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Résumé :
L’étude algorithmique de l’existence de contrôleurs optimaux pour une spécification donnée

a pour but de pouvoir obtenir, de manière automatisée, des programmes corrects pour le
contrôle de systèmes complexes. Outre le défi de prouver l’existence d’un tel contrôleur et
d’un algorithme le construisant, un défi à ne pas négliger est de réaliser l’implémentation
du contrôleur obtenu. Il est facile de trouver, dans la littérature adéquate, des exemples de
modèles pour lesquels un contrôleur optimal nécessite une mémoire infinie pour pouvoir être
implémenté, ce qui n’est pas réaliste. Si l’on se place dans un cadre d’étude de systèmes
à temps réel, certains modèles ont besoin de contrôleurs nécessitant une précision d’horloge
infinie. Le problème de l’implémentabilité a pour objectif d’étudier l’existence de contrôleurs
optimaux et physiquement implémentables.

Dans ce manuscrit, je reviens sur des travaux et contributions liés à ce problème.

Abstract:

The controller synthesis problem lays the ground for a formal toolbox allowing a “correct
by design” paradigm. Nevertheless bringing the theory and application together implies at the
least the possibility of a realistic physical implementation of the designed controller. However,
one has to keep in mind that this controller is nothing but a mathematical idealization of a
correct solution in where (some) physical constraints are often abstracted away. For instance,
the obtained controller does not have memory constraint, nor it is concerned with energy
consumption, or hardware limitation such as clock speed. Sometimes, the time guarantees
brought by the computed solution are simply not realistic. For example, in the case where a
specification requires repeated behavior, a controller inducing a behavior where each repetition
requires arbitrary longer period of time to take place is deemed correct. In this case, the
controller can be implemented but its behavior is still not completely satisfying. This comes
from the fact that usually the specification formalism used allows, from a mathematical stand
point, such behaviors. One can obviously say it suffices to use a more precise specification,
i.e., a language where such phenomena are ruled out. It turns out that this is not a simple
task. Indeed, one has to bear in mind that we are aiming for an automatic procedure, thus
decidability (and tractability) is paramount. Therefore, fine tuning the specification language
while maintaining algorithmic properties is an ongoing challenge.

In this manuscript we present several contributions that fall in the scope of automatically
designed implementable controllers.
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Introduction

An open reactive system is a term used to describe cyber-physical systems involving interaction
between multiple entities that are either controllable (the controller) or uncontrollable (the en-
vironment). When designing such a system, a natural requirement to ask for is to ensure that
it runs according to a desired behavior without mischief. This requirement can be formulated
either as a model-checking problem or a controller synthesis problem. In the former case, the
question asked is whether any run of the system behaves well, i.e. is the system bug-free? In the
latter case, the question asked is weather it is possible to “control the system” without changing
the actions of the environment such that the obtained behavior is correct, i.e., enforce the system
to be well-behaved.

The mathematical interpretation of the controller synthesis, also known as Church synthesis
problem, is usually modeled by a game played on a graph. Such a game involves two players,
the first one is called P1 (for player one) represents the controller and the second one is called
P2 and represents the environment. The set of states of the game graph is divided into two
disjoint subsets. The first one belongs to P1 and the second belongs to P2. A play is an infinite
path in the game graph, it is obtained using the following interaction between P1 and P2. Let
sini be a fixed initial state sini in the game graph. The player controlling this state chooses a
successor s of sini such that (sini, s) forms an edge in the graph, the play moves to this newly
chosen state and the player controlling s picks a new state from all the possible successors of s.
This turn-based interaction is repeated infinitely creating an infinite play in the graph (assuming
that all the states always have at least a successor). The players rely on a strategy for picking the
new state of the play, a strategy is simply a mapping from finite plays to states. The behavior
we want P1 to ensure, is called the objective, it is given by a set of infinite path over the graph
of the game. P1 aims at enforcing the objective, and P2 aims at falsifying it. Using this game
theoretic translation, solving the controller synthesis problem amounts to checking whether P1
has a strategy that allows him to ensure objective against any strategy of P2. A strategy of P1
is called winning if it ensures the objective against any strategy of P2. This winning strategy is
a mathematical formulation of a correct controller.

This game theoretic metaphor lays the ground for a nice formal framework of a “correct by
design” system. Nevertheless bringing the theory and application together implies at the least the
possibility of a realistic physical implementation of the designed controller. But one has to keep
in mind that this controller is nothing but a mathematical idealization of a correct solution in
where (some) physical constraints are often abstracted away. For instance, the obtained controller
does not have memory constraint, nor it is concerned with energy consumption, neither hardware
limitation such as clock speed. Sometimes, the time guarantees brought by the computed solution
are simply not realistic. For example, in the case where a specification requires repeated behavior,
a controller inducing a behavior where each repetition requires arbitrary longer period of time to
take place is deemed correct. In this case, the controller can be implemented but its behavior is
still not completely satisfying. This comes from the fact that usually the specification formalism
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used allows, from a mathematical stand point, such behaviors. One can obviously say it suffices
to use a more precise specification language where such phenomena are ruled out. It turns
out that this is not a simple task. Indeed, one has to bear in mind that we are aiming for an
automatic procedure, thus decidability (and tractability) is paramount. Therefore, fine tuning
the specification language while maintaining algorithmic properties is an ongoing challenge.

Motivated by these observations, several line of research have taken up the task of developing
formal tools investigating the theory and algorithms for implementable controllers. Recall that
a correct controller can be acquainted with a winning strategy in some game. Thus to under-
stand implementability issues of correct controllers, a natural starting point is to investigate
how complex winning strategies need to be with respect to a given specification. When thinking
about strategy complexity, one usually thinks about memory requirements, e.g., [GZ05, Kop06,
FHKM15, AR17, RPR18]. Among these related work we highlight the results from [GZ05] where
a full characterization of memoryless specifications is obtained. However, the complexity of the
cyber-physical systems to model keeps increasing giving rise to more complex specifications where
memoryless controllers are simply not sufficient [CHP07, CD12a, CRR14, VCD+15a, JLS15a].
Extending the understanding of memory requirements in optimal strategies will be the focus
the Chapter 1. We show the limits of the techniques developed in [GZ05] and generalize their
approach to handle memory optimal strategies and stochastic arenas.

An other aspect that we already mentioned is the specification itself. Increasing the accuracy
of the specification while maintaining good algorithmic properties has already been explored,
for example introducing a timing frame to obtain more predictable behavior in long term spec-
ifications using the so-called “window mechanism” was introduced in [CDRR15, BHR16a], but
these new specifications were only considered in the context of games and never in the context
of stochastic arenas. This is what we present in Chapter 2, where we develop a unified approach
extending the results of both paper to the context of Markov decision processes.

In Chapter 3, we shift the focus to real-time systems. Here, the formalism of choice is the
one of timed automata. This consists of an abstract mathematical semantics offering arbitrarily
precise clocks and time delays. However, real-world digital systems have response times that
may not be negligible, and control software cannot ensure timing constraints exactly, but only
up to some error caused by clock imprecision, measurement errors, and communication delays.
A major challenge is thus to ensure that the synthesized control software is robust, i.e., ensures
the specification even in the presence of imprecision [HS06].

Following these shortcomings, there has been a growing interest in lifting the theory of veri-
fication and synthesis to take into account robustness. Model-checking problems were re-visited
by considering an unknown perturbation parameter to be synthesized for several kinds of prop-
erties [Pur00, DDMR08, BMR08, BMS13]. However, little has been achieved in the setting of
timed game. Actually, due to the infinitely precise abstract semantics, synthesized strategies
may not be realizable in a finitely-precise environment; the controlled systems obtained using
the timed game formalism may not satisfy the seeked properties at all. In particular, due to
perturbations in the time delays, some infinite behaviors may disappear completely.

The above problem is formalized as the study of the existence of robust strategies in timed
games, namely, those that guarantee winning despite an imprecision bounded by a parameter.

Finally in chapter 4 we study multi-player games. So far we considered a mathematical
framing where the controller and the system are adversaries. This entails a pessimistic models
and rather conservative solutions. In an effort to circumvent this (contrived) antagonistic as-
sumptions, Ummels [Umm08] considered the synthesis problem in a setting where each agent is
assigned an individual specification together with a list of the specification that “must-hold”. In
this case, one aims at constructing a global controller that ensures a rational behavior for the
global system such that its outcome ensures the “must-hold” specifications. Usually rationality
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is captured with the concept of Nash equilibrium. A well known issue with this model is that
the proposed solution is nothing but a suggestion. For instance, in an equilibrium, a player
might be bound to loose, hence he does not have any clear interest in following the proposed
rational solution. This lack of robustness in the concept of Nash equilibria has drawn the atten-
tion in the community where refinement were proposed aiming at designing solutions with more
guarantees [CHJ04, FKL10, CDFR14, BMR14]. In chapter 4, we propose a setting where the
player have their own selfish objective but also have to share a common resource. We extend
the setting of [FKL10] to the setting with common resources, we develop a framework where a
rational solutions that maintain the common resource are preferred over the ones depleting it.
this way, we view solutions where common resources are saved as more robust solutions.

