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Abstract

In 2009, Cockett and Pastro proposed a term logic, a proof theory and a categorical semantic
for concurrency. The proof theory was essentially linear logic with the addition of message pass-
ing primitives while the categorical semantics used a linear actegory. The term logic associated to
the proof theory can be viewed as a minimalist programming language for message-passing. The
resulting language has the desirable property of producing programs that always terminate without
deadlock. However, this property is secured at a price: the type discipline of the language does not
accommodate the common semantics of concurrency. In particular, it does not allowed for multi-
ple interconnections between processes and is a completely deterministic semantics. In this report
I propose a “compact” version of this setting, where the "tensor" and the "par" operators of the lin-
ear linear logic (and, thus, of the linear actegory) are made equal. I will show how this allows for
arbitrary topologies in channel connections and how this introduces non-determinism into the setting.

1 Introduction
In [3], Cockett and Pastro described a term calculus for multiplicative-additive linear logic which also
might be viewed as a basic concurrent programming language for channel based communication. In
[4], they further elaborated the setting, allowing messages to be passed along the channels, To do so,
they provided a categorical semantic, a proof theory and a term logic, based on the notion of linear
actegory. As before, the term logic could be viewed as a basic concurrent language for message
passing, describing how a sequential programming semantics could interact with the linear world
which manipulates communication channels.

The resulting programming language provides strong guarantees to programmers: programs al-
ways terminate without deadlock and are deterministic. Recall, a concurrent program terminates with
a deadlock if the computation stops because all processes involved are waiting for each other. This
should not be confused with a livelock in which processes "actively wait" by passing messages back
and forth to each other resulting in a never ended computation.

In the basic setting described in [3] and [4], the cut elimination procedure in the proof logic is
proved to terminate and be confluent. As a result, every program in the corresponding language
must terminate and be deterministic: the cut elimination procedure corresponds to program evalua-
tion. However, the net conditions described in [6] show that the interconnections via communication
channels in this setting must always be acyclic (in a certain sense). It is this strong property that
guarantees the absence of deadlock. More generally, this property also guarantees the absence of
livelock when the setting is enriched with protocols, which are inductive and co-inductive data-types
that enable infinite computations/communications. (cf.[11])

However, the acyclic property put severe constraints on the network topologies one can built
since, for example, one cannot connect processes in a circle. From the perspective of distributed
computing and of networks, this seems unrealistic, as in these settings there are definite advantages
to having more than one communication channel between nodes.

A reasonable question to ask is whether there are any consequences of allowing more general
topologies. We present here a system that enables more general topologies while trying to preserve
the remaining logical structure. This amounts semantically to compacting the above setting by forc-
ing the “tensor” and “par” of the linear systems to be equal. The question then is how does the whole
setting behave when modified in this manner?

To answer this question, we have looked at the effect of the compactification from two different
perspectives: the categorical perspective and the proof theoretical perspective. From the categorical
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perspective, the compacting of a linear actegory produces a “monoidal actegory”. A somewhat sur-
prising consequence is that a monoidal actegory with products and coproducts then has biproducts,
or equivalently is additively enriched. This observation means that semantically computation in such
a setting becomes necessarily non-deterministic. The introduction of non-determinism in the setting,
of course, takes it closer to the usual way of describing distributed computation.

From a proof theoretical perspective, the compacting of the multiplicative-additive linear logic is
done so as to preserve the categorical semantic (as much as possible). This amounts to making both
the multiplicatives (“tensor” and “par”) and the additives (“times” and “plus”) equal. This results in
a smaller logic for a compact linearly distributive category from which the cut can still be eliminated.
To complete the semantics it remains to add message passing to this compact logic to get a logic
for compact linear actegory. In this fragment, cut elimination is not always possible. We show that
this “failure” is induced by the possibility of creating deadlock in the corresponding programming
language.

2 The original categorical setting: Linear actegories with prod-
uct and coproduct
The term calculus described in [3] and [4] is based on a logic for linear actegory with product and
coproduct. In this section, we briefly recall the notion of linearly distributive category and linear
actegory as described in [5] and [4]: for more details we refer the reader to these articles. We also
assume that the reader is familiar with the basics of category theory (monoidal categories, limits,
functors, adjunctions, enrichment, ...). More information for this material can be found online [1] or
in reference textbooks such as [10] and [2].

2.1 Linearly distributive categories

A linearly distributive category H is a category equipped with two tensor products (⊗,>, a⊗, l⊗, r⊗),
(⊕,⊥, a⊕, l⊕, r⊕), respectively called tensor and par, whose relative behaviour is described by two
linear distributive laws:

d⊗⊕ : A ⊗ (B ⊕C) −→ (A ⊗ B) ⊕C

d⊕⊗ : (A ⊕ B) ⊗C −→ A ⊕ (B ⊗C)

The associative, the left and right units of each tensor products must also satisfy a list of coher-
ence axioms that make every diagram involving monoidal structure, unit and distributivity behave
properly.

A linearly distributive category is symmetric when its two tensors are symmetric, with symmetry
c⊗, c⊕ respectively, and the two distributive laws coincide via:

(A ⊕ B) ⊗C A ⊕ (B ⊗C)

C ⊗ (A ⊕ B) C ⊗ (B ⊕ A) (C ⊗ B) ⊕ A (B ⊗C) ⊕ A

d⊕⊗

c⊗

C⊗c⊕ d⊕⊗ c⊗⊕A

c⊕

In that case, only one distribution law is required: d : A ⊗ (B⊕C) −→ (A ⊗ B) ⊕C. The symmetries,
c⊕, c⊗, must also verify some other coherence diagrams involving the monoidal ismorphisms, the unit
and the linear distributions.

A linearly distributive category has products (×) and coproducts (+) if the underlying category
has products and coproducts such that par distributes over the product and tensor distributes over the
coproduct via two natural isomorphisms:

d⊗× : A ⊕ (B ×C) � A × B ⊕ A ×C

d⊕+A ⊗ (B + C) :� A + B ⊗ A + C

2.2 Linear actegories

A (symmetric) linear actegory is a (symmetric) linearly distributive category (H,⊗,⊕) with a sym-
metric monoidal category (A, ∗) acting on it via two actions

◦ : A ×H −→ H • : Aop ×H −→ H
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The actions ◦ and • are parametrized adjoints, that is A ◦ _ ` A • _ for all A ∈ A. The left adjoint ◦
acts linearly on (H,⊗) and preserves ⊕, while the right adjoint • is linear on (H,⊕) and preserves ⊗.
This translates into the following natural transformations:

u◦ : I ◦ X � X, u• : X � I • X (unit)
a∗◦ : (A ∗ B) ◦ X � A ◦ (B ◦ X), a∗• : A • (B ◦ X) � (A ∗ B) • X (linearity on A)
a◦⊗ : A ◦ (X ⊗ Y) � (A ◦ X) ⊗ Y , a•⊕ : (A • X) ⊕ Y � A • (X ⊕ Y) (linearity on H)
d◦⊕ : A ◦ (X ⊕ Y) −→ (A ◦ X) ⊕ Y , d•⊗ : (A • X) ⊗ Y −→ A • (X ⊗ Y) (to preserve the
d◦• : A ◦ (B • X) −→ B • (A ◦ X) linear structure)

where u’s and a’s are natural isomorphisms.
Additionally, the symmetries on ∗, ⊗ and ⊕, induce the following natural transformation (or

isomorphisms):
a∗
′

◦ : (A ∗ B) ◦ X � B ◦ (A ◦ X), a∗
′

• : B • (A ◦ X) � (A ∗ B) • X
a◦
⊗′

: A ◦ (X ⊗ Y) � X ⊗ (A ◦ Y), a•
⊕′

: X ⊕ (A • Y) � A • (X ⊕ Y)
d◦
⊕′

: A ◦ (X ⊕ Y) −→ X ⊕ (A ◦ Y), d•
⊗′

: X ⊗ (A • Y) −→ A • (X ⊗ Y)

These data must satisfy several coherence axioms making units, associative laws, distributive
laws and actions behave well together. Below are examples of how distributive, associative and
symmetric laws must agree:

A • (B • (X ⊗ Y)

A • ((B • X) ⊗ Y)

(A ∗ B) • (X ⊗ Y)

(A • (B • X)) ⊗ Y

((A ∗ B) • X) ⊗ Y

A•a•⊗

a•⊗

a•⊗

a∗•

a•⊗⊗Y

A ◦ (X ⊗ Y) A ◦ (Y ⊗ X)

(A ◦ X) ⊗ Y Y ⊗ (A ◦ X)

A◦c⊗

a◦⊗ a◦
⊗′

c⊗

A ◦ (X ⊕ Y) A ◦ (Y ⊕ X)

(A ◦ X) ⊕ Y Y ⊕ (A ◦ X)

A◦c⊕

d◦⊕ d◦
⊕′

c⊕

A ◦ ((X ⊗ Y) ⊕ Z)

(A ◦ (X ⊗ Y) ⊕ Z

A ◦ (X ⊗ (Y ⊕ Z)

(A ◦ X) ⊗ Y) ⊕ Z

(A ◦ X) ⊗ (Y ⊕ Z)

d◦⊕

a◦⊗

A◦d⊗⊕

a◦⊗

d⊗⊕

We say that a linearly distributive category is A-additive if the acting monoidal category A has
coproduct over which ∗ distributes and if the action of ◦ preserves these coproducts while • turns
them into products.

