over V R does
not add a cofinal branch to T ; in particular T remains Aronszajn in V R∗P

which is a submodel of V R∗S∗P∗ . The forcing S is a product of a forcing of
size κ0, namely Coll(ω,< κ0), with a σ-closed forcing, namely S0. S0 is σ-
closed, hence by Lemma 2.2 it cannot add cofinal branches to T over V R.
The poset Coll(ω,< κ0) is λ+-Knaster in V R∗S0 , therefore it cannot add
cofinal branches to T over V R∗S0 . It follows that T remains Aronszajn in
V R∗S.

Claim 6.3. P∗ is λ+-Knaster in V R∗S

Proof. Given a sequence 〈pβ; β < λ+〉 of conditions in P∗, there exists n < ω
and a stationary set S∗ ⊆ λ+ such that pβ has length n for every β ∈ S∗.
The possible stems of P∗ length n are ≤ κn+1 < λ+ hence there exists s and
a stationary subset S ⊆ S∗ such that stem(pβ) = s for every β ∈ S. Two
conditions of P∗ with the same stem are compatible, hence the conditions
in the subsequence 〈pβ; β ∈ S〉 are pariwise compatible. �
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It follows that P∗ cannot add cofinal branches to T, hence T remains
Aronszajn in V R∗S∗P∗ . �

Theorem 6.4. V R∗P |= ∆ℵω2 ,ℵω2+1

To prove the theorem we want to use the old argument from Magidor and
Shelah’s paper, the main difficulty is to deal with the presence of the generic
Suslin tree T. For the argument to work, we need T to be λ+-c.c. in V R∗Sn ;
this motivates the following lemma.

Lemma 6.5. For every n < ω, the tree T remains λ+-Suslin in V R∗Sn

Proof. We work in V R. Let be s ∈ Sn and Ȧ such that

s  Ȧ is a maximal antichain in T.

We let θ be some regular cardinal much larger than any cardinal under
discussion and let Hθ be some expansion of 〈Hθ,∈〉 by at most countably
many constants, functions and relations including s, T, Sn and everything
relevant to this proof. We fix a λ+-approximating sequence, namely a con-
tinuous increasing sequence 〈Mα〉α∈λ+ of elementary substructures of Hθ of
size < λ+ such that for all α, λ+ ∈Mα, 〈Mβ; β ≤ α〉 ∈Mα+1 and Mα ∩ λ+

is an ordinal of λ+.
By Lemma 6.1 T is λ+-strategically closed, we assume that every Mα

contains the corresponding strategy τ.

Claim 6.6. Given a model M in the approximating sequence, for every
k ≥ n, q ∈ Sn and x ∈ T ∩M, there exists t∗ > x in T ∩M and a condition
q∗ ≤ q with q∗ � k = q � k such that q∗  t∗ is above some element of Ȧ.

Proof. Let {pγ ; γ < κk} enumerate all the sequences q̄ � k for q̄ ≤ q. We
inductively define a decreasing sequence of conditions 〈qα〉α∈κk in Sn ∩M
and an increasing sequence of nodes 〈tα〉α∈κk in T ∩M such that

(1) q0 := q and t0 := x
(2) qα � k = q � k for every α

moreover, we make sure that the nodes are chosen according to the strategy
τ. For α limit ordinal, we let qα be the union of all qβ where β < α, and tα
is the node given by the strategy τ applied to 〈tβ〉β<α. Suppose that qα and
tα are defined, we define qα+1 and tα+1 as follows. We denote by qα ∗ pα the
unique condition r ∈ Sn such that r � k = pα and r(i) = qα(i) for all i ≥ k.
Let ϕα be the statement:

“There is a condition q̄ compatible with qα ∗ pα and there is a node t > tα
such that q̄  t is above some element of Ȧ.”

If the statement is true, then we let tα+1 > t be the node given by the
strategy τ and we let qα+1 be given by

qα+1(i) :=

{
qα(i) if i < k
qα(i) ∪ q̄(i) otherwise
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If the statement is false, we let qα+1 be qα and we let tα+1 be tα.
Using the closure of Sk, let q∗ be a lower bound for 〈qα; α ∈ κk〉 (such

a lower bound exists because the conditions in the sequence have the same
k-lower part). We also let t∗ be the node given by the strategy τ applied
to 〈tα; α ∈ κk〉. By elementarity of M we can assume that both q∗ and t∗

belong to M . We show that

q∗  t∗ is above some element of Ȧ.

Suppose otherwise, we will reach a contradiction. q∗ forces that Ȧ is a
maximal antichain, so we have

q∗  t∗ is compatible with some element of Ȧ.

