LARGE CARDINALS AS PROPERTIES OF SHEAVES

LAURA FONTANELLA AND MISHA GAVRILOVICH

ABSTRACT. We characterize several large cardinal notions as properties of sheaves.

1. Sheaves

Let X be a topological space, we denote by $\mathscr{O}(X)$ the set of all open subsets of X. $\mathscr{O}(X)$ can be seen as a category where the objects are the open sets and the morphisms are the inclusions of open sets.

We recall that a *sheaf on* X (a *Sets*-valued sheaf on X) is a contravariant functor F from $\mathcal{O}(X)$ to *Sets* -the category of sets- that assigns to each open set U of X a set F(U), and to each pair of open sets $V \subseteq U$ of X a morphism $F_{V,U} : F(U) \to F(V)$ in the category *Sets* (called the restriction morphism) such that:

(Gluing axiom) if $\{U_i\}_{i \in I}$ is an open covering of an open set U, and if for each $i \in I$ we pick $s_i \in U_i$ such that for any $i, j \in I$ we have $F_{U_i \cap U_j, U_i}(s_i) = F_{U_i \cap U_j, U_j}(s_j)$, then there exists a unique $s \in F(U)$ such that $F_{U_i, U}(s) = s_i$ for each $i \in I$.

When there is no ambiguity, we write s|U for the restriction $F_{U,V}(s)$. For every open U, the elements of F(U) are called *sections*; a section over X is called a *global section*. Sections $\{s_i\}_{i\in I}$ satisfying the condition of the Gluing axiom are called *compatible*, the unique section s whose existence is guaranteed by that axiom is called the *gluing* of the sections $\{s_i\}_{i\in I}$

Trough the notion of Grothendieck topology one can generalise this to any cathegory \mathscr{C} . The usual notion of covering is replaced by the more general notion of *sieve*.

Definition 1.1. A sieve S over an object c of C is a family of morphisms of codomain c such that for all f, g in S, the composite $f \circ g$ is in S.

Given a sieve S over c and a morphism $f : d \to c$, the *pullback of S along f*, denoted f^*S , is the sieve on d given by left composition with f, i.e.

$$f^*S = \{g : e \to d; \ fg \in S\}$$

Definition 1.2. A Grothendieck topology J on \mathscr{C} is a collection of distinguished sieves J(c), for every object c of \mathscr{C} , called covering sieves of c, such that

- (1) (Identity) the maximal sieve $M_c := \{f; cod(f) = c\}$ is in J(c);
- (2) (Base change) for every sieve S in J(c) and every morphism $f : d \to c$, the pullback $f^*(S)$ is in J(d);

(3) (Local Character) for every sieve $S \in J(c)$ and every sieve T over c, if we have $f^*T \in J(\operatorname{dom}(f))$ for all $f \in S$, then $T \in J(c)$.

A site on \mathscr{C} is a pair (\mathscr{C}, J) where \mathscr{C} is a category and J is a Grothendieck topology on \mathscr{C} .

Definition 1.3. Given a site (\mathcal{C}, J) , a J-sheaf on \mathcal{C} with values on Sets is a contravariant functor F from \mathcal{C} to Sets that satisfies the gluing property, namely for every sieve $S \in J(c)$ and for every family of sets $\{x_f\}_{f \in S}$ such that $x_f \in F(dom(f))$ and $x_{f \circ g} = F(g)(x_f)$, there exists a unique object $x \in F(c)$ such that $F(f)(x) = x_f$ for every $f \in S$.

2. Large Cardinals

We will consider two large cardinal notions, namely weakly compact and strongly compact cardinals.

Definition 2.1. For a cardinal κ ,

- (1) κ is weakly compact if and only if, for every collection T of sentences of the language $\mathscr{L}_{\kappa,\kappa}$ with at most κ non-logical symbols, if T is κ -satisfiable, the T is satisfiable;
- (2) κ is strongly compact if and only if, for every collection T of sentences of $\mathscr{L}_{\kappa,\kappa}$, if T is κ -satisfiable, then T is satisfiable.

These notions admit a combinatorial characterisation in terms of properties of trees or similar objects. We recall the definition of the tree property.

Definition 2.2. Given a regular cardinal κ ,

- (1) a κ -tree is a tree of height κ all of whose levels have size less than κ ;
- (2) we say that κ has the tree property when every κ -tree has a cofinal branch.

Theorem 2.3. (Erdös Tarski 1961) A regular cardinal κ is weakly compact if and only if, κ is inaccessible and every κ -tree has a cofinal branch.

The strong tree property concerns special objects that generalise the notion of κ tree, for a regular cardinal κ .

Definition 2.4. Given a regular cardinal $\kappa \geq \omega_2$ and an ordinal $\theta \geq \kappa$, a (κ, θ) -tree is a set F satisfying the following properties:

- (1) for every $f \in F$, $f: X \to 2$, for some $X \in [\theta]^{<\kappa}$
- (2) for all $f \in F$, if $X \subseteq \text{dom}(f)$, then $f \upharpoonright X \in F$;
- (3) the set $\text{Lev}_X(F) := \{f \in F; \text{ dom}(f) = X\}$ is non empty, for all $X \in [\theta]^{<\kappa}$;
- (4) $|\text{Lev}_X(F)| < \kappa$, for all $X \in [\theta]^{<\kappa}$.