Lemma 1. If H is a linearly distributive category with products then • preserves these products.
Similarly, if H has coproducts then ◦ preserves these coproducts.

Proof. This come directly from the fact that A◦_ and A•_ are adjoints and that right adjoints preserve
limits while left adjoints preserve colimits. �

From this lemma, we can say that a linear actegory has products and coproducts if its underlying
linearly distributive category has products and coproducts.

3 The compact categorical setting: Monoidal actegories with biprod-
uct
As mentioned in the introduction, the concurrent logic developed by Cockett and Pastro is too strict
to express some common features of distributed computation such as non-determinism and multiple
connections between processes. The later restriction holds because a type distinction is made to
differentiate when two wires of the same process are tensored together (⊗ on input wires, ⊕ on output
wires) from when two wires of distinct processes are tensored together (⊕ on input wires, ⊗ on output
wires). Thus one way to modify the setting so as to allow multiple connections is to make the tensor
products, ⊗ and ⊕, equal.
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The logic described in [3] generates a free linearly distributive category with product and coprod-
uct. With the additional rules given in [4], that specify the interaction between the message world
and the channel world, the whole logic is turned into a logic for linear actegory (with product and co-
product). We sketch here the effect of the compactification in the categorical setting. This is relevant
in order to get an “external” point of view on what the compacted logic is going to be.

3.1 Compact linearly distributive categories

We define a compact linearly distributive category to be a linearly distributive category where tensor
and par are equal, (⊗,>, a⊗, l⊗, r⊗) = (⊕,⊥, a⊕, l⊕, r⊕). In this context, we also identify the distributive
laws, d⊗⊕ , d

⊕
⊗ : A⊗ (B⊕C) −→ (A⊗B)⊕C to the associative law a⊗ = a⊕ : A⊗ (B⊕C) −→ (A⊗B)⊕C.

Proposition 1. A compact linearly distributive category is exactly a monoidal category.

Proof. By definition the monoidal structure of a compact linearly distributive category implies that
it is a monoidal category, so there is nothing more to be done here.
Conversely, a monoidal category (M,⊗) can be regarded as a linearly distributive category (M,⊗,⊗)
where tensor and par are equal and where the distributive laws equal the associative law. The co-
herence diagrams for linearly distributive category holds by direct use of the coherence diagrams for
monoidal category (pentagon, triangle, hexagon and symmetric laws) or by application of MacLane
coherence theorem. We skip here the details of the proof that the diagrams are well-formed in the
sense of Mac Lane.
From this two points we can say that a compact linearly distributive category is exactly a monoidal
category. �

According to the definition of a linearly distributive category with products and coproducts, a
compact linearly distributive category has products, ×, and coproducts, +, if for every object A, A⊗_
distributes over × and _ ⊗ B distributes over +. In his paper [9], Houston shows that such a category
is in fact a category with biproduct:

Proposition 2. Let C be a monoidal category with finite products and coproducts and suppose that
for all A ∈ C, A ⊗ _ preserves products and _ ⊗ A preserves coproducts, then C has finite biproducts.
In particular its products/coproducts are biproducts.

The above result shows that a compact linearly distributive category with products and coproducts
is in fact a monoidal category with biproducts. This implies another interesting property for the
compact setting: it is additively enriched.

Lemma 2. Any category with biproducts is additively enriched.

Proof. One can define the addition of two maps of same domain and codomain, f , g : A −→ B, to be

f + g : A −→ B := A
∆
−→ A ∗ A

f ∗g
−→ B ∗ B

∇
−→ B. �

In the end, a compact linearly distributive category with products and coproducts is thus an ad-
ditively enriched monoidal category with biproducts. According to this result, we can expect to
get an additive enrichment when compacting the logic for linearly distributive categories (i.e. the
multiplicative-additive fragment of linear logic). Semantically, having sums of processes of the same
type expresses nondeterminism, and thus indicates that this is a nondeterministic setting.

3.2 Compact linear actegories

We now define a compact linear actegory to be a linear actegory over a compact linearly distributive
category. Alternatively, we will call it a monoidal actegory. In this setting we identify the distributive
laws, d◦⊕, d•⊗ with the associative laws, a◦⊗, a•⊕ respectively. More precisely:

Definition 1. Let A = (A, ∗, I, a∗, l∗, r∗, c∗) be a symmetric monoidal category, then a (symmetric)
monoidal A-actegory consists of the following data:

– A (symmetric) monoidal category M = (M,>, a⊗, r⊗, l⊗)

– Two actions, ◦ : A ×M −→ M, and • : Aop ×M −→ M, such that ◦ is the left parametrized
adjoint of •. For all A ∈ A, the adjunction A ◦ _ ` A • _ is equipped with unit, ηA,X : X −→
A • (A ◦ X), and counit, eA,X : A ◦ (A • X) −→ X, both natural in A and X.
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– For all A, B ∈ A, X,Y ∈ M:
u◦ : I ◦ X � X u• : X � I • X
a∗◦ : (A ∗ B) ◦ X � A ◦ (B ◦ X) a∗• : A • (B • X) � (A ∗ B) • X
a◦⊗ : A ◦ (X ⊗ Y) � (A ◦ X) ⊗ Y a•⊗ : (A • X) ⊗ Y � A • (X ⊗ Y)
d◦• : A ◦ (B • X) −→ B • (A ◦ X)

which induce the following data, according to the symmetry of ∗, ⊗ and ⊕
a∗
′

◦ : (A ∗ B) ◦ X � B ◦ (A ◦ X) a∗
′

• : A • (B • X) � (B ∗ A) • X
a◦
⊗′

: A ◦ (X ⊗ Y) � (A ◦ Y) ⊗ X a•
⊗′

: (A • X) ⊗ Y � A • (Y ⊗ X)

This data must satisfy the same coherence axioms as the one given for linear actegory, making
units, associative laws, distributive laws, symmetric laws, and adjunction behave well together.

In section 3.2 we have seen that in a linearly distributive A-actegory with products and coprod-
ucts, A ◦ _ preserves coproducts and A • _ preserves products. We now show that in the context
of a monoidal A-actegory with biproduct, A ◦ _ and A • _ both preserve biproducts and additive
enrichment.

Proposition 3. Let C and D be two categories with biproducts ∗ and let F : C −→ D be a functor
that preserves products (or coproducts) then F preserves biproducts.

Proof. A proof sketch is as follows:

1. We first show that F preserves the canonical additive enrichment of C described section 3.1,
i.e. for every objects A, B ∈ C and maps f , g ∈ C(A, B), thenF (0AB) = 0F (A)F (B) andF ( f +g) =

F ( f ) + F (g).

2. We then prove the following lemma: Let C be an additively enriched category with biproducts,

and let A1 X A2

i1

p1 p2

i2

be such that ii pi = Ai, ii p j = 0AiA j and p1i1 + p2i2 = idX then

X is a biproduct for A1 and A2.

3. Using the previous lemma, the proposition follows by showing that given a biproduct

A A ∗ B B
σ0

π0 π1

σ1

in C, then F (A) F (A ∗ B) F (B)
F (σ0)

F (π0) F (π1)

F (σ1)

is a biproduct

in D.