Let be t∗∗ and q∗∗ be such that t∗∗ is compatible with t∗, q∗∗ ≤ q∗ and q∗∗

forces that t∗∗ is in Ȧ. The sequence q∗∗ � k appears in the enumeration as
pα for some α, so by construction q∗∗ is compatible with qα ∗ pα and t∗∗ is
compatible with tα. It follows that the statement ϕα is true, hence tα+1 and
qα+1 were defined so that tα+1 > tα and

qα+1  tα+1 is above some element of Ȧ.

This prove that q∗∗ and t∗∗ are as required. �

We resume the proof of the lemma. Using the claim, we can inductively
define a decreasing sequence 〈sα〉α<λ+ such that

(a) s0 := s and sα � k = s � k for every α
(b) for every x ∈ T ∩Mα there exists y > x in T ∩Mα such that

sα  y is above some element of Ȧ.

Finally let be s∞ :=
⋃
α<λ+ sα and M∞ :=

⋃
α<λ+ Mα. We show that

s∞  every element of Ȧ can be extended to an element of T ∩M∞;

this will complete the proof as T ∩M∞ belongs to V R where T is λ+-Suslin.
Assume s∞  ẋ ∈ Ȧ, we take s ≤ s∞ and x ∈ T such that s  ẋ = x. By
elementarity we can assume without loss of generality that x ∈ M∞. Let α
be the least ordinal such that x ∈Mα. By (b) there exists y > x in T ∩Mα

such that

sα  y is above some element of Ȧ

In particular, s∞ forces the same. By maximality of Ȧ we have s∞ 
y is above ẋ that completes the proof of the lemma. �

We are now ready to prove Theorem 6.4. From now on, we will essentially
follow the arguments of [5] with minor adjustments.

Let GR be an R-generic filter over V, let GT be a T -generic filter over
V [GR] and let Gn be an Sn-generic filter over V. In V [GR] we let p ∈ P, Ȧ, Ṡ
and µ < λ be such that the S-part of p is in Gn and

p  Ȧ is an algebra on λ+ with µ operations and Ṡ ⊆ λ+ is a stationary set.
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Let l < ω be such that µ < κl, we can assume without loss of generality
that the length of p is n > l and p forces that every ordinal in Ṡ has cofinality
< κl. In any P-generic extension V [GR][GP] we can observe that for every β

in Ṡ there is a condition qβ ∈ GP such that qβ  β ∈ Ṡ. Since there are less

than λ+ many possible stems of qβ, there is a stationary subset Ė of Ṡ such

that for every β ∈ Ė the stem of qβ is fixed. We can assume without loss of
generality that the stem of p extends this fixed stem, hence p forces that

Ė = {β < λ+; ∃q ≤ p in GP such that stem(q) = stem(p) and q  β ∈ Ṡ}

is stationary in λ+.
In the rest of the proof we will work in V [GR ∗GT ][Gn], recall that κn is

still supercompact in this model. We define P∗n to be the set of all conditions
q ∈ P of length ≥ n such that the Sn-part of q belongs to Gn. We let

E∗ := {α < λ+; ∃q ≤ p in P∗n with the same stem of p such that q  α ∈ Ė}.

Lemma 6.7. V [GR][GT ][Gn] |= E∗ is a stationary subset of λ+.

Proof. Note that V [GR][GT ][Gn] = V [GR][Gn][GT ]. Assume for a contradic-
tion that we can find in V [GR][Gn][GT ] a club C ⊆ λ+ which is disjoint
from E∗. By Lemma 6.5, T is λ+-c.c., so there exists a club D ⊆ C that
lies in V [GR][Gn], thus we can assume without loss of generality that C is
in V [GR][Gn]. We work in V [GR]. As we did for S0 in the previous section,
we define an equivalence relation ∼ on Sn by

〈gi〉n−1<i ∼ 〈hi〉n−1<i ⇐⇒ for large enough i, gi = hi.

For a condition r ∈ Sn, we denote by [r] its equivalence class. Let Hn :=
{[r]; r ∈ Gn}, then we have

V [GR] ⊆ V [GR][Hn] ⊆ V [GR][Gn].

The same arguments for the proof of Proposition 4.5 show that Sn/ ∼ is
λ+-c.c.