In this manuscript we present several contributions that fall in the scope of the context
presented above.





Chapter 1

Memory for synthesis

1.1 Outline of the chapter
In this chapter we are interested in the memory requirement of a correct strategy. Our main
objective is to understand when finite memory strategy are sufficient, with respect to a given
specification. We start with a very simple example showcasing what we intend by the notion of
(finite) memory strategy.

Example 1.1. Consider the (one-player) arena depicted in Figure 1.1. In this example, from
every state the player decides the next edge to pick, inducing an infinite sequence of vertices. We
want to design a control policy that enforces an infinite amount of visits of state b while ensuring
that lim inf of the average accumulation is non-negative. Notice that this specification consists
of two goal; i) visiting b infinitely often, and ii) the lim inf condition. In order to ensure this
specification, a correct controller has to take transition (a, b) from time to time to ensure the first
part of the specification. But at the same time it has to spend long periods of time in state a to
ensure that the average accumulation asymptotically goes to 0. In order to combine these two
behaviors and ensure the full specification, our controller has to create long and consecutive visits
of state a followed by one visit of state b followed by longer sequences of state a and repeat this
behavior infinitely. Implementing this behavior requires from the controller to store the required
number of visits of state a. Now, notice how this quantity grows unbounded. This causes the
memory needed by the controller to be unbounded. We refer to such memories as infinite. It
is easy to see that bounding the number of visits of state a will cause the inferior limit to be
negative. ◁

a b

-1

0

0

Figure 1.1: Infinite memory is unavoidable.

The above example shows a very simple
instance where the correct behavior can only
be enforced by an infinite memory, but such
a strategy cannot be implemented in a real-
life scenario since the memory space is a finite
resource.

In this chapter we describe a better under-
standing of when a system is controllable by
a finite memory policy. As usual we will ad-
dress the control problem through the game
theoretic prism. A system will be viewed as a game played between two competitive entities.
The first one models the controller, and the second models the environment. The control policy

11
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we build is referred to as an optimal (or winning) strategy. In this context we want to identify
the frontier between when a finite memory optimal strategy exists and when it does not.

We base our presentation on a characterization by Gimbert and Zielonka [GZ05]. In their
work, a characterization of all the preference relations that admit memoryless optimal strategies
is presented. Their approach is built upon necessary and sufficient conditions. These conditions
are agnostic to the game graph. Thus from a theoretic point view it allows one to pinpoint
exactly what properties of a preference relation are required to get memoryless determinacy, i.e.
existence of memoryless optimal strategies for both players. Moreover, not only they characterize
the existence of memoryless optimal strategies, they also design a mathematical tool to design
them through what they called the lifting corollary. This tool allows one to bring the above
problem to the simpler setting of graphs and obtain results in the setting of two-player games.

In this chapter, we overview contributions obtained from a collaboration with Patricia Bouyer,
Stéphane Le Roux, Mickael Randour, and Pierre Vandenhove [BRO+20, BORV21, BRO+22].
The main contributions are:

• We show that the lifting corollary as intended in [GZ05] does not hold when memory is
involved, cf. the game of Figure 1.8;

• we introduce the notion of arena-independent memory through the concept of a memory
skeleton, cf. Definition 1.16;

• we generalize the characterization of [GZ05] to the more complex setting of arena-independent
memory strategies;

• we show that the lifting corollary holds for arena-independent memory strategies;

• we extend our understanding to the case of stochastic arenas.

This chapter is organized as follows:

• In Section 1.2, we present the formalism of two-player games together with the necessary
formal notions and notations.

• In Section 1.3, we present related work from the literature regarding existing characteriza-
tion.

• In Section 1.4, we preview our results regarding the characterization of preference relation
that are finite memory determined. In particular we show how we generalize the techniques
from Gimbert and Zielonka. The results previewed in this section are:

– A generalization of the central notions of monotony and selectivity.

– A characterization of arena-independent finite memory determined preference rela-
tions.

– A lifting corollary in the context of arena-independent finite memory strategies.

• In Section 1.5, we present extensions to stochastic arenas in particular we:

– Show a counter part to the lifting corollary.

– We also show a characterization of preference relations admitting arena-independent
finite memory in one-player arenas.
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1.2 Two-player games
Arenas and plays
We consider games played between two players; player 1 (P1) and player 2 (P2). A two-player
arena or arena for short is a tuple A = (S1, S2, E) such that S = S1 ⊎ S2 is a finite set of states
partitioned into states of P1, i.e., S1 and states of P2, i.e., S2, and E ⊆ S × S is a finite set of
edges.

0 1 2 3

4 5 6 7

Figure 1.2: A two-player arena A0

Example 1.2. Consider the arena depicted in Figure 1.2, the edge relation is depicted as arrows,
S1 the set of states controlled by P1 are depicted as circles, and S2 is the set of states controlled
by P2. These are depicted as squares. ◁

With each arena, we associate a coloring function col : E→ C that maps edges to an arbitrary
set of colors C. we denote by ĉol its natural extension over sequences of edges.

Example 1.3. Considering the arena of Figure 1.2, a set of colors could be C = {•, •} and a
coloring function could be

col : e 7→

{
• if trgt(e) = 3 ,

• otherwise.

◁

For an edge e ∈ E, we use src(e) and trgt(e) to denote its source and its target respectively,
i.e., e = (src(e), trgt(e)). We write s

c−−→ t the edge e such that src(e) = s, trgt(e) = t, and
col(e) = c. We assume all arenas to be non-blocking, i.e., for all s ∈ S, there exists e ∈ E such
that src(e) = s.

For i ∈ {1, 2}, we call an arena A = (S1, S2, E) a Pi’s one-player arena if for all s ∈ S3−i,
|{e ∈ E | src(e) = s}| = 1, i.e., P3−i has no choice.

Let Hists(A, s) be the set of histories in A from the initial state s ∈ S, i.e., finite sequences
of edges ρ = e1 . . . en ∈ E+ such that src(e1) = s and for all i, 1 ≤ i < n, trgt(ei) = src(ei+1).

Let Plays(A, s) be the set of plays in A from the initial state s ∈ S, i.e., infinite sequences of
edges π = e1e2 . . . ∈ Eω such that src(e1) = s and for all i ≥ 1, trgt(ei) = src(ei+1).

We write Hists(A, S′) and Plays(A, S′) for the unions over subsets of initial states S′ ⊆ S, and
write Hists(A) and Plays(A) for the unions over all states of A.

Let ρ = e1 . . . en ∈ Hists(A) (resp. π = e1e2 . . . ∈ Plays(A)): we extend the operator src to
histories (resp. plays) by identifying src(ρ) (resp. src(π)) to src(e1). We proceed similarly for trgt
and histories: trgt(ρ) = trgt(en).
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For the sake of convenience, we consider that any set Hists(A, s) contains the empty history
λs such that src(λs) = trgt(λs) = s. We write Histsi(A, s) and Histsi(A) for the subsets of
histories ρ such that trgt(ρ) ∈ Si, i ∈ {1, 2}, i.e., histories whose last state belongs to Pi.

For any set of histories H ⊆ Hists(A), we write ĉol(H) for its projection on colors, i.e.,
ĉol(H) = {ĉol(ρ) | ρ ∈ H}. We do the same for sets of plays.

Preferences and games
Let ⊑ be a total preorder on Cω, called preference relation. We consider zero-sum games, where
the objective of P1 is to enforce the best possible play with respect to ⊑ while the objective of
P2 is to obtain the worst possible one. That is, P2 is interested in the inverse relation ⊑−1.

Example 1.4. Consider the arena from Figure 1.2 together with the coloring function from
Example 1.3. Now consider the simple reachability objective for P1 consisting in reaching state
3. This preference relation can be expressed with respect to the coloring from Example 1.3 as
follows:

∀ρ, ρ′ ∈ Plays(A0), col(ρ) ⊑ col(ρ′) if there exists a position i in ρ′ such that col(trgt(ρ′[i])) = • .

◁

Given w, w′ ∈ Cω, we write w < w′ if we have ¬(w′ ⊑ w). We also extend the relation ⊑ over
subsets of Cω as follows: for W, W ′ ⊆ Cω,

W ⊑W ′ ⇐⇒ ∀w ∈W, ∃w′ ∈W ′, w ⊑ w′ .

We also write
W < W ′ ⇐⇒ ∃w′ ∈W ′, ∀w ∈W, w < w′ .