Remark 1. In the case of a symmetric monoidal actegory, the associative laws induce an isomorphism
between A ◦ (B • X) and B • (A ◦ X):

A ◦ (B • X) � A ◦ (B • (X ⊗ >) [l−1
⊗ ]

� A ◦ ((B • X) ⊗ >) [(a•⊗)−1]
� (B • X) ⊗ (A ◦ >) [a◦⊗]
� B • (X ⊗ (A ◦ >)) [a•⊗]
� B • (A ◦ (X ⊗ >)) [(a◦⊗)−1]
� B • (A ◦ X) [l⊗]

Thus in the above definition, we require d◦• : A ◦ (B • X) −→ B • (A ◦ X) to be an isomorphism. This
property is counter-intuitive because in the corresponding programming language, A • X represents
the action of getting a message of type A on a output polarity channel of type X (or putting a message
of type A on an input polarity channel of type X), while A ◦ X represents the action of getting a
message of type A on a input polarity channel of type X (or putting a message of type A on an output
polarity channel of type X). Having an isomorphism between A◦ (B•X) and B• (A◦X) for all A and
B then means that the logic allows one to swap the order of a “get” and a “put”, no matter what their
content is, i.e. it allows one to flip the read of a value x with the writing of a message depending on
x! This seems undesirable but it is a consequence of the fact that concurrent programs in this setting
can deadlock. We shall see the possibility that programs can deadlock corresponds to the failure of
cut elimination.
Remark 2. Part of my research was dedicated to describing a way to generate a free monoidal acte-
gory with biproduct from any monoidal category, (M,⊗). The idea was to use bag and matrix con-
structions to first generate a monoidal category with biproduct, (H,⊗), and then use the subcategory
of objects with dual, MD, to act on H via ⊗. This work is not presented here since it is not directly
related to the main story of this report. An unfinished version can be find online [1]. Other example
of monoidal actegories are given by compact models for linear logic (with negation) or the compact
logic for message passing described below!
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A ` A
(identity), A atomic

` >
(unit introR)

> `
(unit introL)

Γ,Γ′ ` ∆

Γ,>,Γ′ ` ∆
(unitL)

Γ ` ∆,∆′

Γ ` ∆,>,∆′
(unitR)

Γ, A, B,Γ′ ` ∆

Γ, A ⊗ B,Γ′ ` ∆
(splitL)

Γ ` ∆, A, B,∆′

Γ ` ∆, A ⊗ B,∆′
(splitR)

Γ1, A ` ∆1 B,Γ2 ` ∆2

Γ1, A ⊗ B,Γ2 ` ∆1,∆2
(forkL)

Γ1 ` ∆1, A Γ2, ` B,∆2

Γ1,Γ2 ` ∆1, A ⊗ B,∆2
(forkR)

Γ ` ∆, A A,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
(cut)

Table 1: Compacted multiplicative linear logic

4 Logic for compact linearly distributive category
In the following two sections we describe the result of compacting the term logic described in [3]
and [4]. The aim is to provide a term calculus for concurrency based on a logic with a categorical
semantic, namely a compact linearly distibutive category with biproducts (or monoidal category with
biproduct) for the multiplicative-additive fragment, and a compact linear actegory ((or monoidal
actegory) for the logic with message passing.

The original logic for message passing corresponds to a logic for channels (the multiplicative-
additive fragment of linear logic) augmented with rules specifying the interactions with the message
world (represented by a logic for monoidal category with coproduct). At each step, the process
of compactification follows roughly the same pattern: we first look at the original logic under the
compactification conditions (⊗ = ⊕, + = ×), then, if necessary, we introduce new primitives that will
enable cut to be eliminated. Finally, we derive a cut elimination procedure from the original setting
to allow evaluation of concurrent programs built in the new compact logic.

In the following, capital letters such as A, B represent basic channel types while Greek capital
letters such as Γ, ∆ represent (non ordered) list of basic types.

4.1 Proof logic for compact multiplicative linear logic
Table 1 presents the logic rules for multiplicative linear logic as they look after compactification, i.e.
when one uses the same operator, ⊗, to denote tensor and par and the same symbol, >, to represent
their units.

The merge between tensor and par (and their units) increases the number of possible cuts, and
some of these cannot be eliminate using the original rules. In particular, the three following cuts do
not have any reduction:

1.
` >

uL
> `

uR

`
cut 2.

π

Γ ` ∆, A, B

Γ ` ∆, A ⊗ B
sR

π′

A, B,Γ′ ` ∆′

A ⊗ B,Γ′ ` ∆′
sL

Γ,Γ′ ` ∆,∆′
cut
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3.

π1

Γ1 ` ∆, A

π2

Γ2 ` B

Γ1,Γ2 ` ∆, A ⊗ B
fR

π′1

A ` ∆′1

π′2

B,Γ′ ` ∆′2

A ⊗ B,Γ′ ` ∆′1,∆
′
2

fL

Γ1,Γ2,Γ
′ ` ∆,∆′1,∆

′
2

cut

In order to fix this issue one needs to introduce three new rules: the empty rule, multicut and the
parallel rules.

`
(empty)

Γ ` ∆,Λ Λ,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
(multicut)

Γ ` ∆ Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
(parallel)

The parallel rule is in fact a special case of the multicut rule when Λ is empty. However, handling
the empty multicut is sometimes subtle and, in such a case, we will refer to the parallel rule to make
the distinction.

These rules allow one to reduce the previous proofs as follow:

1.
` >

uL
> `

uR

`
cut =⇒

`
emp

2.

π

Γ ` ∆, A, B

Γ ` ∆, A ⊗ B
sR

π′

A, B,Γ′ ` ∆′

A ⊗ B,Γ′ ` ∆′
sL

Γ,Γ′ ` ∆,∆′
cut =⇒

π

Γ ` ∆, A, B

π′

A, B,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
mc

3.

π1

Γ1 ` ∆, A

π2

Γ2 ` B

Γ1,Γ2 ` ∆, A ⊗ B
fR

π′1

A ` ∆′1

π′2

B,Γ′ ` ∆′2

A ⊗ B,Γ′ ` ∆′1,∆
′
2

fL

Γ1,Γ2,Γ
′ ` ∆,∆′1,∆

′
2

cut

=⇒

π1

Γ1 ` ∆, A

π′1

A ` ∆′1

Γ1 ` ∆,∆′1
cut

π2

Γ2 ` B

π′2

B,Γ′ ` ∆′2

Γ2,Γ
′ ` ∆′2

cut

Γ1,Γ2,Γ
′ ` ∆,∆′1,∆

′
2

para

The multicut rule introduces new proofs that cannot be cut eliminate: proofs that use axiom rules
in parallel. In our case, this corresponds to the use of identities in parallel:

A ` A
id

π

Γ ` ∆

A,Γ ` A,∆
para

One thus need to introduce a generalization of the identity rule:

Γ,Γ′ ` ∆,∆′

Γ, A,Γ′ ` ∆, A,∆′
A atomic (identity)

where either Γ, ∆ or Γ′, ∆′ are empty in the non commutative case. The rewrite is then:

A ` A
id

π

Γ ` ∆

A,Γ ` A,∆
para =⇒

π

Γ ` ∆

A,Γ ` A,∆
id

Augmented with the empty rule, the multicut rule and the generalization of the identity rule, the
set of rules in Table 1 has dependencies.
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Γ,Γ′ ` ∆,∆′ A atomic

Γ, A,Γ′ ` ∆, A,∆′
(identity)

`
(empty)

Γ,Γ′ ` ∆

Γ,>,Γ′ ` ∆
(unitL)

Γ ` ∆,∆′

Γ ` ∆,>,∆′
(unitR)

Γ, A, B,Γ′ ` ∆

Γ, A ⊗ B,Γ′ ` ∆
(splitL)

Γ ` ∆, A, B,∆′

Γ ` ∆, A ⊗ B,∆′
(splitR)

Γ ` ∆,Λ Λ,Γ′ ` ∆′

Γ,Γ′ ` ∆,∆′
(multicut)

Table 2: The compact multiplicative linear

First of all, the generalization of the identity can be used to derive the identity rule:

A ` A
id =

` emp

A ` A
id

Similarly the unit introduction rules can be obtained from the unit rules and the empty rule via:

> `
uiL =

` emp

> `
uL and

` >
uiR =

` emp

` >
uR

Finally, the fork rules can be derived from the split rules and the parallel rule via:

Γ1, A ` ∆1 B,Γ2 ` ∆2

Γ1, A, B,Γ2 ` ∆1,∆2
par

Γ1, A ⊗ B,Γ2 ` ∆1,∆2
sL and

Γ1 ` ∆1, A Γ2 ` B,∆2

Γ1,Γ2 ` ∆1, A, B,∆2
par

Γ1,Γ2 ` ∆1, A ⊗ B,∆2
sR

In the end, the compact multiplicative linear logic can be described in seven rules, displayed in
Table 2. The rules are given for a non-commutative setting. However, because we are considering
having a programming language corresponding to the logic, we will allow an implicit exchange rule
while constructing proofs.