As usual, when there is no ambiguity, we will simply write Lev_X instead of $\text{Lev}_X(F)$. In a (κ, θ) -tree, levels are not indexed by ordinals, but by sets of ordinals. So the predecessors of a node in a (κ, θ) -tree are not (necessarily) well ordered and a (κ, θ) -tree is not a tree. **Definition 2.5.** Given a regular cardinal $\kappa \geq \omega_2$, an ordinal $\theta \geq \kappa$ and a (κ, θ) -tree F, a cofinal branch for F is a function $b : \theta \to 2$ such that $b \upharpoonright X \in \text{Lev}_X(F)$, for all $X \in [\theta]^{<\kappa}$.

Definition 2.6. Given a regular cardinal $\kappa \geq \omega_2$ and an ordinal $\theta \geq \kappa$,

- (1) (κ, θ) -TP holds if every (κ, θ) -tree F has a cofinal branch;
- (2) we say that κ satisfies the strong tree property if (θ', μ) -TP holds, for all $\theta' \geq \kappa$;

For a more extensive presentation of this property, the reader can consult Weiss Phd thesis [?].

Theorem 2.7. (Jech 1973, Di Prisco, Zwuicker 1980) A regular cardinal κ is strongly compact if and only if κ is inaccessible and the strong tree property holds at κ .

3. Weak compactness and Sheaves

If κ is an ordinal, then we can see κ as a topological space whose open sets are the ordinals $\alpha \leq \kappa$. Then a sheaf on κ is a contravariant functor from κ to *Sets* with the localoty and gluing property.

First of all, note that for an ordinal κ , the category $(\kappa)^{op}$ corresponds to the category whose objects are the ordinals below $\kappa + 1$ (these are the open subsets of κ) and the morphisms are the inclusion maps.

Definition 3.1. Given a regular cardinal κ , we say that a sheaf F on a topological space X is κ -thin when

- (1) F(U) is non empty, for every proper open set U;
- (2) for each proper open set U, there are less than κ many extendible sections in F(U).

Thus, in the case of a sheaf F on κ , we have that F is κ -thin when $F(\alpha)$ is non empty for every $\alpha < \kappa$, and for every $\alpha < \kappa$, the set $\bigcup_{\beta > \alpha} F_{\alpha,\beta}[F(\beta)]$ has size less than κ .

Theorem 3.2. Assume κ is a regular cardinal, the following are equivalent:

- (i) κ has the tree property;
- (ii) Every κ -thin sheaf F on κ has a global section

Proof.

(i) \rightarrow (ii) Let F be a κ -thin sheaf on κ . For every $\alpha < \kappa$, we let L_{α} denote the set of all extendible sections of $F(\alpha)$, equivalently $L_{\alpha} = \bigcup_{\beta > \alpha} F_{\alpha,\beta}[F(\beta)]$. We define a tree ordering $<_T$ on the set $T := \bigcup_{\alpha < \kappa} L_{\alpha}$ by letting

 $x <_T y \iff x \in L_{\alpha}, y \in L_{\beta} \text{ for } \alpha < \beta \text{ and } F_{\alpha,\beta}(y) = x.$

It is easy to check that $(T, <_T)$ is a κ -tree. By assumption T has a cofinal branch b. Assume $b := \{x_\alpha\}_{\alpha < \kappa}$, then we have for every $\alpha < \beta < \kappa$, $F_{\alpha,\beta}(x_\beta) = x_\alpha$. By the gluing property, there exists a global section $x \in F(\kappa)$.

(ii) \rightarrow (i) Let $(T, <_T)$ be a κ -tree. We define for every $\alpha \leq \kappa$, $F(\alpha)$ as the set of all cofinal branches of $T \upharpoonright \alpha$, and for $\alpha < \beta \leq \kappa$, we let

$$F_{\alpha,\beta}(b) := b \cap T \upharpoonright \alpha.$$

We claim that F is a κ -thin sheaf. Given an ordinal $\alpha := \bigcup_{i \in I} \beta_i$ and compatible sections $\{b_i\}_{i \in I}$, there exists a unique gluing of the sections, namely $b := \bigcup_{i \in I} b_i$ which is a cofinal branch of $T \upharpoonright \alpha$. For every $\alpha < \kappa$, we have

$$\{b \cap T \upharpoonright \alpha; \ \exists \beta > \alpha \ (b \in F(\beta))\} = \{b \cap T \upharpoonright \alpha; \ b \in F(\alpha+1)\} = F_{\alpha,\alpha+1}[F(\alpha+1)].$$

We observe that $F(\alpha + 1)$ has the same size as $\text{Lev}_{\alpha}(T)$, hence it has size less than κ , indeed, every branch in $F(\alpha + 1)$ has a maximal element on $\text{Lev}_{\alpha}(T)$. It follows that $|F_{\alpha,\alpha+1}[F(\alpha + 1)]| < \kappa$. By the gluing property, there exists a global section $b \in F(\kappa)$. Then b is a cofinal branch for T.