Note that W < W ′ if and only if ¬(W ′ ⊑W ).
For the sake of convenience, we compare words w ∈ Cω with languages K ⊆ Cω, by simply

identifying the word w with the singleton {w}.
A (deterministic turn-based two-player) game is a tuple G = (A,⊑) where A is an arena and

⊑ is a preference relation. For i ∈ {1, 2}, a Pi’s one-player game is a game G = (A,⊑) such that
A is a Pi’s one-player arena.

Strategies
A strategy σi for Pi, i ∈ {1, 2}, on arena A = (S1, S2, E), is a function σi : Histsi(A) → E such
that for all ρ ∈ Histsi(A), src(σi(ρ)) = trgt(ρ). Let Σi(A) be the set of all strategies of Pi on A.

Example 1.5. Considering the arena from Figure 1.2, a strategy σ1 for P1 could be:

∀ h ∈ Histsi(A0, 0), σ1 : h 7→


(0, 1) if trgt(h) = 0
(3, 3) if trgt(h) = 3
(7, 3) if trgt(h) = 7
(7, 6) if trgt(h) = 6

If we associate A0 with the preference relation from Example 1.4, we will see later that such
strategy is optimal for this preference relation from state 0 although it does not ensure that
state 3 is visited. ◁
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Remark 1.6. We highlight the fact that this strategy does not rely on the entire history but only
on the last state of the history. Such strategies are called memoryless.

A strategy σi is memoryless if it is a function σi : Si → E (cf. Example 1.5). We denote by
ΣML

i (A) the set of all memoryless strategies of Pi on A.
We denote by Plays(A, s, σi) the set of plays consistent with a strategy σi of Pi from an

initial state s, i.e., all plays π = e1e2 . . . ∈ Plays(A, s) such that for all prefixes ρ = e1 . . . en,
trgt(ρ) ∈ Si =⇒ σi(ρ) = en+1. We write Plays(A, s, σ1, σ2) for the singleton set containing the
unique play consistent with a couple of strategies for the two players. We use similar notations
for histories.

Optimal strategies
Let G = (A,⊑) be a game on arena A = (S1, S2, E). Given a Pi-strategy σi ∈ Σi(A) and a state
s ∈ S, we define

UCol⊑(A, s, σi) = {w ∈ Cω | ∃σ3−i ∈ Σ3−i(A), ĉol(Plays(A, s, σ1, σ2)) ⊑ w} ,

DCol⊑(A, s, σi) = {w ∈ Cω | ∃σ3−i ∈ Σ3−i(A), w ⊑ ĉol(Plays(A, s, σ1, σ2))} .

Note that DCol⊑(A, s, σi) = UCol⊑−1(A, s, σi).
Taking the standpoint of P1, we say that a strategy σ1 ∈ Σ1(A) is at least as good as a

strategy σ′
1 ∈ Σ1(A) from a state s ∈ S if

UCol⊑(A, s, σ1) ⊆ UCol⊑(A, s, σ′
1) .

Intuitively, σ1 is at least as good as σ′
1 if the “worst-case” plays consistent with σ1 are at least as

good as the ones consistent with σ′
1. The UCol operator is useful to define this notion properly

even in the case where there is no “worst-case” play for a strategy (i.e., if the infimum used in
the classical quantitative setting is not reached). Similar notions have been used before, e.g.,
in [Rou13].

Symmetrically, for P2, we say that a strategy σ2 ∈ Σ2(A) is at least as good as a strategy
σ′

2 ∈ Σ2(A) from a state s ∈ S if

DCol⊑(A, s, σ2) ⊆ DCol⊑(A, s, σ′
2) .

Now, we say that a strategy σi ∈ Σi(A) of Pi is optimal from a state s ∈ S, s-optimal, if it is
at least as good as every other strategy σ′

i ∈ Σi(A) from s. We extend this notation to subsets of
states in the natural way, and we say that a strategy σi is uniformly-optimal if it is S-optimal.

Example 1.7. Consider once more the strategy from Example 1.5. In this example the strategy
described does not ensure a visit of the target state 3, thus it is not winning. However, notice
that according to the above definition of optimal strategies, the outcome ensured by the described
strategy cannot be bested by any other, i.e., P2 can always avoid state 3. This shows that the
considered strategy is at least as good as any other strategy of P1, hence it is optimal. ◁

We recall that our goal is to characterize the preference relations that admit finite-memory
optimal strategies in all arenas. Next we give an example of an arena where optimal strategies
need memory.

Example 1.8. Consider the arena in Figure 1.3, for the sake of the example we drop the coloring
function and consider that the preference relation where any run that visits both states 2 and 0
infinitely often is preferred over any run which does not, this preference relation is usually known
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0 1 2

Figure 1.3: Arenas where P1 needs memory to play optimally.

as generalized Büchi objective [BK08]. In this game from any state, P1 has a winning strategy
with exactly 2 memory states, in particular it is sufficient to use one state to remember the last
visit of state 0, and a second state to remember the last visit of state 2. ◁

As already mentioned, we want to better understand the preferences relation admitting
finite memory optimal strategies. We base our approach on an existing work regarding the
case of uniformly-optimal memoryless (UML) strategies, i,e., a characterization of Gimbert and
Zielonka [GZ05]. We first present their approach in this simpler case with the purpuse to offer
better insight on our result.

1.3 Playing optimally with no memory
In this section we recall the characterization of preference relations that admit UML strategies
proposed by Gimbert and Zielonka. Their characterization uses two technical notions; monotony
and selectivity. These notions intuitively describe how sequences of colors behave with respect
to a fixed preference relation.

From a technical point of view, these two properties are built upon automata theoretic notions,
therefore we introduce the necessary definitions and notations regarding automata and regular
languages.

Automata and languages of colors.
We recall classical notions on automata on finite words. A non-deterministic finite-state automa-
ton (NFA) is a tuple N = (Q, B, δ, Qinit, Qfin), where Q is a finite set of states, B ⊆ C is a finite
alphabet of colors, δ ⊆ Q× B×Q is a set of transitions, Qinit ⊆ Q is a set of initial states, and
Qfin ⊆ Q is a set of final states. Given a state q ∈ Q and a word w ∈ B∗, we denote by δ̂(q, w) the
set of states that can be reached from q after reading w. Without loss of generality, we assume
all NFA to be co-accessible, i.e., for all q ∈ Q, there exists w ∈ B∗, such that δ̂(q, w) ∩Qfin ̸= ∅.
Recall that NFA precisely recognize regular languages [BK08].

For any finite subset B ⊆ C, we denote by Reg(B) the set of all regular languages over B. Let
R(C) =

⋃
B ⊆ C, |B|<∞ Reg(B), that is, all the regular languages built over C.

Let K ⊆ C∗ be a language of finite words. We denote by Prefs(K) the set of all prefixes of
the words in K. We define the set of infinite words

[K] = {w = c1c2 . . . ∈ Cω | ∀n ≥ 1, c1 . . . cn ∈ Prefs(K)} ,

which contains all infinite words for which every finite prefix is a prefix of a word in K. Intuitively,
if K is regular, [K] is the language of infinite words that correspond to infinite paths that can
always branch and reach a final state, on an automaton for K. Given a finite word w ∈ C∗ and
a language K ⊆ C∗, we write wK for their concatenation, i.e., the language wK = {w′ = ww′′ |
w′′ ∈ K} ⊆ C∗.

We now introduce two core properties used in the characterization, i.e., the monotony and
the selectivity.
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Monotony
Definition 1.9 (Monotony). A preference relation ⊑ is monotone if for all, for all K1, K2 ∈ R(C),

∃w ∈ C∗, [wK1] < [wK2] =⇒ ∀w′ ∈ C∗, [w′K1] ⊑ [w′K2] . (1.1)
This property roughly captures the ability of ⊑ to remain stable with respect to any prefix

addition. To grasp a better idea, consider the depiction in Figure 1.4. The bullets in the far
left of the image stand for a prefix w, the continuations of w are depicted in different colors, the
topmost one is a continuation in K2 and the bottom-most one is a continuation in K1. Assume
now that P1 prefers an outcome wρ2 in [wK2] over any outcome wρ1 in [wK1], then the monotony
states that, it is not possible to find a different prefix w′ such that P1 will prefers an outcome
in [wK1]. This property can be understood as a formal mean to capture preference relations for
which the order between outcomes cannot be switched over using a different prefix constructed
with the help of more memory.

. . .

<

. . .

−→ ̸∃ w′∀ w
. . .

=

. . .