4.2 Term calculus for compact multiplicative linear logic

Table 4 describes a term calculus for the compact multiplicative linear logic presented above. The
annotations have been chosen so as to integrate the terms from the non compact setting into the
compact setting. Thus our annotations match the the ones described in [4] (see Table 3), where
applicable. In order to fix the gap between the original setting and the compact setting, due to
the removal of some rules, we simply redefine the terms associated to rules that have disappeared
as macros using primitives from the compact setting. These macros are obtained by following the
proofs associated to each discarded rule and they are gathered in Table 5.

The annotations splitting or closing a channel, forking or ending a process suggest the program-
ming semantic behind the logic rules. Tables [1],[2] and [3] in the appendix online ([1]) present the
same tables as above but with the programming language annotations. They might help the reader to
get a feel for the intended semantic of the term calculus.

4.3 Tensor rewriting rules and equations

In [3] and [4], the cut elimination procedure on Pα;β Q is performed with respect to the leading
component of each term P and Q, which corresponds to the last rule applied in the corresponding
proof. This gives rise to two types of reduction rules:
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α =A β :: α : A ` β : A
id

β[] :: ` β : >
(uiR)

α[] :: α : > `
(uiL)

P :: Γ,Γ′ ` ∆

α〈〉 · P :: Γ, α : >,Γ′ ` ∆
uR

P :: Γ ` ∆,∆′

β〈〉 · P :: Γ ` ∆, β : >,∆′
uL

P :: Γ, α1 : A, α2 : B,Γ′ ` ∆

α〈α1, α2〉 · P :: Γ, α : A ⊗ B,Γ′ ` ∆
sL

P :: Γ ` ∆, β1 : A, β2 : B,∆′

β〈β1, β2〉 · P :: Γ ` ∆, β : A ⊗ B,∆′
sR

P :: Γ1, α1 : A ` ∆1 Q :: α2B,Γ2 ` ∆2

α

[
α1 7−→ P
α2 7−→ Q

]
:: Γ1, α : A ⊗ B,Γ2 ` ∆1,∆2

fL

P :: Γ1 ` ∆1, β1 : A Q :: Γ2, ` β2 : B,∆2

β

[
β1 7−→ P
β2 7−→ Q

]
:: Γ1,Γ2 ` ∆1, β : A ⊗ B,∆2

fR

P :: Γ ` ∆, α : A Q :: β : A,Γ′ ` ∆′

Pα; β Q :: Γ,Γ′ ` ∆,∆′
cut

Table 3: Terms for compacted multiplicative linear logic

α =A β :: α : A ` β : A
id

∅ :: `
emp

P :: Γ,Γ′ ` ∆

α〈〉 · P :: Γ, α : >,Γ′ ` ∆
uR

P :: Γ ` ∆,∆′

β〈〉 · P :: Γ ` ∆, β : >,∆′
uL

P :: Γ, α1 : A, α2 : B,Γ′ ` ∆

α〈α1, α2〉 · P :: Γ, α : A ⊗ B,Γ′ ` ∆
sL

P :: Γ ` ∆, β1 : A, β2 : B,∆′

β〈β1, β2〉 · P :: Γ ` ∆, β : A ⊗ B,∆′
sR

P :: Γ ` ∆ Q :: Γ′ ` ∆′

P || Q :: Γ,Γ′ ` ∆,∆′
para

P :: Γ ` ∆, [α1, . . . , αn] : Λ Q :: [β1, . . . , βn] : Λ,Γ′ ` ∆′

Pα1 ; β1 . . . αn ; βn Q :: Γ,Γ′ ` ∆,∆′
mc

Table 4: Terms for compact multiplicative linear logic

α[] := α〈〉 · ∅ α

[
α1 7−→ P
α2 7−→ Q

]
:= α〈α1, α2〉 · (P ‖ Q)

Table 5: Term macros for compact multiplicative linear logic
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– The “no interaction” rules, which apply when one of the process is not active on the channel
involved in the cut, and have the sole effect of lifting up the cut in the corresponding proof. For
example:

π

P :: Γ ` ∆, γ1 : B1, γ2 : B2, α : A

γ〈γ1, γ2〉 · P :: Γ ` ∆, γ : B1 ⊗ B2, α : A
sR

π′

Q :: β : A,Γ′ ` ∆′

γ〈γ1, γ2〉 · Pα;β Q :: Γ,Γ′ ` ∆, B1 ⊗ B2,∆
′

cut =⇒

π

P :: Γ ` ∆, γ1 : B1, γ2 : B2, α : A

π′

Q :: β : A,Γ′ ` ∆′

Pα;β Q :: Γ,Γ′ ` ∆, B1, B2,∆
′

cut

γ〈γ1, γ2〉 · (Pα;β Q) :: Γ,Γ′ ` ∆, B1 ⊗ B2,∆
′

sR

– The “interaction” rules, that apply when the two processes are simultaneously active on the
channel of the cut, and that rearranges the internal structure of the proof. For example:

π

P :: Γ ` ∆, α1 : A1, α2 : A2

α〈α1, α2〉 · P :: Γ ` ∆, α : A1 ⊗ A2
sR

π′1

Q1 :: β1 : A1,Γ1 ` ∆1

π′2

Q2 :: β2 : A2,Γ2 ` ∆2

β

[
β1 7→ Q1
β2 7→ Q2

]
:: β : A1 ⊗ A2,Γ1,Γ2 ` ∆1,∆2

fL

α〈α1, α2〉 · P α;β β
[
β1 7→ Q1
β2 7→ Q2

]
:: Γ,Γ1,Γ2 ` ∆,∆1,∆2

cut

⇓

π

P :: Γ ` ∆, α1 : A1, α2 : A2

π′1

Q1 :: β1 : A1,Γ1 ` ∆1

Pα1 ;β1 Q1 :: Γ,Γ1 ` ∆,∆1, α2 : A2
cut

π′2

Q2 :: β2 : A2,Γ2 ` ∆2

(Pα1 ;β1 Q1)α2 ;β2 Q2 :: Γ,Γ1,Γ2 ` ∆,∆1,∆2
cut

From the reduction procedure described in [3] and [4], one can derive the interaction and no-
interaction rules for the compact setting as follows:
Let α̃; β̃ be a shortcut for the multicut α1 ; β1 . . .αn ; βn (n possibly null), then,

– For γ < {α1 . . . , αn, β1, . . . , βn}, we have the following no-interaction rules:

[empty-seq] ∅ ‖ P =⇒ P
[seq-empty] P ‖ ∅ =⇒ P
[id-seq] γ′ =X γ · P α̃; β̃ Q =⇒ γ′ =X γ(P α̃; β̃ Q)
[seq-id] P α̃; β̃ γ =X γ

′ · Q =⇒ γ =X γ
′(P α̃; β̃ Q)

[uL-seq] γ〈〉 · P α̃; β̃ Q =⇒ γ〈〉 · (P α̃; β̃ Q)
[seq-uR] P α̃; β̃ γ〈〉 · Q =⇒ γ〈〉 · (P α̃; β̃ Q)
[sL-seq] γ〈α1, α2〉 · P α̃; β̃ Q =⇒ γ〈α1, α2〉 · (P α̃; β̃ Q)
[seq-sR] P α̃; β̃ γ〈α1, α2〉 · Q =⇒ γ〈α1, α2〉 · (P α̃; β̃ Q)

– For i ∈ {1, . . . , n}, we have the following interaction rules:

[idL] γ = αi · P α̃; β̃ Q =⇒ Pα1 ;β1 . . . αi−1 ;βi−1 αi+1 ;βi+1 . . . αn ;βn Q[γ/βi]
[idR] P α̃; β̃ βi = γ · Q =⇒ P[γ/αi] α1 ;β1 . . . αi−1 ;βi−1 αi+1 ;βi+1 . . . αn ;βn Q
[uR-uL] αi〈〉 · P α̃; β̃ βi〈〉 · Q =⇒ Pα1 ;β1 . . . αi−1 ;βi−1 αi+1 ;βi+1 . . . αn ;βn Q
[sR-sL] αi〈αi,1, αi,2〉 · P α̃; β̃ βi〈βi,1, βi,2〉 · Q =⇒ Pα1 ;β1 . . . αi,1 ;βi,1 αi,2 ;βi,2 . . . αn ;βn Q

Note that in the no-interaction rules, n can be null and so, in this semantic, the evaluation of P ‖ Q
amounts to choose an order over the components of P and Q that preserves the order in P and Q.

