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ABSTRACT. We characterize several large cardinal notions as properties of sheaves.

1. SHEAVES

Let X be a topological space, we denote by &'(X) the set of all open subsets of X.
O(X) can be seen as a category where the objects are the open sets and the morphisms
are the inclusions of open sets.

We recall that a sheaf on X (a Sets-valued sheaf on X) is a contravariant functor
F from 0(X) to Sets -the category of sets- that assigns to each open set U of X a set
F(U), and to each pair of open sets V' C U of X a morphism Fyy : F(U) — F(V) in
the category Sets (called the restriction morphism) such that:

(Gluing axiom) if {U;};c is an open covering of an open set U, and if for each ¢ € T
we pick s; € U; such that for any 4, j € I we have Fy,ny, v, (8i) = Fu,nu,,u,(S5), then
there exists a unique s € F(U) such that Fy, (s) = s; for each i € 1.

When there is no ambiguity, we write s|U for the restriction Fy;y (s). For every open
U, the elements of F'(U) are called sections; a section over X is called a global section.
Sections {s;}ies satisfying the condition of the Gluing axiom are called compatible,
the unique section s whose existence is guaranteed by that axiom is called the gluing
of the sections {s; }ies

Trough the notion of Grothendieck topology one can generalise this to any cathegory
% . The usual notion of covering is replaced by the more general notion of sieve.

Definition 1.1. A sieve S over an object ¢ of € is a family of morphisms of codomain
¢ such that for all f,g in S, the composite f o g is in S.

Given a sieve S over ¢ and a morphism f : d — ¢, the pullback of S along f, denoted
f*S, is the sieve on d given by left composition with f, i.e.

f*S={g:e—d; fge S}

Definition 1.2. A Grothendieck topology J on € is a collection of distinguished
sieves J(c), for every object ¢ of €, called covering sieves of ¢, such that
(1) (Identity) the mazimal sieve M. = {f;cod(f) = c} is in J(c);
(2) (Base change) for every sieve S in J(c) and every morphism f : d — ¢, the
pullback f*(S) is in J(d);
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(3) (Local Character) for every sieve S € J(c) and every sieve T over ¢, if we have
f*T € J(dom(f)) for all f € S, then T € J(c).

A site on € is a pair (€, J) where € is a category and J is a Grothendieck topology
on % .

Definition 1.3. Glven a site (¢,J), a J-sheaf on € with values on Sets is a con-
travariant functor F' from € to Sets that satisfies the gluing property, namely for every
sieve S € J(c) and for every family of sets {x}res such that xy € F(dom(f)) and
Tfog = F(g)(xy), there exists a unique object x € F(c) such that F(f)(x) = xzy for
every f € S.

2. LARGE CARDINALS

We will consider two large cardinal notions, namely weakly compact and strongly
compact cardinals.

Definition 2.1. For a cardinal k,

(1) k is weakly compact if and only if, for every collection T' of sentences of the
language 2, . with at most k non-logical symbols, if T is k-satisfiable, the T
is satisfiable;

(2) Kk is strongly compact if and only if, for every collection T of sentences of
L, if T is k-satisfiable, then T is satisfiable.

These notions admit a combinatorial characterisation in terms of properties of trees
or similar objects. We recall the definition of the tree property.

Definition 2.2. Given a reqular cardinal K,

(1) a k-tree is a tree of height K all of whose levels have size less than k;
(2) we say that k has the tree property when every k-tree has a cofinal branch.

Theorem 2.3. (Erdos Tarski 1961) A regular cardinal k is weakly compact if and
only if, Kk 1s inaccessible and every k-tree has a cofinal branch.

The strong tree property concerns special objects that generalise the notion of k-
tree, for a regular cardinal k.

Definition 2.4. Given a regular cardinal k > wy and an ordinal 0 > k, a (k,0)-tree
1s a set F' satisfying the following properties:

(1) for every f € F, f: X — 2, for some X € [0]<"

(2) forall f € F, if X Cdom(f), then f | X € F;

(3) the set Levx(F) :={f € F; dom(f) = X} is non empty, for all X € [0]<";
(4) |Levx(F)| < &, for all X € [0]<".

As usual, when there is no ambiguity, we will simply write Lev x instead of Levx (F).
In a (k,0)-tree, levels are not indexed by ordinals, but by sets of ordinals. So the
predecessors of a node in a (k, §)-tree are not (necessarily) well ordered and a (k, 0)-
tree is not a tree.
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Definition 2.5. Given a regular cardinal k > wsy, an ordinal 0 > k and a (k,0)-tree
F, a cofinal branch for F' is a function b : 0 — 2 such that b | X € Levx(F), for all
X e [g]<".
Definition 2.6. Given a regular cardinal Kk > wy and an ordinal 0 > K,
(1) (k,0)-TP holds if every (k,0)-tree F' has a cofinal branch;
(2) we say that k satisfies the strong tree property if (6, u)-TP holds, for all
0" > k;
For a more extensive presentation of this property, the reader can consult Weiss
Phd thesis [?].