Figure 1.4: Monotonicity

As an example of preference relations enjoying monotony, one could think of any prefix-
independent payoff, e.g., Büchi, parity, mean payoff. But one could also consider other conditions,
for instance safety is monotone but not prefix-independent. To see this, consider a finite subset
B of C, and remember that the preference relation induced by a safety objectives will prefer
sequences in Bω over sequences in (C ∪ B)ω. For the sake of simplicity, consider two sequences
u and v in Cω and a finite sequence w in Cω. Assume that wu < wv, then necessarily w and v
consists of colors in B, therefore for any w′ in C∗, it will be the case that w′u ⊑ w′v.

On the other hand, the following preference relation is not monotone. Let C = N and consider
the payoff:

c0c1 . . . 7→ sup
n≥0

∑
i≥0

ci

n + 1 .

This payoff maps sequence of naturals to the supremum natural seen. This payoff does not induce
a monotone preference relation. Indeed consider the sequences u = 1ω, v = 20ω, and w = 00,
then (wv = 0020ω) < (wu = 001ω), however for w′ = 11 we have (w′u = 11ω) < (w′v = 1120ω).

We now switch our attention to selectivity.

Selectivity
Definition 1.10 (Selectivity). A preference relation ⊑ is selective if for all w ∈ C∗, and for all
K1, K2, K3 ∈ R(C)

[w(K1 ∪K2)∗K3] ⊑ [wK∗
1 ] ∪ [wK∗

2 ] ∪ [wK3] . (1.2)
This property states that ⊑ is somehow stable under shuffling of plays. Consider the sequence

of colors depicted in Figure 1.5. In the left-hand side two colored sequences, the selectivity implies
that one cannot obtain a better pay-off by interleaving the two sequences. At this stage, the
reader may wonder how this very notion relates to memory strategies. It is sufficient to notice
that such interleaving requires extra memory, thus this property could be understood as the
impossibility of improving a payoff by using memory by mixing plays.

We also mention that finding non selective payoffs is easy since common payoffs such as Muller
or generalized Büchi are not selective.
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. . .

. . .

̸< . . .

Figure 1.5: Selectivity

The characterization
We now have the technical background to state the characterization of memoryless preference
relations.

Theorem 1.11 (Memoryless characterization). Let ⊑ be a preference relation. Both players
have UML strategies in all games G = (A,⊑) if and only if ⊑ and ⊑−1 are monotone and
selective.

The first part of the proof (left-to-right implication) uses mainly automata theoretic argu-
ments cf. Lemma 1.12. We present the main idea of the proof to help the reader grasp the
essence of both monotony and selectivity. It should also makes the second part of this chapter
(finite memory characterization) easier to follows since we will follow the same recipe.

Lemma 1.12. Assume that P1 has UML strategies in all games G = (A,⊑) where S2 = ∅, then
⊑ is monotone and selective.

The very rough idea to establish the monotony is as follows. Build four automata: Nw, Nw′ ,
NK1 , and NK2 . The two first automata recognize respectively the languages {w} and {w′}. The
two last recognize respectively the languages K1, and K2. This four languages are the parameters
from Equation (1.1). The main trick in the proof is deployed in two steps:

Step 1. Glue the above automata using a fresh state t such that the final states of Nw, Nw′ are
ignored and any ingoing transition to these states is now glued to the fresh state t.
The initial states of NK1 , and NK2 are ignored and the outgoing transitions from these
states outgo from state t. This construction is displayed in Figure 1.6.

Step 2. Interpret the obtained automaton as a one-player game, and fix an optimal strategy σ∗ for
⊑. By assumption σ∗ can be chosen UML. The trick now is to notice that any infinite play
has to cross t and that in t a UML strategy will always make the same choice whether the
history is w or w′.

Nw \ qw
fin Nw′ \ qw′

fin

NK1 \ qK1
init NK2 \ qK2

init

t

Figure 1.6: Automaton N built to establish monotony.

Establishing the selectivity follows the same spirit but has to deal with cycles. The intuition
of this part of the proof can be explained as follows. We start by building automata Nw, NK1 ,
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NK2 , and NK3 . Using the same trick as before, we glue them using a fresh state t such in the
obtained automaton, the initial state is the initial state of Nw, and the final state is the final
state of NK3 , cf. Figure 1.7. To conclude, we interpret the new automaton as a one-player game
and notice that a UML strategy σ∗ (which exists by assumption) will always make the same
choice in t.

Nw \ qw
fin

t

NK1 \ qK1
init , qK1

fin NK2 \ qK2
init , qK2

fin

NK3 \ qK3
init

Figure 1.7: Automaton N built to establish selectivity.

The same lemma holds for P2 and ⊑−1 using similar arguments.

Lemma 1.13. Assume that ⊑ and ⊑−1 are monotone and selective, then both players have UML
strategies in all games G = (A,⊑).

The proof of the above lemma is obtained through an induction over the number of choices
the players have. In order to convey some intuition we need to introduce some notations. For an
arena A = (S1, S2, E), we write nA = |E|− |S| for its number of choices. We also define the notion
of sub-arena: we say that an arena A′ = (S′

1, S′
2, E′) is a sub-arena of an arena A = (S1, S2, E) if

S1 = S′
1, S2 = S′

2, and E′ ⊆ E. That is, arena A′ is a sub-arena of A if it can be obtained from
A by removing some edges of A (while keeping it non-blocking). We say that a set of arenas A
is closed under sub-arena operation if for all A ∈ A, for all sub-arenas A′ of A, A′ ∈ A. Now
fix a set of arenas A is closed under sub-arena operation and an integer n. Assume that for any
arena A′ in A such that n′

A < n, the lemma holds. Then we show that the lemma holds for any
A such that nA = n. It should be clear that if P1 has no choices, i.e., from any state in S1 there
is only one outgoing edge, then P1 has an UML strategy.

Now let A be such that nA = n and that P1 has at least a choice. Since P1 has at least
a choice, there must exists a state t with at least two outgoing edges. The proof follows the
following steps:

Step 1. Let tE be the set of outgoing edges from t,

Step 2. choose a partition (tE1, tE2) of tE,

Step 3. build two sub-arenas A1 and A2 such that in A1 the set of outgoing edges from t is tE1
and in A2 the set of outgoing edges from t is tE2.

The induction hypothesis implies that P1 has two UML optimal strategies, σ∗
1 in A1, and σ∗

2 in
A2. Notice that both these strategies are well defined over A. Now using the monotony of ⊑, the
plays crossing t in one of the two sub-arenas are always at least as good as the one in the other
sub-arena, w.l.o.g. A1. Hence, the outcomes of σ∗

1 are always at least as good as the outcomes
of σ∗

2 . In other words P1 has to rather play in A1 which he can force by playing according to σ∗
1
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in A. However, it could be the case that switching in between plays in A1 and A2 is even better,
but the selectivity of ⊑ allows as to rule out this scenario and conclude that σ∗

1 is indeed a UML
optimal strategy in A.

The lifting corollary

Gimbert and Zielonka not only characterized memoryless preference relations, but they also
provided an elegant tool allowing to study these relations. This tools takes its form in the
following corollary called the the lifting corollary. This corollary is stated as follows:

Corollary 1.14. Let ⊑ be a preference relation such that:

• ⊑ is memoryless for any P1’s arena,

• ⊑−1 is memoryless for any P2’s arena,

then ⊑ is memoryless for both players in any arena.

The lifting corollary follows quite easily indeed, it is sufficient to notice that if ⊑ and ⊑−1 are
positional on all one player arenas then they must be monotone and selective by Lemma 1.12,
therefore according to Theorem 1.11 (right-to-left), ⊑ is memoryless for both players in any
arena.

Not only the above corollary is easy to prove, it also provides a simpler way for establishing
the existence of UML strategies since it relies on the study of optimal strategies in one-player
arenas which in turn amounts to graph reasoning. This is usually a lot simpler than studying
two-players arenas.

1.4 Playing optimally with memory
In this section, we present the main result of this chapter which is a characterization of the
preference relations that admit uniformly-optimal finite-memory (UFM) strategies based on a
given skeletonM in all arenas.

The lifting corollary: a counter example
Example 1.15. Consider the arena depicted in Figure 1.8, consider also the preference relation
where P1 wins whenever one of the two following conditions holds:

• The running sum of weights grows up to infinity.

• The running sum of weights takes value zero infinitely often.

It should be clear enough that an optimal strategy for P1 cannot remain in state b, thus P1 should
move the play to state a. From that state, if P2 chooses to remain forever in state a, then the
running sum will diverge fulfilling the first condition. If he chooses to remain in state a for some
time then move the play again to state b again then P1 can reply by decreasing the running sum
to 0 then moving to state a. This latter reply of P1 shows that he will fulfill the second condition
of the winning condition. However, if P2 decides to stay for arbitrary long periods of time in
state a before moving the play to state b, this will force P1 to use an arbitrarily large memory in
order to implement his winning strategy. This shows that P1 has an infinite memory optimal
strategy. Now, we argue that P1, is bound to use infinite memory to win. This is rather simple
to witness, assume that P1 plays according to a finite memory strategy, then P2 can always loop
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in state a long enough as to exceed the memory chosen by P1. At this stage P1 cannot track the
running sum anymore thus failing to reset this value to 0 infinitely often.