The rules above follow the most natural semantic for evaluating terms in the compact setting.
However, this set of reductions rules is not sufficient to cover all of the possible cases that can occur
in this logic. Indeed, the multicut rule can create interleaving cuts that cannot be reduced using the
rules above. Here are two examples of this situation:
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1.

∅ :: ` emp

α〈〉 · ∅ :: ` α : >
uR

β〈〉 · α〈〉 · ∅ :: ` α : >, β : >
uR

∅ :: ` emp

β′〈〉 · ∅ :: β′ : > `
uL

α′〈〉 · β′〈〉 · ∅ :: α′ : >, β′ : > `
uL

β〈〉 · α〈〉 · ∅α;α′ β;β′ α′〈〉 · β′〈〉 · ∅ :: Γ,Γ′ ` ∆,∆′
mc

2.

π1

P :: Γ ` ∆, α1 : A1, α2 : A2, β1 : B1, β2 : B2

α〈α1, α2〉 · P :: Γ ` ∆, α : A1 ⊗ A2, β1, β2
sR

β〈β1, β2〉 · α〈α1, α2〉 · P :: Γ ` ∆, α, β : B1 ⊗ B2
sR

π2

Q :: α′1 : A1, α
′
2 : A2, β

′
1 : B1, β

′
2 : B2,Γ

′ ` ∆′

β′〈β′1, β
′
2〉 · Q :: α′1, α

′
2, β
′ : B1 ⊗ B2,Γ

′ ` ∆′
sL

α′〈α′1, α
′
2〉 · β

′〈β′1, β
′
2〉 · Q :: α′ : A1 ⊗ A2, β

′,Γ′ ` ∆′
sL

β〈β1, β2〉 · α〈α1, α2〉 · P α;α′ β;β′ α′〈α′1, α
′
2〉 · β

′〈β′1, β
′
2〉 · Q :: Γ,Γ′ ` ∆,∆′

mc

One possible way to deal with these cases would be to enable rewriting up to permutation equiva-
lence. Indeed, the following equivalences are intrinsically present in the logic:

[id-id] α =X α
′ · β =Y β

′ · P à β =Y β
′ · α =X α

′ · P

[id-split] α =X α
′ · β〈β1, β2〉 · P à β〈β1, β2〉 · α =X α

′ · P

[id-unit] α =X α
′ · β〈〉 · P à β〈〉 · α =X α

′ · P

[split-split] α〈α1, α2〉 · β〈β1, β2〉 · P à β〈β1, β2〉 · α〈α1, α2〉 · P

[split-unit] α〈α1, α2〉 · β〈〉 · P à β〈〉 · α〈α1, α2〉 · P

[unit-unit] α〈〉 · β〈〉 · P à β〈〉 · α〈〉 · P

[multicut-multicut] P α̃Q ; β̃Q α̃R ; β̃R

(
Q α̃′ ; β̃′ R

)
à

(
P α̃Q ; β̃Q

Q
)
α̃R ; β̃R α̃′ ; β̃′ R

However, this solution is not very satisfactory since in the worst case, one need to scan the whole
terms of a cut at each step of the reduction. We would prefer to have an evaluation procedure that
can be performed by looking only at the leading component of the terms involved in the cut.

To achieve this objective we take the following approach: since the operations on channels are
independent, a process does not have to wait for the other part to be ready to complete an operation,
it can just send a notification to the other process that this will read later when it is ready. To allow
these partial evaluations, we introduce new notations:
A multicut, M, is now an unordered list of patterns, where a pattern is recursively defined by:

p := α | () | (p, p) with α a channel.

The no-interaction rules as well as the [idL] and [idR] rules remain unchanged but we modify the
other interaction rules by splitting them in two steps.

[uR-1] α〈〉 · P ;(α,β)M Q =⇒ P ;((),β)M Q

[uR-2] α〈〉 · P ;(α,())M Q =⇒ P ;M Q

[1-uL] P ;(α,β)M β〈〉 · Q =⇒ P ;(α,())M Q

[2-uL] P ;((),β)M β〈〉 · Q =⇒ P ;M Q

[sR-1] α〈α1, α2〉 · P ;(α,β)M Q =⇒ P ;((α1,α2),β)M Q

[sR-2] α〈α1, α2〉 · P ;(α,(β1,β2))M Q =⇒ P ;(α1,β1)(α2,β2)M Q

[1-sL] P ;(α,β) β〈β1, β2〉 · Q =⇒ P ;((α1,α2),β)M Q

[2-sL] P ;((α1,α2),β)M β〈β1, β2〉 · Q =⇒ P ;(α1,β1)(α2,β2) Q

Proposition 4. The term rewriting system given by the no-interaction rules, the [idR] and [idL] rules
and the split interaction rules terminates.

Proof. We show that the above cut elimination procedure terminates by defining a multiset of cut
height and showing that the multiset is strictly reduced on each of the cut elimination rewrites. We
define the height of a term as:

– hgt[] = 1

– hgt[α =X β · P] = hgt[α〈〉 · P] = hgt[α〈α1, α2〉 · P] = 1 + hgt[P]

– hgt[P;M Q] = hgt[P] + hgt[Q]
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Γ ` ∆, 0
(terminal)

0,Γ ` ∆
(initial)

Γ ` ∆, Ak

Γ ` ∆,ΣIAi
(injection)

Ak,Γ ` ∆

ΣIAi,Γ ` ∆
(projection)

{Γ ` ∆, Ai}I

Γ ` ∆,ΣIAi
(tuple)

{Ai,Γ ` ∆}I

ΣIAi,Γ ` ∆
(cotuple)

Table 6: Additive for compacted linear logic

We then define a function Λ : T −→M(N) which takes a term to its multiset of cuts’ height.
As a measure onM(N), we take the multiset ordering of Dershowitz and Manna [7]:
For M,N ∈ M(N), M > N if there are multisets X,Y ∈ M(N) such that ∅ , X ⊆ M, N = (M\N) ∪ Y
and (∀y ∈ Y)(∃x ∈ X)x > y.

We now show that if t1 =⇒ t2 then Λ(t1) > Λ(t2). It is enough to show that if t1 =⇒ t2 then,
hgt[t1] ≥ hgt[t2] and the height of any cut produced from the principal is strictly less than the height
of the principal cut. This is true by the following observations:

- [empty-seq] hgt[∅ ‖ P] = 1 + hgt[P] > hgt[P]. Dually [seq-empty].

- [id-seq] hgt[γ′ =X γ · P α̃; β̃ Q] = 1 + hgt[P] + hgt[Q] = hgt[γ′ =X γ(P α̃; β̃ Q)] and
hgt[γ′ =X γ · P α̃; β̃ Q] = 1 + hgt[P] + hgt[Q] > hgt[(P α̃; β̃ Q)] = hgt[P] + hgt[Q]
Similarly [seq-id], [uL-seq], [seq-uR], [sL-seq], [seq-sR].

- [idL] hgt[γ = αi·P α̃; β̃ Q] = 1 + hgt[P] +hgt[Q] > hgt[Pα1 ;β1 . . . αi−1 ;βi−1 αi+1 ;βi+1 . . . αn ;βn Q[γ/βi]]
= hgt[P] +hgt[Q]. Dually [idR]

- [uR-uL] hgt[αi〈〉·P α̃; β̃ βi〈〉·Q] = 1 + hgt[P] + 1 + hgt[Q] > hgt[Pα1 ;β1 . . . αi−1 ;βi−1 αi+1 ;βi+1 . . . αn ;βn Q]
= hgt[P] + hgt[Q]. Dually [sR-sL].

