On the flora of asynchronous locally non-monotonic Boolean automata networks

A study of xor-networks

Aurore Alcolei, Kévin Perrot and Sylvain Sené

CANA team, LIF, Aix-Marseille University

SASB - 8th September 2015

Definitions ans motivations

② A general result on ⊕-networks

- 3 Isomorphism results
- 4 Conclusion

Definitions ans motivations

- ② A general result on ⊕-networks
- Isomorphism results
- Conclusion

- $\mathcal{N} = \{f_i : \mathbb{B}^n \to \mathbb{B}\}_{i=1}^n$ (size n)
- configuration: $x = (x_1, \ldots, x_n) \in \mathbb{B}^n$
- eg: $f_1(x) = \neg x_3$, $f_2(x) = x_1 \lor x_2$, $f_3(x) = x_1 \vee \neg x_2$
- model for regulation systems (gene or neural networks)
- Asynchronous dynamics:
 - non deterministic and complete,
 - one automaton is updated at a time

- $\mathcal{N} = \{f_i : \mathbb{B}^n \to \mathbb{B}\}_{i=1}^n$ (size n)
- configuration: $x = (x_1, \ldots, x_n) \in \mathbb{B}^n$
- eg: $f_1(x) = \neg x_3$, $f_2(x) = x_1 \lor x_2$, $f_3(x) = x_1 \vee \neg x_2$
- model for regulation systems (gene or neural networks)
- Asynchronous dynamics:
 - non deterministic and complete,
 - one automaton is updated at a time

- $\mathcal{N} = \{f_i : \mathbb{B}^n \to \mathbb{B}\}_{i=1}^n$ (size n)
- configuration: $x = (x_1, \ldots, x_n) \in \mathbb{B}^n$
- eg: $f_1(x) = \neg x_3$, $f_2(x) = x_1 \lor x_2$, $f_3(x) = x_1 \vee \neg x_2$
- model for regulation systems (gene or neural networks)
- Asynchronous dynamics:
 - non deterministic and complete,
 - one automaton is updated at a time

- $\mathcal{N} = \{f_i : \mathbb{B}^n \to \mathbb{B}\}_{i=1}^n$ (size n)
- configuration: $x = (x_1, \ldots, x_n) \in \mathbb{B}^n$
- eg: $f_1(x) = \neg x_3$, $f_2(x) = x_1 \lor x_2$, $f_3(x) = x_1 \vee \neg x_2$
- model for regulation systems (gene or neural networks)
- Asynchronous dynamics:
 - non deterministic and complete,
 - one automaton is updated at a time

Asynchronous transition graph

nodes = configurations arrows = transitions

Asynchronous transition graph

- nodes = configurations arrows = transitions
- configurations:
 - recurrent:
 fixed point and
 stable oscillations.
 - unreachable.
 - transient (reversible or irreversible).

Asynchronous dynamics of Boolean automata networks

Questions:

What can we say about the dynamics (transition graph) of a BAN when only looking at its static definition? How do they relate?

Asynchronous dynamics of Boolean automata networks

Questions:

- Usually locally monotonic.
- \rightarrow A questionable restriction for the expressiveness of the model.

Asynchronous dynamics of xor-Boolean automata networks

Questions:

- → What is the impact of non local monotony on the dynamics of BANs?
- \rightarrow Study of \oplus -networks.

Definitions ans motivations

- ② A general result on ⊕-networks
- 3 Isomorphism results
- 4 Conclusion

A general result

Theorem [Strong connectivity/High expressiveness]:

In a strongly connected \oplus -BAN with an **induced double cycle** of size greater than 3, one can go from any unstable configuration to any reachable configuration in a quadratic number of updates.

A general result

Theorem [Strong connectivity/High expressiveness]:

In a strongly connected \oplus -BAN with an **induced double cycle** of size greater than 3, one can go from any unstable configuration to any reachable configuration in a quadratic number of updates.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Idea: Using the induced double cycle as a state generator.

Definitions ans motivations

- ② A general result on ⊕-networks
- 3 Isomorphism results
- Conclusion

Isomorphism definition

Isomorphism relation:

Two BANs are isomorphic if their transition graphs are isomorphic.

Isomorphism relation and rewritings

Property: Any cycle chain structure induces at most two classes of isomorphic \oplus -networks.

Proof sketch

- 1 a set of rewriting rules that preserve the isomorphism relation.
- 2 rewrites that converge to canonical networks.

Isomorphism relation and rewritings

Property: Any cycle chain structure induces at most two classes of isomorphic \oplus -networks.

Proof sketch:

- 1 a set of rewriting rules that preserve the isomorphism relation.
- 2 rewrites that converge to canonical networks.

Isomorphism relation and rewritings

Property: Any cycle chain structure induces at most two classes of isomorphic \oplus -networks.

Proof sketch:

- 1 a set of rewriting rules that preserve the isomorphism relation.
- 2 rewrites that converge to canonical networks.

Rewriting rules

Idea: removing or pushing the rightmost — sign to the left.

Meaning: The networks induced by the right and left patterns are isomorphic.

Goals:

- To remove the rightmost sign without changing anything on the right,
- 2- and by changing the least number of automata on the left.

$$\phi_3 = ?$$
 $\phi_2 = ?$
 $\phi_1 = ?$
 $\phi_1 = ?$
 $\phi_2 = ?$
 $\phi_3 = ?$
 $\phi_4 = ?$
 $\phi_4 = ?$

Goals:

- To remove the rightmost sign without changing anything on the right,
- 2- and by changing the least number of automata on the left.

$$\phi_3 = ?$$

$$\phi_2 = ?$$

$$\phi_1 = ?$$

$$\phi_1 = ?$$

Goals:

- To remove the rightmost sign without changing anything on the right,
- 2- and by changing the least number of automata on the left.

$$\phi_3 = \text{id}$$

$$\phi_2 = ?$$

$$\phi_1 = ?$$

$$\phi_1 = ?$$

$$\phi_2 = ?$$

$$\phi_1 = ?$$

Goals:

- To remove the rightmost sign without changing anything on the right,
- 2- and by changing the least number of automata on the left.

$$\phi_3 = \text{id}$$
 $\phi_2 = \text{neg}$
 $\phi_1 = ?$

Goals:

- To remove the rightmost sign without changing anything on the right,
- 2- and by changing the least number of automata on the left.

$$\phi_3 = \operatorname{id}$$

$$\phi_2 = \operatorname{neg}$$

$$\phi_1 = \operatorname{id}$$
?

Definitions ans motivations

- ② A general result on ⊕-networks
- 3 Isomorphism results
- Conclusion

Conclusion

- Analysis of the asynchronous dynamics of a large number of strongly connected ⊕-networks.
- \rightarrow enrichment with larger class of BANs (non \oplus , non strongly connected...)
- → different possible interpretations:
 - · propagation of contradictory information (entropy generator),
 - · ability to recover from "bad choices" (convergence to fixed points rather than stable oscillations).
 - Two useful tools:
- \rightarrow algorithmic formalism,
- \rightarrow equivalence relations to classify BANs (eg: isomorphism relation).

Idea: Reaching a highly expressive/unstable configuration.

Idea: Reaching a highly expressive/unstable configuration. x' = 101001011

Idea: Reaching a highly expressive/unstable configuration.

Idea: Reaching a highly expressive/unstable configuration.