Therefore, we can assume that C lies in V [GR][Hn]. We fix a generic

GP for P over V [GR] and we let E be the interpretation of Ė in this
model. We observe that V [GR][GP] is obtained by forcing with P∗n over
V [GR][GT ][Gn]. By the definition of E∗ we have E ⊆ E∗. By Lemma 4.4
we have V [GR][Hn] ⊆ V [GR][GP], in particular C belongs to V [GR][GP], but
C is disjoint from E∗, hence from E. That contradicts the fact that E is
stationary in V [GR][GP]. �

Now we define in V [GR][GT ][Gn] a forcing notion Cn whose conditions
are sequences 〈α0, g0, f0, . . . , αn−1, gn−1, fn−1, s〉 such that

(1) 〈α0, . . . , αn−1〉 is the α-part of p;
(2) 〈f0, . . . fn−1〉 belongs to

∏
i<n Coll(α+ω+2

i , κi);

(3) 〈g0, . . . gn−1〉 belongs to
∏
i<n Coll(κ+ω+2

i−1 , < αi);

(4) s ∈ Coll(κ++
n , < κn).
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The ordering is:

〈α0, g0, f0, . . . , αn−1, gn−1, fn−1, s〉 ≤ 〈α0, g
′
0, f
′
0, . . . , αn−1, g

′
n−1, f

′
n−1, s

′〉
if and only if for all i, fi ≤ f ′i , gi ≤ g′i and s ≤ s′. Let GCn be any generic
filter for Cn that contains the stem of p. In V [GR][GT ][Gn][GCn] we define
P∗∗n ⊆ P∗n as the set of all conditions q of length n such that the stem of
q is in the generic GCn for Cn. Every two elements of P∗∗n are compatible.
Moreover, by the closure of Sn × Cn we have that P∗∗n is σ-closed. Both
P∗n and P∗∗n satisfy the property that for every statement ϕ in the forcing
language of P there exists r ∈ P∗n, respectively r ∈ P∗∗n , such that r ≤ p and
r decides ϕ (see [5, Lemma 6 and Lemma 8]).

We are going to define an algebra A∗ in V [GR][GT ][Gn][GCn ] that will rep-

resent a version of the algebra Ȧ. Without loss of generality we can assume
that the order type of Ȧ, namely the sequence of the cardinals specifying for
each n how many n-ary operations are in Ȧ, is in V [R]. The algebra A∗ will
be generated by finite sequences of ordinals less than λ+. We must specify
for each two terms, whether they denote the same element of the algebra,
thus the elements of A∗ are actually the equivalence classes of terms. Sup-
pose that Ȧ can be written as 〈λ+, 〈ȯi〉i<µ〉. We can assume without loss of

generality that one of the operations of Ȧ is the identity on the terms of the

algebra. Given ρ, η < µ and given two sequences of ordinals ~β and ~γ in λ+,

we let ρ(~β) =∗ η(~γ) if some condition q in P∗∗n forces that ȯρ(~β) = ȯη(~γ) (in
the sense of the forcing language for P). The elements of A∗ are the equiv-
alence classes under the relation =∗ . Note that A∗ is well defined because
any two conditions of P∗∗n are compatible.

We define an ordering on A∗ by letting ρ(~β) <∗ η(~γ) if some condition of

P∗∗n forces that ȯρ(~β) < ȯη(~γ) as ordinals.

Lemma 6.8. ([5, Lemma 9, 10, 11]) A∗ is well ordered by <∗ in order type
λ+.

Now we work in V [GR][GT ][Gn] where we let Ȧ∗ be a Cn-term for the alge-

bra A∗. Let U∗ be the inetrpretation of Ḟn in this model (recall that Ḟn was
an (R∗T )×Sn-name for a normal ultrafilter on Pκn(λ+) and Un is the projec-
tion of such an ultrafilter). We let j be the supercompact elementary embed-
ding corresponding to U∗. We consider θ a regular cardinal much larger than
any cardinal under discussion and we let Hθ := 〈Hθ, λ

+, E∗,P∗n, p,Cn, Ȧ∗〉.
We define

B := {M ∩ λ+; M ≺ Hθ, |M | < κn, M ∩ λ+ ∈
⋂

W∈U∗∩M
W}

Since j[λ+] ∈ j(B), we have B ∈ U∗. We let

B∗ := {X ∈ Pκn(λ+); X ∩ κn is inaccessible, o.t.(X) = (X ∩ κn)+ω+1,
E∗ ∩X is stationary in sup(X)},

then B∗ also belongs to U∗.
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Lemma 6.9. Let X ∈ B ∩ B∗ such that X ∩ κn ∈ Apn and let M ≺ Hθ be
witnessing the fact that X ∈ B. There exists a condition q ∈ P∗n of length
n+ 1 such that αqn = X ∩ κn and q extends every extension of p in P∗n ∩M
with the same stem as p.