Corollary 3.3. Assume κ is an inaccessible cardinal, then κ is weakly compact if and only if, every κ -thin sheaf F on κ has a global section

Proof. It follows from the characterisation of weakly compact cardinals in terms of the tree property. \Box

4. Strongly compact cardinals and sheaves

Let λ be any ordinal, we can see $\mathcal{P}(\lambda)$ as a category whose objects are the subsets of λ and the morphisms are the inclusion maps. Now assume κ is a regular cardinal and $\lambda \geq \kappa$. We define a Grothendieck topology J_{κ} on this cathegory as follows. For $X \subseteq \lambda$, we let $J_{\kappa}(X)$ be the set of all families $\{X_i\}_{i \in I}$ of subsets of X such that $\bigcup_{i \in I} X_i = X$ and for every $Y \subseteq X$ of size less than κ , there exists $i \in I$ such that $Y \subseteq X_i$.

Theorem 4.1. Assume κ is an inaccessible cardinal, then κ is strongly compact if and only if, for every λ and every sheaf F on the site $(\mathcal{P}(\lambda), J_{\kappa})$, if F(X) is non-empty for every $X \in \mathcal{P}_{\kappa}(\lambda)$, then F has a global section.

Proof. We use the characterisation of strongly compact cardinals in terms of the strong tree property.

(\Longrightarrow) Assume κ is a strongly compact cardinal, hence κ is inaccessible and satisfies the strong tree property. Let F be a sheaf on $(\mathcal{P}(\lambda), J_{\kappa})$ such that F(X) is non empty for every X of size less than κ . Consider the union A of all F(X) for $X \in \mathcal{P}_{\kappa}(\lambda)$ and let θ be the size of this set. We fix an enumeration $\{s_i; i < \theta\}$ of A and we let T be the set of all $< \kappa$ -sequences of pairwise compatible sections in A. We show that T is a (κ, θ) -tree. Every element of T can be seen as a function $s: I \to 2$ over a set of indexes I of size $< \kappa$ such that $s^{-1}\{1\}$ is a set of pariwise compatible sections. By the inaccessibility of κ , every level $Lev_I(T)$ has size $< \kappa$ (because it is a subset of I2 that has size $< \kappa$). As κ satisfies the strong tree property, we can find a cofinal branch B for T. By construction, B is a sequence of pairwise compatible sections. By the cofinality of B, we have that for every $X \in \mathcal{P}_{\kappa}(\theta)$ there exists $Y \subseteq X$ such that $B \cap Y$ is non empty. It follows from the sheaf property that $F(\lambda)$ is non empty (λ is the union of all its subsets of size $< \kappa$).

(\Leftarrow) It is enough to show that κ has the strong tree property. Let T be a (θ, κ) -tree where $\theta \geq \kappa$. We define a sheaf F on the site $(\mathcal{P}(\theta), J_{\kappa})$ by letting $F(X) = Lev_X(T)$ for every $X \in \mathcal{P}_{\kappa}(\theta)$. Let f be a global section, then f must be a cofinal branch for T.

References

- C. A. Di Prisco and S. Zwicker. Flipping properties and supercompact cardinals. *Fundamenta Mathematicae*, CIX:31-36 (1980).
- [2] P. Erdös and A. Tarski. On some problems involving inaccessible cardinals. In Bar-Hillel et al., editor, *Essays on the Foundations of Mathematics*, Jerusalem, Magnes Press, (1961).
- [3] L. Fontanella. Strong tree properties at successors of singular cardinals, to appear in the *Journal* of Symbolic Logic (2013).
- [4] L. Fontanella. Strong Tree Properties at Small Cardinals, *Journal of Symbolic Logic*, vol.78, Issue 1, pp.317-333 (2012).
- [5] W. P. Hanf. On a problem of Erdös and Tarski, *Fundamenta Mathematicae*, vol. 53, pp. 325-334 (1964).
- [6] T. Jech. Some Combinatorial Problems Concerning Uncountable Cardinals, Annals of Mathematical Logic vol. 5, pp 165-198 (1973).
- [7] T. Jech. Set Theory: The Third Millennium Edition Revised and Expanded, Springer (2006).
- [8] A. Kanamori. The Higher Infinite. Large Cardinals in Set Theory from their Beginnings, Perspectives in Mathematical Logic. Springer-Verlag, Berlin (1994).
- M. Magidor. Combinatorial Characterization of Supercompact Cardinals, Proc. American Mathematical Society vol. 42, pp 279-285 (1974).
- [10] J. D. Monk and D. S. Scott. Additions to some results of Erdös and Tarski, Fundamenta Mathematicae, vol 53, pp. 335-343 (1964).
- [11] C. Weiss. Subtle and Ineffable Tree Properties, Phd thesis, Ludwig Maximilians Universitat Munchen (2010)