Theorem 2.7. (Jech 1973, Di Prisco, Zwuicker 1980) A regqular cardinal k is strongly
compact if and only if k is inaccessible and the strong tree property holds at k.

3. WEAK COMPACTNESS AND SHEAVES

If k is an ordinal, then we can see xk as a topological space whose open sets are the
ordinals a < k. Then a sheaf on & is a contravariant functor from x to Sets with the
localoty and gluing property.

First of all, note that for an ordinal x, the category (k) corresponds to the category
whose objects are the ordinals below k + 1 (these are the open subsets of k) and the
morphisms are the inclusion maps.

Definition 3.1. Given a reqular cardinal K, we say that a sheaf F' on a topological
space X is k-thin when

(1) F(U) is non empty, for every proper open set U,

(2) for each proper open set U, there are less than k many extendible sections in

FU).
Thus, in the case of a sheaf F' on x, we have that F' is s-thin when F(«) is non

empty for every o < k, and for every a < k, the set U,3>a F, 3|F(B)] has size less
than k.

Theorem 3.2. Assume K is a reqular cardinal, the following are equivalent:
(i) K has the tree property;
(ii) Every k-thin sheaf F' on k has a global section

Proof.

(i)— (ii) Let F be a r-thin sheaf on k. For every o < k, we let L, denote the set of all
extendible sections of F'(«), equivalently Lo = Uz, Fos[F'(B)]. We define a
tree ordering < on the set 17" := J,_, La by letting

r<p y < x€L, ye& Lsgfora<pand F,s(y) =z

It is easy to check that (7, <r) is a k-tree. By assumption 7" has a cofinal
branch b. Assume b := {4 }a<x, then we have for every a < < k, F, g(x3) =
Zo. By the gluing property, there exists a global section = € F(k).
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(ii))— (i) Let (T, <7) be a k-tree. We define for every a < k, F(«) as the set of all
cofinal branches of T' | o, and for a < § < k, we let

Fopb)=bNnT .

We claim that F'is a s-thin sheaf. Given an ordinal « := (J,; 3 and com-
patible sections {b;};cs, there exists a unique gluing of the sections, namely
b := {J,e; bi which is a cofinal branch of T' [ a. For every a < k, we have

{bNT Ja; IB>a(be FP)={bNT Ja; be Fla+ 1)} = Fpon[Fla+1)].

We observe that F'(a+ 1) has the same size as Lev,(T), hence it has size less
than k, indeed, every branch in F'(a + 1) has a maximal element on Lev, (7).
It follows that |F, o+1[F (a4 1)]| < k. By the gluing property, there exists a
global section b € F(k). Then b is a cofinal branch for 7'

O

Corollary 3.3. Assume K is an inaccessible cardinal, then k is weakly compact if and
only if, every k-thin sheaf F' on k has a global section

Proof. 1t follows from the characterisation of weakly compact cardinals in terms of
the tree property. O

4. STRONGLY COMPACT CARDINALS AND SHEAVES

Let A be any ordinal, we can see P()\) as a category whose objects are the subsets of
A and the morphisms are the inclusion maps. Now assume & is a regular cardinal and
A > k. We define a Grothendieck topology J,. on this cathegory as follows. For X C A,
we let J,(X) be the set of all families {X;};ec; of subsets of X such that (J,.; X; = X
and for every Y C X of size less than k, there exists ¢ € [ such that Y C X;.
Theorem 4.1. Assume Kk is an inaccessible cardinal, then k is strongly compact if and
only if, for every X\ and every sheaf F on the site (P(\), J.), if F(X) is non-empty
for every X € P.(\), then F has a global section.

Proof. We use the characterisation of strongly compact cardinals in terms of the strong
tree property.

(=) Assume « is a strongly compact cardinal, hence & is inaccessible and satisfies
the strong tree property. Let F' be a sheaf on (P()), J,;) such that F/(X) is non
empty for every X of size less than k. Consider the union A of all F/(X) for
X € P.(X) and let 6 be the size of this set. We fix an enumeration {s;; i < 6}
of A and we let T' be the set of all < k-sequences of pairwise compatible sections
in A. We show that T is a (k,0)-tree. Every element of T' can be seen as a
function s : I — 2 over a set of indexes I of size < x such that s7'{1} is a set of
pariwise compatible sections. By the inaccessibility of &, every level Lev;(T)
has size < r (because it is a subset of 72 that has size < k). As  satisfies the
strong tree property, we can find a cofinal branch B for T. By construction, B
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is a sequence of pairwise compatible sections. By the cofinality of B, we have
that for every X € P,(0) there exists Y C X such that BNY is non empty.
It follows from the sheaf property that F'(\) is non empty (A is the union of
all its subsets of size < k).

(«<=) It is enough to show that x has the strong tree property. Let T" be a (6, k)-tree

1]

where 0 > k. We define a sheaf F' on the site (P(6), J,) by letting F(X) =
Levx(T) for every X € P.(0). Let f be a global section, then f must be a
cofinal branch for T

O
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