We now turn our attention to the one-player game version of the same preference condition.
This means that P1 wants to build a play such that either:

• The running sum of weights grows up to infinity.

• The running sum of weights takes value zero infinitely often.

and P2 wants to build a play (in an arena that he controls) such that both the following conditions
hold:

• The running sum of weights does not grow up to infinity.

• The running sum of weights takes value zero finitely often.

A study of the underlying finite graph structure of each one-player arena shows that both players
need only to reach good cycles and repeat them, this behavior can be implemented thanks to a
finite memory.

This simple example exhibits a two-player arena and a preference relation where both players
have finite memory optimal strategies in their respective one-player arena, however P1 needs
infinite memory in a two-player arenas. ◁

a b

-1

1

1 -1

Figure 1.8: A counter example

In the light of the above example, one might think that the
lifting corollary in the context of finite memory strategies cannot
exist. However, a closer look at the memory structure used by
P1 shows that the notion of finite memory is quite rich. In fact,
P1 needs infinite memory because he needs to track the exact
value of the running sum along the current play, but this value
can be forced by P2, to be arbitrarily high.This shows that the
memory size P1 needs change subject to the behavior of P2.
Actually, consider any one-player arena of P1. In order to force
the running sum to be 0 infinitely often, P1 builds a cycle whose weights sum up to 0, but the
length of such cycle depends on the colors in the arena (weights in our case).

Let us compare such a memory structure to a memory in an arena where the preference
relation is given by a generalized Büchi condition, e.g. Figure 1.3. The memory consists in
boolean flags helping P1 switch between memoryless behaviors. The crucial remark resides in
the fact that the number of these flags is function of the preference relation and not the arena. We
shall call such a memory structure arena independent. We argue next that the lifting corollary
holds when restricted to this simpler family of finite memory strategies.

Arena independent finite memory
Strategies and memory skeletons

A memory skeleton, is an automaton like formalism, it updates the memory state given the
current state and color of a finite play. The crucial property of the skeletons we consider is that
they can be defined on the sole knowledge of the preference relation whiteout priors on the arena
structure. Formally,

Definition 1.16. A memory skeleton is a tuple M = (M, minit, upd) where M is a finite set of
states, minit ∈ M is a fixed initial state and upd : M × C → M is an update function. We write
ûpd for the natural extension of upd to sequences of colors in C∗.
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Note that memory skeletons are deterministic and might have an infinite number of transi-
tions.

0 1 2

c0 c1

c2c3

(a) P1 wants to visits states 0 and 2 in-
finitely often.

p q

c0

c2

¬c0 ¬c2

(b) A memory skeleton for the preference
relation described in Figure 1.9a.

Figure 1.9: An arena independent memory skeleton.

Example 1.17. In Figure 1.9 an arena and a skeleton are depicted. The arena is the one from
Figure 1.3, here P1 aims at visiting states 0 and 2 infinitely many times (this is a generalized
Büchi objective with two conditions). In order to achieve such objective, a player can switch
between a winning strategy for the first condition, and a winning strategy for the second condition.
In our example it amounts to switching back and forth between cycling around state 1 through
state 0 and through state 2. A finite memory strategy in this case should inform the player when
to operate this switch. With this in mind, consider the skeleton in Figure 1.9b is a memory for a
Generalized Büchi condition with two conditions. In its initial state, p in our case, it awaits for
the a state in the first condition to be visited, then it switches to a new state, q in our example.
As soon as a state in the second condition is visited the memory is updated to its initial state. ◁

We highlight the fact that in the previous example, the skeleton used is independent of the
arena, it suffices to know the preference relation. For instance the preference relation used in
Example 1.17 can be written as follows:

∀w, w′ ∈ Cω, w ⊑ w′ ⇐⇒ w′ ∈W ∧ w ∈W ,

where

W = {w ∈ Cω | ∀i ≥ 0, ∃j > i, w[j] = c0 ∧ ∃k > i, w[k] = c2} ,

W = Cω \W .

We define the trivial memory skeleton with only one state as:

Mtriv = (M = {minit}, minit, upd : {minit} × C→ {minit}) .

This skeleton corresponds to the notion of memoryless strategies discussed earlier in the previous
section.

A finite-memory strategy σi is a strategy that can be encoded as a Mealy machine, i.e.,
a memory skeleton M = (M, minit, upd) with transitions over a finite subset of colors B ⊆
C, enriched with a next-action function nxt : M × Si → E such that for all m ∈ M, s ∈ Si,
src(nxt(m, s)) = s. Given a Mealy machine Γσi

= (M, nxt), strategy σi is defined as follows:

• ∀ s ∈ Si, σi(λs) = nxt(minit, s),

• ∀ ρ · e ∈ Histsi(A), e ∈ E, σi(ρ · e) = nxt
(

ûpd
(

minit, ĉol (ρ · e)
)

, trgt(e)
)
.
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We denote by ΣFM
i (A) the set of all finite-memory strategies of Pi on A. We say that a strategy

σi ∈ ΣFM
i (A) is based on memory skeleton M if it can be encoded as a Mealy machine Γσi =

(M, nxt), as above. We always implicitly assume that strategies of ΣFM
i (A) are built by restricting

the transitions of their skeleton M to the actual subset of colors appearing in A.

Characterization

The elegance of the characterization presented by Gimbert and Zielonka lies in the fact that
the conditions a preference relation should fulfill are completely agnostic to the arena, indeed
monotony and selectivity are defined over the sequence of colors. However, when a player needs
memory to play optimally, he uses this memory to discriminate between sequence of colors.
Intuitively speaking, using the appropriate memory skeleton, sequences of colors ending leading
to the same memory state should behave following some structure, but two sequences leading to
different memory state should not. In the case of memoryless optimal strategies, this observation
holds since the skeleton used consists of a single memory state and all the sequences lead to this
very state. Thus we do not discriminate between any sequence of colors.

With the above remark in mind, we augment the notions of monotony and selectivity with
some sort of compliance with memory states. Thus, we will require monotony and selectivity
over sequences that are indistinguishable by a memory skeletonM. We will call these properties
M-monotony and M-selectivity. Therefore, we introduce the following notation:

Let M = (M, minit, upd) be a memory skeleton, for m, m′ ∈ M, we define the language
Lm,m′ =

{
w ∈ C∗ | ûpd(m, w) = m′

}
that contains all words that can be read from m to m′ in

M.

Definition 1.18 (M-monotony). Let M = (M, minit, upd) be a memory skeleton. A preference
relation ⊑ is M-monotone if for all m ∈ M, for all K1, K2 ∈ R(C);

(∃w ∈ Lminit,m, [wK1] < [wK2]) =⇒ (∀w′ ∈ Lminit,m, [w′K1] ⊑ [w′K2]) . (1.3)

Definition 1.19 (M-selectivity). Let M = (M, minit, upd) be a memory skeleton. A preference
relation ⊑ is M-selective if for all w ∈ C∗, m = ûpd(minit, w); for all K1, K2 ∈ R(C) such that
K1, K2 ⊆ Lm,m, for all K3 ∈ R(C),

[w(K1 ∪K2)∗K3] ⊑ [wK∗
1 ] ∪ [wK∗

2 ] ∪ [wK3]. (1.4)
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Example 1.20. In Figure 1.10, are depicted two memory skeletons Mp = (Mp, mp
init, updp) and

Mc = (Mc, mc
init, updc). ⊑ in this example is a two-target reachability games T1 and T2. We

use two separate skeletons. One for M-monotony and one, for M-selectivity. In the subsequent
development, we follow this compositional approach. A strategy using a joint skeleton can
be obtained by simply combining the two structures. We claim that ⊑ is Mp-monotone and
Mc-selective.

For instance, we show as an example that for any word w in Lmp
init,m

p
init

such that [wK1] < [wK2]
Equation (1.3) holds. First notice that:

i. [wK1] < [wK2] means that all words of [wK1] are losing, and that there exists a winning
word in [wK2].

ii. w and w′ in Lmp
init,m

p
init

means that non of them reaches T1.

If T2 is not visited along w, then item i. implies that [K2] contains a winning word w′′, now
noticing that w′w′′ is still winning implies that [w′K1] ⊑ [w′K2]. If T2 is not visited along w,
then by item i. we know that [K1] does not contain a word reaching T1. Item ii. yield again that
all words in [w′K1] are loosing, which in turn entails that [w′K1] ⊑ [w′K2]. ◁

mp
init

mp
2

T1

C \ T1

C

mc
init

mc
2mc

3

T2 \ T1T1

T1

C \ (T1 ∪ T2)

C C \ T1

Figure 1.10: Memory skeletons Mp (left) and Mc (right).