Thus the rewrite system terminates. �

As defined, the rewriting system terminates. It is possible to make it confluent (although we
have not proved it yet...) if we consider the results of the rewritings modulo the first six permuta-
tion equivalences mentioned above. In this case the logic can be view as generating a free monoidal
(poly)category, where types are objects, terms are (poly)maps between types and where the cut cor-
responds to the explicit composition of two maps and its elimination giving the evaluation of the
resulting map.

In this context, it is also worth noting that the rewriting rules for the compact setting match the
rewriting rule of the non compact setting since the reduction of macros gives equivalent results:

1. α[]α;β β〈〉 · P = α〈〉 · ∅α;β β〈〉 · P =⇒ ∅; P =⇒ P

2. α〈α1, α2〉 · Pα;β β
[
β1 7−→ Q1
β2 7−→ Q2

]
:= α〈α1, α2〉 · Pα;β β〈β1, β2〉(Q1 ‖ Q2)

=⇒ P(α1,α2);β β〈β1, β2〉(Q1 ‖ Q2)
=⇒ Pα1 ;β1 α2 ;β2 (Q1 ‖ Q2)
à (Pα1 ;β1 Q1) α2 ;β2 Q2

4.4 The proof theory of biproduct
In Section 3.1 we have shown that a compact linearly distributive category with products and co-
products is in fact an additively enriched monoidal category with biproducts. In particular we have
seen that coproducts are biproducts using the isomorphism between products and coproducts. The
compactification of the rules for additives in the multiplicative-additive linear logic thus amounts to
declare product and coproduct equal (+ = ×).

Table 6 gives the compacted version of the rules for additives. In this table, the letter I denotes a
finite set of index. I can be empty for the tuple and cotuple rules, these cases respectively correspond
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Γ ` ∆, Ak

Γ ` ∆,ΣIAi
(injection)

Ak,Γ ` ∆

ΣIAi,Γ ` ∆
(projection)

{Γ ` ∆}I

Γ ` ∆
(sum)

Γ ` ∆
(zero)

Table 7: Compact logic for biproducts

to the terminal rule and initial rule. We make use of the symbol Σ to denote biproducts and we
represent the initial and terminal object by 0. A biproduct, Σi∈I Xi, is characterized by its indexed set
X : I −→ {Basic Type}. We will sometimes denote the biproduct of two types X and Y by X + Y , a

shorthand for Σi∈{1,2}(X + Y)i where (X + Y) is the indexed set (X + Y) :=
{

1 7→ X
2 7→ Y .

Similarly to the tensor case, the compacting of product and coproduct generates modified rules
and allows proofs which cannot be cut eliminated unless further rules are introduced. This for exam-
ple happens for cuts between tuple and cotuple (and the special initial-terminal case) for which we
introduce the sum rule and its special case, zero, when I is empty:

{Γ ` ∆}I

Γ ` ∆
(sum)

Γ ` ∆
(zero)

We get the following reductions:

1.

 πi

Γ ` ∆i, Ai


I

Γ ` ∆,ΣAi
tup

 π′i

Ai,Γ
′ ` ∆′


I

ΣAi,Γ
′ ` ∆′

cotup

Γ,Γ′ ` ∆,∆′
cut =⇒


πi

Γ ` ∆, Ai

π′i

Ai,Γ
′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut


I

Γ,Γ′ ` ∆,∆′
sum

2.
Γ ` ∆, 0

term
0,Γ ` ∆

init

Γ ` ∆
cut =⇒

Γ ` ∆
zero

One does not need to add any other rules to be able to eliminate cuts between projection and
injection though the case is slightly more subtle:

π

Γ ` ∆, Ak

Γ ` ∆,ΣAi
inj

π′

Al,Γ
′ ` ∆′

ΣAi,Γ
′ ` ∆′

proj

Γ,Γ′ ` ∆,∆′
cut =⇒



π

Γ ` ∆, Ak

π′

Al,Γ
′ ` ∆′

Γ,Γ′ ` ∆,∆′
cut, if k = l

Γ,Γ′ ` ∆,∆′
zero, if k , l

Again, the introduction of the sum rule creates redundancy in the compact setting since the tu-
ple and cotuple rules (as well as the initial and terminal rules) can be derived from the injection,
projection and sum rules:

{Γ ` ∆, Ai}I

Γ ` ∆,ΣI Ai
tup =

 Γ ` ∆, Ai

Γ ` ∆,ΣI Ai
inj


I

Γ ` ∆,ΣI Ai
sum

Γ ` ∆, 0
term =

Γ ` ∆, 0
zero

{Ai,Γ ` ∆}I

ΣI Ai,Γ ` ∆
cotup =

 Ai,Γ ` ∆

ΣI Ai,Γ ` ∆
proj


I

ΣI Ai,Γ ` ∆
sum

0,Γ ` ∆
init =

0,Γ ` ∆
zero

The final rules for biproduct are summarized in Table 7 and their annotated versions are provided
Table 9. Whenever possible, the annotations have been chosen so as to match the term logic in [3]
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P :: Γ ` ∆, α : Ak

α(k) · P :: Γ ` ∆, α : ΣIAi
inj

P :: α : Ak,Γ ` ∆

α(k) · P :: α : ΠIAi,Γ ` ∆
proj

{Pi :: Γ ` ∆, α : Ai}I

α{i 7→ Pi}I :: Γ ` ∆,ΠIAi
tup

{Pi :: α : Ai,Γ ` ∆}I

α{i 7→ Pi}I :: α : ΣIAi,Γ ` ∆
cotup

α{}Γ`∆ :: Γ ` ∆, α : 1
term

α{}Γ`∆ :: α : 0,Γ ` ∆
init

Table 8: Additives for the linear logic term calculus

P :: Γ ` ∆, α : Ak

α(k) · P :: Γ ` ∆,ΣIAi
inj

P :: α : Ak,Γ ` ∆

α(k) · P :: ΣIAi,Γ ` ∆
proj

{Pi :: Γ ` ∆}i∈I

ΣIPi :: Γ ` ∆
sum

0Γ`∆ :: Γ ` ∆
zero

Table 9: Term calculus for biproducts

and [4] - recalled Table 8. A list of macros is given in Table 10 to complete the translation from
the non-compact setting to the compact setting. Semantically, projection and injection correspond to
the choice of a process while sum express nondeterminism. A programming version of the previous
three tables are given in the appendix online ([1]) Tables [4][5][6].

4.5 Biproduct rewriting rules and equations
Rewriting rules for biproducts are built on the same lines as the rules described for compacting
multiplicative linear logic.

First are the no-interaction rules which allow one to look deeper into a process’ code if the leading
component of this process is not active on any channels involved in the multicut. For γ < M:

[inj/proj-seq] γ(i) · P;M Q =⇒ γ(i) · (P;M )

[seq-inj/proj] P;M γ(i) · Q =⇒ γ(i) · (P;M )

[sum-seq] ΣI Pi;M Q =⇒ ΣI(Pi;M Q), in particular [zero-seq] 0Γ`∆ ;M P =⇒ 0Γ`∆

[seq-sum] P;M ΣI Qi =⇒ ΣI(P;M Qi), in particular [zero-seq] P;M 0Γ`∆ =⇒ 0Γ`∆

Then come the interaction rules which really express the programming semantic of the calculus. For
P :: Γ ` ∆ and Q :: Γ′ ` ∆′ we have:

[inj-proj] α(i) · P;(α,β)M β( j) · Q =⇒ P;(α,β)M Q, when i = j.