Proof. The proof is just as in [5, Lemma 13] we include it for the sake of
completeness. Let αn := X ∩ κn. We use the closure of Sn to define q as

〈α0, g0, f0, . . . αn−1, gn−1, fn−1, αn, gn, f
∗
n, A

∗
n+1, g

∗
n+1, F

∗
n+1, . . .〉

where

(1) α0, g0, f0, . . . αn−1, gn−1, fn−1, αn, gn are like in p;
(2) for j > n, A∗j :=

⋂
W∈Uj∩M W ;

(3) for j > n, g∗j is the union of the j-th components of Gn ∩M ;

(4) f∗n :=
⋃
{F (αn); F ∈M, [F ]Un ∈ Kn};

(5) for j > n, F ∗j (β) :=
⋃
{F (β); F ∈M, [F ]Uj ∈ Kj}

Every A∗j belongs to Uj because the cardinality of M is less than κn < κj
(moreover, U∗ ∩M belongs to V by the closure of (R ∗ T ) × Sn, so we are
intersecting a family of sets in V ).

We show that f∗n is in Coll(α+ω+2
n , < κn) : we assumed that X belongs

to every W ∈ U∗n ∩ M, hence, since Un is the projection of U∗n, we have
X ∩ κn = αn ∈ W for W ∈ Un ∩M. If F, F ′ ∈ M and [F ]Un , [F

′]Un ∈ Kn,
then the set P := {β < κn;F (β) and F ∗(β) are compatible } belongs to Un
and we have P ∈ Un ∩M, so αn ∈ P. It follows that f∗n is the union of
|M | many mutually compatible conditions of Coll(α+ω+2

n , < κn) and by the
closure of Sn this union is in V [GR]. We have |M | = |X| = α+ω+1

n , hence
f∗n is in Coll(α+ω+2

n , < κn). The same argument show that the F ∗j are well
defined. �

We resume the proof of the theorem. Take X ∈ B∩B∗ and let M witness
the fact that X is in B. Let α = X ∩ κn = M ∩ κn and let q be as in
Lemma 6.9.

Claim 6.10. q forces that the subalgebra of Ȧ generated by X has the same
order type as X and X is cofinal in it.

Proof. We sketch the proof, for more details see [5, p. 804]. Let B∗ be the
subalgebra of A∗ generated by X. It is not difficult to see that B∗ has order
type |X| and X is cofinal in it. B∗ is defined in V [GR][GT ][Gn][GCn ], never-
theless by the κn-c.c. of Cn we can see that B∗ exists in the smaller model
V [GR][GT ][Gn][J ], where J is the generic object added byGn for the set of all
conditions in Cn that have as last coordinate a condition in Coll(κn−1, < αqn)
(instead of Coll(κn−1, < κn)). By the closure of (R ∗ T ) × Sn, we have
B∗ ∈ V [GR][J ]. Now, let GP ⊆ P be a generic filter for P containing the
condition q. Since the stem of q is in J, we have V [GR][J ] ⊆ V [GR][GP].
Thus B∗ is in V [GR][GP]. Let A := (λ+, 〈oρ〉ρ<µ) be the interpretation of

Ȧ by GP and let B be the subalgebra of A generated by X. To prove the
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claim, it suffices to show that B is isomorphic to B∗ via an isomorphism that

is the identity on X. The isomorphism associates to oρ(~β) the equivalence

class of ρ(~β), denoted [ρ(~β)]. To show that this is an isomorphism, consider

[ρ(~β)] and [η(~γ)] two terms of B∗ and suppose that [ρ(~β)] = [η(~γ)] (resp.

[ρ(~β)] < [η(~γ)]) in the sense of B∗. This means that there exists r ≤ p with
the same stem as p and there exists t ∈ J such that, if r∗ is a condition

like r except that the stem is t, then r∗ forces that ȯρ(~β) = ȯη(~γ) (resp.

ȯρ(~β) < ȯη(~γ)). By elementarity of M, we can assume that r ∈ M, hence

q ≤ r, so r ∈ GP. By definition of J, we have r∗ ∈ GP, therefore oρ(~β) = oη(~γ)

(resp. oρ(~β) < oη(~γ)). That completes the proof of the claim. �

In conclusion, q forces that the order type of X is a regular cardinal.
Since αqn = X ∩ κn, the order type of X is (X ∩ κn)+ω+1 = (αqn)+ω+1 and
no cardinal are collapsed between αn and α+ω+2

n . We also note that for
β ∈ E∗∩X, some extension of p in P∗n with the same stem forces β ∈ E, but
by elementarity such an extension is in M, so q extends it, hence q forces
β ∈ E. Since X ∈ B∗, we have X ∩E∗ is stationary in the sup(X), so we get
that q forces that the subalgebra generated by X is a witness to ∆ℵω2 ,ℵω2+1

.

The other direction is analogous, so that completes the proof of Theorem 6.4
and consequently of Theorem 1.3.
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