We now present a characterization of the preference relations that admit arena independent
uniformly-optimal finite memory (UFM) strategies.

Theorem 1.21. Let ⊑ be a preference relation and let M be a memory skeleton. Then, both
players have UFM strategies based on memory skeleton M in all games G = (A,⊑) if and only if
⊑ and ⊑−1 are M-monotone and M-selective.

The proof of this theorem follows the same idea as the proof from Gimbert and Zielonka.

Left-to-right implication The first part tackles the left-to-right implication which is the mat-
ter in the next two lemmas. Lemma 1.22 establishesM-monotony, and Lemma 1.23 establishes
M-selectivity.

Lemma 1.22. Let M = (M, minit, upd) be a memory skeleton and ⊑ be a preference relation.
Assume that for all one-player arenas A = (S1, S2 = ∅, E), for all s, s′ ∈ S, P1 has an s-optimal
and s′-optimal strategy σ ∈ ΣFM

1 (A), encoded as a Mealy machine Γσ = (M, nxt), in G = (A,⊑).
Then ⊑ is M-monotone.

Lemma 1.23. Let M = (M, minit, upd) be a memory skeleton and ⊑ be a preference relation.
Assume that for all one-player arenas A = (S1, S2 = ∅, E), for all s ∈ S, P1 has an s-optimal
strategy σ ∈ ΣFM

1 (A), encoded as a Mealy machine Γσ = (M, nxt), in G = (A,⊑). Then ⊑ is
M-selective.
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Nw \ qw
fin Nw′ \ qw′

fin

NK1 \ qK1
init NK2 \ qK2

init

t

(a) Automaton N built to establish M-
monotony.

Nw \ qw
fin

t

NK1 \ qK1
init , qK1

fin NK2 \ qK2
init , qK2

fin

NK3 \ qK3
init

(b) Automaton N built to establish M-
selectivity.

These two lemmas are established along the same techniques of their memoryless counterparts.
Actually in Figure 1.11a and Figure 1.11b one can already guess that the same technique applies.
The main difference being the fact that the plays induced by w and w′ lead to the same memory
state. Moreover in the case ofM-selectivity, the automata NK1 and NK2 recognize plays forming
cycles in the memory skeleton. Thanks to these extra properties, the intuition of the proof works
exactly the same; once the built automata viewed as one-player arena, any finite memory will
behave the same from the crucial state t. Thus using the arguments from the memoryless case
yields theM-monotony andM-selectivity. This tends to show that the proposed generalizations
in Definition 1.9 and Definition 1.10 fit exactly our needs.

Right-to-left implication For this part, we need the following notation:
Let M1 = (M1, m1

init, upd1) and M2 = (M2, m2
init, upd2) be two memory skeletons. We define

their product M1 ⊗M2 as the memory skeleton M = (M, minit, upd) obtained as follows: M =
M1 × M2, minit = (m1

init, m2
init), and, for all m1 ∈ M1, m2 ∈ M2, c ∈ C, upd((m1, m2), c) =

(upd1(m1, c), upd2(m2, c)). That is, the memories are updated in parallel when a color is read.
Our goal now is the prove the following lemma:

Lemma 1.24. Let ⊑ be a preference relation and Mp
1, Mp

2, Mc
1 and Mc

2 be four memory
skeletons. Assume that ⊑ is Mp

1-monotone and Mc
1-selective, and that ⊑−1 is Mp

2-monotone and
Mc

2-selective. Then, for all arenas A = (S1, S2, E), there exists uniform finite-memory optimal
strategies (σ1, σ2) ∈ ΣFM

1 (A)×ΣFM
2 (A) in G = (A,⊑), such that strategies σi are encoded as Mealy

machines Γσi
= (M, nxti) based on the joint memory skeleton M =Mp

1 ⊗M
p
2 ⊗Mc

1 ⊗Mc
2.

For the sake of decomposition, we use four memory skeletons and build strategies based on
their product memory. However, if there exists a skeleton M that is already such that both ⊑
and ⊑−1 are M-monotone and M-selective, this skeleton suffices to build both strategies (this
is transparent in the following proof).

We plan to follow the proof technique of Gimbert and Zielonka. However, in the memoryless
case the inductive argument is deployed over the number of choices available in an arena. Now
notice that in the context of memoryless strategies, the arena itself contains already all the
information about de memory structure. In our case this argument breaks since the arena
displays only one aspect of a finite memory strategy, but the memory states are not present.
Thus we need to extend the reasoning and build an inductive argument over the product of the
arena with the memory structure. Remember that such a strategy uses this information to decide
the next state where the play should move.

We overcome this difficulty using a very simple idea; Both players have a finite memory
optimal strategy if they have memoryless optimal strategies for ⊑ and ⊑−1 when playing in any
arena which is already synchronized with the memory skeleton M. However, one should pay
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attention to the fact that characterization of Gimbert and Zielonka does not apply. This follows
by observing that the quantifiers are not applied over the same objects. In the former case (the
memory case), only arenas that are synchronized withM are considered. In the latter case (the
memoryless case), all the arenas are considered. Thus the first technical challenge to overcome is
to identify and formalize the properties of an arena which is already synchronized with M. We
shall call any arena that enjoys these properties a covered arena.

Covered arenas

In this section, we present the notion of covered arena which is a core notion in building our
inductive argument for obtaining the proof of Theorem 1.21. But we can already touch on
the intuition. As displayed in Lemma 1.22 and Lemma 1.23, the arguments were carried over
plays that contains information about the memory structure. In particular, the memory state
reached after a finite (cyclic) play. For an arena to be covered, it should exhibit the two following
properties:

Definition 1.25 (Prefix-covers). Let M = (M, minit, upd) be a memory skeleton and A =
(S1, S2, E) be an arena. Let Scov ⊆ S.

We say that M is a prefix-cover of Scov in A if for all s ∈ S, there exists ms ∈ M such that,
for all ρ ∈ Hists(A) such that src(ρ) ∈ Scov, trgt(ρ) = s and such that for all ρ′ proper prefix of ρ,
trgt(ρ′) ̸= s, we have ûpd(minit, ĉol(ρ)) = ms.

Definition 1.26 (Cyclic-covers). Let M = (M, minit, upd) be a memory skeleton and A =
(S1, S2, E) be an arena. Let Scov ⊆ S.

We say that M is a cyclic-cover of Scov in A if for all ρ ∈ Hists(A) such that src(ρ) ∈ Scov,
if s = trgt(ρ) and m = ûpd(minit, ĉol(ρ)), for all ρ′ ∈ Hists(A) such that src(ρ′) = trgt(ρ′) = s,
ûpd(m, ĉol(ρ′)) = m.

Intuitively, M is a prefix-cover for a set of states Scov if the histories starting in Scov and
visiting a given state s ∈ S for the first time are read up to the same memory state in the
memory skeleton. Similarly,M is a cyclic-cover of A if the cycles1 of A are read as cycles in the
memory skeleton, once the memory has been initialized properly.

The most natural example of a covered arena is the product of A = (S1, S2, E) and the
associated memory skeleton M = (M, minit, upd). For instance, M is both a prefix-cover and a
cyclic-cover of the set S× {minit} in the product arena.

With these new notions in mind, we can now claim the following lemma on which the proof
of Lemma 1.24 revolves:

Lemma 1.27. Let ⊑ be a preference relation and Mp
1, Mp

2, Mc
1 and Mc

2 be four memory
skeletons. Assume that ⊑ is Mp

1-monotone and Mc
1-selective, and that ⊑−1 is Mp

2-monotone
and Mc

2-selective. Then, for all arenas A = (S1, S2, E), for all subsets of states Scov ⊆ S for
which Mp

1 and Mp
2 are prefix-covers, and Mc

1 and Mc
2 are cyclic-covers, there exists memoryless

optimal strategies (σ1, σ2) ∈ ΣML
1 (A)× ΣML

2 (A) from Scov in G = (A,⊑).

Note that the above lemma is slightly more general. This statement captures arenas that are
covered by design.

Lemma 1.27 relies on the usual inductive argument revisited in the context of covered arena,
i.e., if a player can optimally using memoryless strategies in small and covered arenas, then the
same hold in larger covered arenas. The crucial induction step is based on the following lemma:

1can be equivalently stated by considering simple cycles only.
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Lemma 1.28. Let ⊑ be a preference relation, Mp and Mc be two memory skeletons, and A be a
set of arenas closed under sub-arena operation. Assume that ⊑ isMp-monotone andMc-selective,
and that for all P2’s one-player arenas A = (S1, S2, E) ∈ A, for all subsets of states Scov ⊆ S for
which Mp is a prefix-cover and Mc is a cyclic-cover, P2 has an optimal strategy from Scov.