[inj-proj] α(i) · P;(α,β)M β( j) · Q =⇒ 0Γ,Γ′`∆,∆′ , when i , j

As previously the interaction rules need to be split in two steps if we want to be able to drive the
reduction by the leading components of the terms involved in a cut. To this purpose we complete the
set of patterns by:

p := α | () | (p, p) | σi(p)

α{i 7→ Pi}i∈I := ΣI(α(i) · Pi) α{}Γ`∆ := 0Γ`∆

Table 10: Term macros for biproducts
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We then rewrite the interaction rules as follows:

[inj-1] α(i) · P;(p(α),β)M Q =⇒ P;(p(σi(α),β) Q

[proj-1] P;(α,p(β))M β(i) · Q =⇒ P;(α,p(σi(β)) Q

[inj-2] when i = j, α( j) · P;(α,σi(p))M Q =⇒ P;(α,p)M Q

[proj-2] when i = j, P;(σi(p),β)M β( j) · Q =⇒ P;(p,β)M Q

[inj-2] when i , j, α( j) · P;(α,σi(p))M Q =⇒ 0Γ,Γ′`∆,∆′

[proj-2] when i , j, P;(σi(p),β)M β( j) · Q =⇒ 0Γ,Γ′`∆,∆′

Because we want the compact logic with biproduct to work as a compact linearly distributive cat-
egory with product and coproduct, that is a monoidal category enriched in commutative monoid,
one need to add some equivalences to the setting. As previously, these equivalences are permuta-
tion equivalences that make the rewriting system confluent, but also “structural” equivalences that
provides the distribution of the sum over the tensor.

For P :: Γ ` ∆, channels α, β, β1, β2 distinct, sets I, J non empty and I′ a permutation of I, we
have:

[inj/proj-inj/proj] α(i) · β( j) · P à β( j) · α(i) · P

[inj/proj-id] α(i) · β1 =X β2 · P à β1 =X β2 · α(i) · P

[inj/proj-split] α(i) · β〈β1, β2〉 · P à β〈β1, β2〉 · α(i) · P

[inj/proj-unit] α(i) · β〈〉 · P à β〈〉 · α(i) · P

[sum-id] ΣI(β1 =X β2 · Pi) à β1 =X β2 · ΣI Pi

[sum-split] ΣI(β〈β1, β2〉 · P) à β〈β1, β2〉 · ΣI Pi

[sum-unit] ΣI(β〈〉 · P) à β〈〉 · ΣI Pi

[sum-inj/proj] ΣI(β( j) · P) à β( j) · ΣI Pi

[sum-sum] ΣIΣJ Pi j à ΣI×J Pi j

[sum] ΣI Pi à ΣI′Pi

[sum-zero] P + 0Γ`∆ à P

[zero] a · 0Γ′`∆′ :: Γ ` ∆ à 0Γ`∆

Remark 3. If the permutation equivalences for injection and projection seem natural, the equivalences
involving zero and sum are more questionable with respect to the operational semantic. Indeed, the
equations above suggest for example that the following diagrams are equivalent:

•

• •

P Q

a a

b c

=

•

•

P Q

a

b c

•

0

a = 0

This semantic might not be the one wanted to describe parallel computation, as using bisimulation
as the basis for equivalence these are usually judged inequivalent [8] . Nevertheless, in the context
of having a categorical semantic associated to the compact logic, the above equations are necessary.
For example, they enable one to solve the following critical pairs:

(P1 + P2);M f (γ) · Q
w u

P1;M f (γ) · Q + P2;M f (γ) · Q f (γ) · ((P1 + P2);M Q)
⇓ ⇓

f (γ) · (P1;M Q) + f (γ) · (P2;M Q) f (γ) · (P1;M Q + P2;M Q)

and
0Γ′`∆′ ;M f (γ) · 0Γ`∆

w u
f (γ) · (0Γ′`∆′ ;M 0

Γ`∆
0Γ,Γ′`γ,∆,∆′

⇓

f (γ) · 0Γ,Γ′`∆,∆′

where f (γ) represents an action on channel γ < M.
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axiom f

x1 : A1, . . . , xn : An ` f (x1, . . . , xn) : A
(axiom)

Φ ` f : A Ψ1, x : A,Ψ2 ` g : B

Ψ1,Φ,Ψ2 ` (x 7→ g) f : B
(subs)

Φ, x : A, y : B ` f : C

Φ, (x, y) : A ∗ B ` f : C
(∗l)

Φ ` f : A Ψ ` g : B

Φ,Ψ ` ( f , g) : A ∗ B
(∗r)

Φ ` f : A

Φ, () : I ` f : A
(Il)

` () : I
(Ir)

Φ, x : A ` f : C Φ, y : B ` g : C

Φ, z : A + B `
{
σ1(x) 7→ f
σ2(y) 7→ g

}
z : C

(coprod)
Φ, z : 0 ` {}z : A

0

Φ ` f : A

Φ ` σ1( f ) : A + B
(injl)

Φ ` f : B

Φ ` σ2( f ) : A + B
(injr)

Table 11: Term calculus for Messages

5 Logic for compact linear actegory
In this section we propose to describe interaction between the compact logic for channels presented
Section 4. and a (very simple) message world, whose logic corresponds to a logic for monoidal
(multi)category with coproduct. The term logic for messages is recalled in Table 11, its monoidal
structure is denoted (∗, I) and its coproducts are written (+, 0). Interaction rules of the message world
onto the compact channel world are described Table 12. In this setting sequents are of the form
Φ | Γ  ∆ where Φ is a set of message variables and Γ, ∆ are sets of channels. By contrast, sequents
from the message world are represented using a simple turnstile: Φ ` A. Most of the rules only
described the effect of the application of rules from the message world. They were introduced to
allow multicut and substitution elimination. The proper interaction rules only correspond to the •
and ◦ rules that allow to “get” (α〈x〉) and “put” (α[ f ]) values on a channel. A programming version
of the above tables can be found in the appendix online ([1]) Tables [7] and[8]. Finally, we refer
the reader to the original setting [4] for a more detailed description of these rules since we have not
changed them.

From a categorical point of view, the message world and its actions are not directly affected by
the compactification ; one only need to ensure that the associative and distributive isomorphisms exist
and behave as desired. However, some of these isomorphisms are counter intuitive in the context of
a concurrent semantic. For example this is the case for the isomorphism A ◦ B • X � B • A ◦ X
that we have was discussed in Section 3.2. This told us that the logic resulting from the compact
multiplicative-additive linear logic augmented with the rules from message passing allows one to
build terms where a process can send a message depending on a value it has not yet received. In
particular, it is possible to write programs with deadlock in this logic as in the following example
which plugs together two processes P and Q which wait for each other to provide a value to pass:

P :=

x : A ` id(x) : A
id

∅ ::  emp

α〈〉 · ∅ ::  α : >
ur

α[id[x] · α〈〉 · ∅ :: x : A |  α : A ◦ >
◦r

β〈〉 · α[id[x] · α〈〉 · ∅ :: x : A |  α : A ◦ >, β : >
ur

β〈x〉 · β〈〉 · α[id(x)] · α〈〉 · ∅ ::  α : A ◦ >, β : A • >
•r

Q :=

y : A ` id(y) : A
id

∅ ::  emp

β′〈〉 · ∅ :: β′ : > 
ul

β′[id[y] · β′〈〉 · ∅ :: y : A | β′ : A • > 
•l

α′〈〉 · β′[id[y] · β′〈〉 · ∅ :: y : A | α′ : >, β′ : A • > 
ul

α′〈y〉 · α′〈〉 · β′[id(y)] · β′〈〉 · ∅ :: α′ : A ◦ >, β′ : A • > 
◦l

P ;(α,α′)(β,β′) Q := β〈x〉 · β〈〉 · α[id(x)] · α〈〉 · ∅;(α,α′)(β,β′) α′〈y〉 · α′〈〉 · β′[id(y)] · β′〈〉 · ∅ :: `
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Φ ` f : A P :: Ψ, x : A | Γ  ∆

(x 7→ P) f :: Φ,Ψ | Γ  ∆
(subs)

{}z :: Φ, z : 0 | Γ  ∆
0

P :: Φ, x : A | Γ  ∆ Q :: Φ, y : B | Γ  ∆{
σ1(x) 7→ P
σ2(y) 7→ Q

}
z :: Φ, z : A + B | Γ  ∆

(cop)

P :: Φ, x : A, y : B | Γ  ∆

P :: Φ, (x, y) : A ∗ B | Γ  ∆
(∗)

P :: Φ | Γ  ∆

P :: Φ, () : I | Γ  ∆
(I)

Φ ` f : A Ψ | Γ  α : X,∆

α[ f ] · P :: Φ,Ψ | Γ  A • X,∆
(•r)

x : A,Φ | Γ, α : X  ∆

α〈x〉 · P :: Φ | Γ, A • X  ∆
(•l)

P :: x : A,Φ | Γ  α : X,∆

α〈x〉 · P :: Φ | Γ  A ◦ X,∆
(◦r)

Φ ` f : A P :: Ψ | Γ, αX  ∆

α[ f ] · P :: Φ,Ψ | Γ, A ◦ X  ∆
(◦l)

Table 12: Term calculus for Message-passing

This example cannot be cut eliminated: thus it is temping to to equate deadlock with failure of
cut eliminations. However, the question of what can be cut eliminated is delicate and we still do not
have a complete understanding of the situation. Nevertheless we present below some directions that
have been considered.

