Toward Green Data Lake Management and Analysis through a CTMC Model

Marzieh Derakhshannia¹, Julien Grange², Nihal Pekergin²

¹IRIT, Université Toulouse III-Paul Sabatier, France ²LACL, Université Paris-Est Créteil, France

> VECoS'24 October 15th-19th, 2024

Julien Grange

Toward Green Data Lake Management and Analysis through a CTMC Model

Data lakes:

• heterogeneous data management platforms

Motivation

Data lakes:

- heterogeneous data management platforms
- power intensive

Motivation

Data lakes:

- heterogeneous data management platforms
- power intensive

Goal We want to strike a trade-off between • power consumption • quality of service, i.e. data absorption and query response time

Data lake abstraction:

• a set of nodes

Assumption

All nodes are assumed identical

Data lake abstraction:

- a set of nodes
- each node can service up to some fixed number of jobs

3/9

Data lake abstraction:

- a set of nodes
- each node can service up to some fixed number of jobs

Each node can be in one of three regimes:

- (R₀) Stand-by regime
- (R_1) Low regime
- (R₂) High regime

with increasing

- storage bandwidth
- computing power
- power consumption

3/9

Two events:

query arrival

Assumption

Each query gives rise to some number of jobs We have analyzed datasets of typical queries to get a distribution of query complexity (number of jobs = number of operations)

Two events:

- query arrival
- job completion

Assumption

All jobs are identical We don't record a connection between a job and the query it comes from

Two events:

- query arrival
- job completion

Assumption

Each kind of event occurs

- identically and independently
- with a time-homogeneous exponential rate

 \rightarrow we can use a CTMC (continuous-time Markov chain) model

Internal state of the CTMC at time *t*: J(t): number of active jobs $R_0(t), R_1(t), R_2(t)$: number of nodes in regime $(R_0), (R_1), (R_2)$

Internal state of the CTMC at time t:

```
J(t): number of active jobs
```

 $R_0(t), R_1(t), R_2(t)$: number of nodes in regime $(R_0), (R_1), (R_2)$

Two **pure** strategies: **left** and **right** When the capacity is exceeded, preferentially... (**left**) ...push a node from (R_0) to (R_1) (**right**) ...push a node from (R_1) to (R_2) Two **pure** strategies: **left** and **right** When the capacity is exceeded, preferentially... (**left**) ...push a node from (R_0) to (R_1) (**right**) ...push a node from (R_1) to (R_2)

We consider probabilistic strategies

6/9

For each strategy we evaluate

expected number of jobs

in the steady-state distribution of the CTMC

Fact

When the data lake is not overloaded, the expected number of jobs accurately represents the expected response time per job

For each strategy we evaluate

- expected number of jobs
- expected query loss

in the steady-state distribution of the CTMC

For each strategy we evaluate

- expected number of jobs
- expected query loss
- energy consumption

in the steady-state distribution of the CTMC

For each strategy we evaluate

- expected number of jobs
- expected query loss
- energy consumption

in the steady-state distribution of the CTMC

We used the probabilistic model checker PRISM to construct and analyse our CTMCs

Performance measures in the steady-state

k: ratio between frequency of (R_2) and (R_1) Power consumption ratio between (R_2) and (R_1) is cubic in *k* (DVFS)

Julien Grange

Conclusion

We have

- **9** modeled performance and power consumption in data lakes via CTMCs
- 2 proposed a family of strategies to strike a balance between both
- implemented a way to evaluate experimentally these strategies

9/9

Conclusion

We have

- **9** modeled performance and power consumption in data lakes via CTMCs
- Proposed a family of strategies to strike a balance between both
- implemented a way to evaluate experimentally these strategies

Futur work

Go from CTCM to *Markov decision processes*, to optimize directly on the decision variables