Let n ∈ N. Assume that for all arenas A′ = (S′
1, S′

2, E′) ∈ A such that nA′ < n, for all
subsets of states S′

cov ⊆ S′ for which Mp is a prefix-cover and Mc is a cyclic-cover, there exists
memoryless optimal strategies (σ′

1, σ′
2) ∈ ΣML

1 (A′)× ΣML
2 (A′) from S′

cov in G′ = (A′,⊑).
Then, for all arenas A = (S1, S2, E) ∈ A such that nA = n, for all subsets of states Scov ⊆ S for

whichMp is a prefix-cover and Mc is a cyclic-cover, there exists an optimal strategy σ1 ∈ ΣML
1 (A)

from Scov in G = (A,⊑) such that σ1 is memoryless.

To wrap up, it remains to apply Lemma 1.27 over the arena A ×Mp
1 ⊗M

p
2 ⊗Mc

1 ⊗Mc
2.

This arena is covered since the joint skeleton Mp
1 ⊗M

p
2 ⊗Mc

1 ⊗Mc
2 is a valid skeleton. Thus

we build a memoryless optimal strategy from all the states tagged with the initial state of the
joint memory skeleton. This yield a UFM strategy for both players since Lemma 1.27 applies
symmetrically for P2 and ⊑−1.

Lifting corollary

We conclude this part by stating the lifting corollary in the context of arena-independent finite
memory strategies.

Corollary 1.29. Let ⊑ be a preference relation and M1,M2 be two memory skeletons. Assume
that

1. for all one-player arenas A = (S1, S2 = ∅, E), P1 has a UFM strategy σ1 ∈ ΣFM
1 (A) based

on memory skeleton M1 in G = (A,⊑);

2. for all one-player arenas A = (S1 = ∅, S2, E), P2 has a UFM strategy σ2 ∈ ΣFM
2 (A) based

on memory skeleton M2 in G = (A,⊑).

Then, for all two-player arenas A = (S1, S2, E), both P1 and P2 have UFM strategies σi ∈ ΣFM
i (A)

based on memory skeleton M =M1 ⊗M2 in G = (A,⊑).

The lifting corollary follows almost readily from the previous lemmas. First notice that
applying the lemma used in left-to-right implication of Theorem 1.21, i.e., Lemma 1.22 and
Lemma 1.23 implies that ⊑ and ⊑−1 areM-monotone andM-selective. Now using the right-to-
left implication of Theorem 1.21, i.e., Lemma 1.24 yields the corollary.

1.5 Playing optimally with memory in stochastic games
In this section, we discuss extensions of the above results in the setting of stochastic games.
That is, what are the preference relations that admit a uniform optimal strategy with arena
independent memory over any stochastic arena. We also study the possible liftings from one to
two players stochastic games.

Before reporting the actual extensions, we introduce some notions and notations in order to
extend the previous framework.

The first being stochastic arenas and games. For a measurable space (Ω,F) (resp. a finite set
Ω), we write Dist(Ω,F) (resp. Dist(Ω)) for the set of probability distributions on (Ω,F) (resp. on
Ω). For Ω a finite set and µ ∈ Dist(Ω), we write Supp(µ) = {ω ∈ Ω | µ(ω) > 0} for the support
of µ.
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A (two-player stochastic turn-based) arena is a tuple A = (S1, S2, A, δ, col), where: S1, S2,
and col remain unchanged, cf. Section 1.2. A is a finite set of actions; δ : S × A → Dist(S) is a
partial function called probabilistic transition function; For a state s ∈ S, we write A(s) for the
set of actions that are available in s, that is, the set of actions for which δ(s, a) is defined. For
s ∈ S, function col must be defined for all pairs (s, a) such that a is available in s. We require
that for all s ∈ S, A(s) ̸= ∅ (i.e., arenas are non-blocking).

A one-player arena of Pi in this case is an arena A = (S1, S2, A, δ, col) such that for all
s ∈ S3−i, |A(s)| = 1. A one-player arena corresponds to a Markov decision process (MDP). The
interested reader my refer to [Put14, BK08] or to later chapters for specific notations. However,
for the time being we do not require formal details in the overview presented in the sequel.

The notion of preferences used so far is extended over Dist(Cω,F), thus ⊑ is a total preorder
over distributions in Dist(Cω,F). For instance, in the context of two-player arenas defined in
the beginning of this chapter, elements of Dist(Cω,F) coincide with Dirac distributions and thus
with infinite words over C.

Strategies are extended as follows: for i ∈ {1, 2}, a strategy of Pi on A from a state s is
a function σi : s(AS)∗ → Dist(A) such that for all ρ ∈ s(AS)∗ we have that Last(ρ) ∈ Si, and
Supp(σi(ρ)) ⊆ A(Last(ρ)), where Last(ρ) denotes the last state of ρ. According to this new
definition, notice that we allow randomization in the choice of the next action. For i ∈ {1, 2},
we denote by ΣG

i (A, s) the set of all strategies of Pi on A from s.
The notion of Memory remains unchanged and does not involve any sort of randomization.

We denote by ΣPFM
i (A, s) (resp. ΣP

i (A, s), ΣGFM
i (A, s), ΣG

i (A, s)) the set of pure finite-memory
(resp. pure, finite-memory, general) strategies of Pi on (A, s). A type of strategies is an element
X ∈ {PFM, P, GFM, G} corresponding to these subsets.

One-to-two-player lift

As explained earlier, results establishing bridges between the one-player case and the two player
case are much appreciated. Indeed, it is usually a much simpler case to study a one-player game
rather than a two-player one. In [GZ05], the Lifting corollary for memoryless optimal strategies
in deterministic games was established. In [Gim07] a version for MDPs was presented. In the
previous section, we presented an extension of [GZ05] to arena-independent memory case. Next,
we present a generalization that unifies all the latter mentioned results. Moreover, our unified lift
captures more instances as it deals with both stochastic arena and arena-independent memory.
The proof techniques originates from an adaption of the proof technique of [Gim07] to the case
of covered arena by using the knowledge gained by the new insights provided by the previous
section.

Theorem 1.30 (Pure AIFM one-to-two-player lift). Let ⊑ be a preference relation, M1 and M2
be two memory skeletons, and X ∈ {PFM, P, GFM, G} be a type of strategies. Let A be the class of
all stochastic or deterministic arenas.

Assume that:

i. in all one-player arenas of P1 in A, P1 can play X-optimally with a pure uniform strategy
based on M1,

ii. in all one-player arenas of P2 in A, P2 can play X-optimally with a pure uniform strategy
based on M2.

Then in all two-player arenas in A, both players have a pure uniform X strategy based onM1⊗M2.
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Characterization

For this last part, we fix ⊑ a preference relation, X ∈ {PFM, P, GFM, G} a type of strategies, and
M = M = (M, minit, upd) a memory skeleton. We distinguish two classes of arenas: the class
AD

P1
of all one-player deterministic arenas of P1, and the class AS

P1
of all one-player stochastic

arenas of P1.
A class of arenas will therefore be specified by a letter Y ∈ {D, S}, which we fix for the whole

section.
We denote by Pσ1

A,s and Pcσ1
A,s the distributions over plays and colors induced by a strategy

σ1 of P1 in A from a state s, where P2 is not involved.
For A ∈ AY

P1
and s a state of A, we write

[A]Xs = {Pcσ1
A,s | σ1 ∈ ΣX

1 (A, s)}

for the set of all distributions over (Cω,F) induced by strategies of type X in A from s.
For a distribution µ and a word w, we call wµ the shifted distribution, i.e., a distribution such

that for an event E ∈ F , wµ(E) = µ({w′ ∈ Cω | ww′ ∈ E}). We extend this notation to sets of
distributions as follows: for w ∈ C∗, for Λ ⊆ Dist(Cω,F), we write wΛ for the set {wµ | µ ∈ Λ}.

Definition 1.31 (General monotony). We say that ⊑ is X-Y-M-monotone if for all m ∈ M,
for all (A1, s1), (A2, s2) ∈ AY

P1
, there exists i ∈ {1, 2} s.t. for all

w ∈ Lminit,m, w[A3−i]Xs3−i
⊑ w[Ai]Xsi

.

Definition 1.32 (General selectivity). We say that ⊑ is X-Y-M-selective if for all m ∈ M, for all
(A1, s1), (A2, s2) ∈ AY

P1
such that for i ∈ {1, 2}, ĉolHists(Ai, si, si) ⊆ Lm,m, for all w ∈ Lminit,m,

w[(A1, s1) ⊔ (A2, s2)]Xt ⊑ w[A1]Xs1
∪ w[A2]Xs2

.

We use the following property that could essentially be understood as a sufficiency of pure
strategies in the sequel.