The more obvious option is to take as cut elimination procedure, the inefficient rewrite system
given by the original reduction rules up to permutation equivalences. This system is formed by the
symmetric rewriting rules and the equivalences described in Section 4, and by the following rewriting
and permutation rules for message passing:

(Multicut rewriting rules): For γ < M

[get-seq] γ〈x〉 · P;M Q =⇒ γ〈x〉 · (P;M Q)

[seq-get] P;M γ〈x〉 · Q =⇒ γ〈x〉 · (P;M Q)

[put-seq] γ[ f ] · P;M Q =⇒ γ[ f ] · (P;M Q)

[seq-put] P;M γ[ f ] · Q =⇒ γ[ f ] · (P;M Q)

[get-put] α〈x〉 · P;(α,α)M α[ f ] · Q =⇒ (x 7→ P) f ;(α,α)M Q

[put-get] α[ f ] · P;(α,α)M α〈x〉 · Q =⇒ P;(α,α)M (x 7→ Q) f

(Substitution Rewrite):

[subs-split] (x 7→ α〈α1, α2〉 · P) f =⇒ α〈α1, α2〉 · (x 7→ P) f

[subs-unit] (x 7→ α〈 〉 · P) f =⇒ α〈 〉 · (x 7→ P) f

[subs-id] (x 7→ α =X β.P) f =⇒ α =X β · (x 7→ P) f

[subs-inj/proj] (x 7→ α(k) · P) f =⇒ α(k) · (x 7→ P) f

[subs-sum] (x 7→ ΣI Pi) f =⇒ ΣI(x 7→ Pi) f

[subs-get] (x 7→ α〈 y〉 · P) f =⇒ α〈 y〉 · (x 7→ P) f

[subs-put] (x 7→ α[g] · P) f =⇒ α[g] · (x 7→ P) f if x < Dom(g)

[subs-put] (x 7→ α[g] · P) f =⇒ α[g[ f /x]] · P) if x ∈ Dom(g)

[sub-0] (x 7→ z) f =⇒ z

[sub-∗] ((x, y) 7→ P)( f1, f2) =⇒ (x 7→ (y 7→ P) f2) f1

[sub-cop] (x 7→
{
σ1(y1) 7→ P1
σ2(y2) 7→ P2

}
z) f =⇒

{
σ1(y1) 7→ (x 7→ P1) f
σ2(y2) 7→ (x 7→ P2) f

}
z if x , z

[sub-cop] (z 7→
{
σ1(y1) 7→ P1
σ2(y2) 7→ P2

}
z)σi( f ) =⇒ (yi 7→ Pi) f
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(Permutation equivalences):

[subs-cut] (x 7→ P) f ;M Q à (x 7→ P;M Q) f à P;M (x 7→ Q) f

[get-split] α〈α1, α2〉 · β〈x〉 · P à β〈x〉 · α〈α1, α2〉 · P

[get-unit] α〈 〉 · β〈x〉 · P à β〈x〉 · α〈 〉 · P

[get-id] α =X γ · β〈x〉 · P à β〈x〉 · α =X γ · P

[get-put] α〈 x〉 · β[ f ] · P à β[ f ] · α〈x〉 · P if x < Dom( f )

[get-get] α〈 x〉 · β〈y〉 · P à β〈y〉 · α〈x〉 · P

[get-sum] ΣI(α〈x〉 · Pi) à α〈x〉 · (ΣI Pi)

[get-coprod] α〈x〉 ·
{
σ1(y1) 7→ P1
σ2(y2) 7→ P2

}
z à

{
σ1(y1) 7→ α〈x〉 · P1
σ2(y2) 7→ α〈x〉 · P2

}
z

[get-0] α〈x〉 · z à z

[put-split] α〈α1, α2〉 · β[ f ] · P à β[ f ] · α〈α1, α2〉 · P

[put-unit] α〈 〉 · β[ f ] · P à β[ f ] · α〈〉 · P

[put-id] α =X γ · β[ f ] · P à β[ f ] · α =X γ · P

[put-put] α[g] · β[ f ] · P à β[ f ] · α[g] · P

[put-sum] ΣI(α[ f ] · Pi) à α[ f ] · (ΣI Pi)

[put-cop] α[ f ] ·
{
σ1(y1) 7→ P1
σ2(y2) 7→ P2

}
z à

{
σ1(y1) 7→ α[ f ] · P1
σ2(y2) 7→ α[ f ] · P2

}
z

[put-0] α[ f ] · z à z

etc...

In this system the term P ;(α,α′)(β,β′) Q cannot be reduced since any of its equivalent term can be
reduced too:

β〈x〉 · β〈〉 · α[id(x)] · α〈〉 · ∅;(α,α′)(β,β′) α′〈y〉 · α′〈〉 · β′[id(y)] · β′〈〉 · ∅

à β〈x〉 · α[id(x)] · β〈〉 · α〈〉 · ∅;(α,α′)(β,β′) α′〈y〉 · β′[id(y)] · α′〈〉 · β′〈〉 · ∅

à ...

à β〈x〉 · α[id(x)] · α〈〉β〈〉 · ·∅;(α,α′)(β,β′) α′〈y〉 · β′[id(y)] · α′〈〉 · β′〈〉 · ∅

More generally, it seems that the above rewriting system allows exactly the non deadlocking
terms to be cut and substitution eliminated completely. However this has not been proved.

To simplify the proofs on the above system and make it more efficient, it is tempting to develop
a rewrite system by leading component without permutation as was done in Section 4. However
dependencies between messages received and sent from different channels make the trick of allowing
partial evaluation almost impracticable.

The last possibility that was considered was to looked at modificating the logic so as to allow
circular terms. This seems to be a fruitful idea as possibly it allows cut elimination to work and for
deadlock to be expressed in the circularity of the terms but we did not have time to study it carefully.

6 Conclusion
I started to work on this project because I was interested to see if it was possible to modify the formal
setting described in [3] and [4] to express nondeterminism. Indeed, I wanted to see if and how this
categorical and logical setting could be related to the notion of correctness for distributed algorithm
on which I had worked for an other project.

Beside the nondeterminism, we also realized that the logic described by Cockett and Pastro was
too restrictive in the way of connecting processes. However, we knew that this could be “easily”
achieved by compacting the setting, that ia by making the tensor and the par equal. Surprisingly the
study of the effect of this compactification on the categorical side revealed that this was also providing
nondeterminism “for free”. The goal was then to study the meaning of this nondeterminism and, more
generally, of the whole process of compactification on the logic side.
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I thus started to developed the corresponding logic for compact linearly distributed category.
However this logic was not rich enough to express concurrent computation in the common sense and
thus we decided to go one step further and add message passing the next step would have been to add
protocols. Adding message passing in the compact setting was more complicated than expected and
it takes time to realized that this was due to the result of the compactification on the actions which
allows one to write terms with deadlock. In this context we could not expect the cut elimination to
work (it would not make sense to be able to reduce a deadlocking term!). Yet, in the end, the compact
logic for message passing we defined, gives a logical way to described deadlock, since a deadlock
seems to correspond exactly to a failure in the cut elimination procedure.

In addition to the failure of cut elimination and its ramifications in the final system, the expres-
siveness of the resulting language remains to be explored. In particular, we did not have time to study
the effects of the nondeterminism on the setting, nor the relationship between this system and other
formalisms for concurrent programming such as the pi-calculus. This is also partly due to the fact
that we first needed to develop the logic for protocols so as to be able to express infinite processes.
There are, thus, many possibilities for future work!

To conclude this report, I would like to thank my supervisor, Robin Cockett, for the time and
the attention he spent on this project, for his precious advice and for his invitation to the FMCS
conference. A General thanks too, to the team that took time to listen to my presentations and to
Poon Lueng for his lecture on enriched category.
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