Definition 1.33 (Mixing is useless). We say that mixing is useless for ⊑ if for any at most
countable set I, for all reals (λi)i∈I such that

∑
i∈I λi = 1, for all families (µi)i∈I , (µ′

i)i∈I of
distributions in Dist(Cω,F):

∀i ∈ I, µi ⊑ µ′
i, =⇒

∑
i∈I

λiµi ⊑
∑
i∈I

λiµ
′
i .

Note that usual payoff functions and preferences enjoy the above property.

Theorem 1.34. For X ∈ {P, PFM} and Y = D, or assuming that mixing is useless for ⊑. Then
pure strategies based on M suffice to play X-optimally in all one-player arenas in AY

P1
for P1 if

and only if ⊑ is X-Y-M-monotone and X-Y-M-selective.
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1.6 Discussion
Wrap-up
In this chapter we concerned ourselves with the memory requirement in an optimal controller
in a zero-sum game. The main result, cf. Theorem 1.21, exhibits a characterization of the
preference relations admitting optimal controllers with an arena-independent finite memory. This
result falls in the same line of results already initiated by Gimbert and Zielonka [GZ05], where
they introduced two properties that allow the same kind of characterization but in the context
of memoryless strategies, cf. Definition 1.9, and Definition 1.10. We followed the footsteps
of Gimbert and Zielonka and defined two properties that are independent of the arena that
allow a characterization in the more general setting of memory strategy. However, due to the
unavoidable coupling between a strategy and the memory it uses, we had to introduce properties
that account for this link with the memory, cf., Definition 1.18, and Definition 1.19. On the top
of this characterization, we showed that the formal tool introduced by Gimbert and Zielonka, the
so-called lifting corollary holds in the setting of arena-independent finite memory strategies. We
recall that thanks to this corollary, the difficulty of establishing finite memory drops from two-
player to one-player games, cf. Corollary 1.29. We also presented an example establishing the
impossibility of having a one-to-two-player lift in the setting of general finite memory strategies,
cf. Example 1.15.

Finally, we extended the above results to the more general setting of stochastic arenas. In
the frame work of stochastic games, we presented a general notion of monotony, selectivity, and
characterization in the setting Markov decision processes, cf. Theorem 1.34. We also managed
to establish a general lift, cf. 1.30.

Perspectives
A natural perspective would be to consider arena-dependent memories. Obviously, one should
not expect any positive results regarding lifts from one-player arenas. Nevertheless, Kozachinskiy
investigates the exact frontier of when the lift breaks. Does it break for any memory or it is
possible to find some classification in there? In [Koz22], Kozachinskiy introduce the notion of
mildly growing memory strategies, these are strategies that use a memory of size at most sublinear
in the size of the arena (let us call this property, the sublinearity hypothesis) Roughly speaking,
the results he obtains are an attempt to explain why the lift breaks in the setting of arena-
dependent memories. He shows that when the sublinearity hypothesis holds, then the lift holds.
Unfortunately, he fails to show that the lift necessarily fails when the sublinearity hypothesis is
not guaranteed, actually known examples from the literature present payoff function that do not
fulfil the sublinearity hypothesis and admit finite memory strategies [JLS15b, VCD+15b]. This
tends to show that there still is room to improve our understanding in this direction.

Another direction that one could head towards consists in investigating lifts only from the
perspective of one player. Let us provide some context here, in [GK14] the following lift is shown:

• If P2 has finite memory strategies in all his one-player arena.

• If the preference relation is prefix-independent and concave2.

Then P2 has a finite memory in all arenas.
Possible future works are to investigate generalizations of the above one-sided lift.

2also called submixing, a condition that deals with the shuffle of plays



Chapter 2

Synthesis through the window

2.1 Outline of the chapter
In this chapter we are interested in Markov decision processes (MDP) equipped with either
parity objectives or mean-payoff objectives. In the former objective; we label the state of an
MDP with non negative integers (called priorities), and the goal is to build infinite runs where
the minimal integer seen infinitely often is even. In the latter objective; we label the action
with integers, and the goal is to build infinite runs where the limit of mean accumulated value
is non negative. These objective are expressive enough to capture a wide variety of specifi-
cation [BK08]. We study their robustness properties in the long term. In fact both these
behaviors display some shortcomings. Indeed, they exhibit some unwanted behavior in prac-
tice due to the fact that they are evaluated asymptotically without ensuring a good behavior
locally or even in the short term. To grasp some intuition of this, consider the following example.

s0

0

s1 1

s2

0

1

1 .5

.5

Figure 2.1: A Markov chain with parity objective.

Example 2.1. In Figure 2.1 we depict a
very simple MDP, actually a Markov chain,
equipped with a parity objective. In this exam-
ple, almost-any infinite run satisfies the parity
objective. Notice however, that for any fixed
frame of time t, there is a positive probability
that an even priority is not seen for t consecu-
tive steps in state s1. This actually holds true
for an arbitrary large time frame t. ◁

The previous example shows a behavior that could be interpreted as not robust, the window
mechanism was introduced to deal with these issues. This mechanism is defined with respect to
two variants. In the fixed variant, one considers a window of size bounded by λ ∈ N0 (given
as a parameter) sliding over an infinite run. A run is winning if, in all positions, the window
is such that the (mean-payoff or parity) objective is locally satisfied. In the bounded variant,
the window size is not fixed a priori, but a run is winning if there exists a bound λ for which
the condition holds. Window mechanism have been considered both in what is called direct
versions, where the window property must hold from the start of the run, and prefix-independent
versions, where it must hold from some point on. Window games were initially studied for mean-
payoff [CDRR15] and parity [BHR16a]. They have since seen diverse extensions and applications:
e.g., [BKKW14, Bai15, BFKN16, BHR16b, HPR18, RPR18].

31
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Example 2.2. Consider again the Markov chain from figure 2.1. Now, consider the window
parity objective that informally asks for the minimum priority inside a window of size bounded
by λ to be even, with this window sliding all along the infinite run. Fix any λ ∈ N0. It is clear
that every time s1 is visited, there will be a positive probability ε > 0 of not seeing 0 before
λ steps: this probability is 1/2λ−1. Let us call this seeing a bad window. Since we are in a
bottom strongly connected component of the Markov chain, we will almost-surely visit s1 infinitely
often [BK08]. Using classical probability arguments (Borel-Cantelli), one can easily be convinced
that the probability to see bad windows infinitely often is one. Hence the probability to win the
window parity objective is zero. This example illustrates the difference between traditional parity
and window parity: the latter is more restrictive since it asks for a strict bound on the time
frame in which each odd priority should be answered by a smaller even priority. Hence enforcing
desirable and robust behaviors. ◁

In this chapter we overview contributions from a collaboration with Thomas Brihaye, Florent
Delgrange, and Mickael Randour [BDOR19, BDOR20], we present the following results:

• In Lemma 2.12, we relate the probability of satisfying a direct (resp. prefix independent)
fixed window objective with the probability of satisfying a safety (resp. co-Büchi) objective
in a larger Markov decision process.

• In Theorem 2.13, we derive memory requirement for winning strategies.

• In Theorem 2.14, we derive complexity upper-bounds.

• In Theorem 2.16, we present complexity lower-bounds.

• We study properties of the window mechanism inside end-components. Precisely we estab-
lish a zero-one law in Lemma 2.21 and introduce a classification for end-components.

• In Theorem 2.28, we establish complexity bounds for this classification.

• Finally in Theorem 2.30, we solve the general case of Markov decision processes and give
complexity and memory bounds for winning strategies.

This chapter is organized as follows:

• In Section 2.2, we present notations and notions related to the formalism of interest in this
chapter, i.e., Markov decision processes.

• In Section 2.3, we present the window mechanism and introduce the statement of problems
related to this mechanism in Markov decision processes.

• In Section 2.4, we develop a solution to fixed window mechanism. Our solution is based
on an unfolding technique that solves the direct and the prefix-independent version of the
fixed window mechanism.

• In Section 2.5, we study the special case of end-components and establish their properties.

• In Section 2.6, we take advantage of the properties of end-components and design algorithms
for Markov decision processes with window mechanism.
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2.2 Markov decision processes
Recall that for a given set S, Dist(S) denotes the set of rational probability distributions over S.
Given a distribution ι ∈ Dist(S), Supp(ι) = {s ∈ S | ι(s) > 0} denotes its support.

A finite Markov decision process (MDP) is a tuple M = (S, A, δ) where S is a finite set
of states, A is a finite set of actions and δ : S × A → Dist(S) is a partial function called the
probabilistic transition function.

The set of actions that are available in a state s ∈ S is denoted by A(s). We use δ(s, a, s′)
as a shorthand for δ(s, a)(s′). We assume w.l.o.g. that MDPs are deadlock-free: for all s ∈ S,
A(s) ̸= ∅. An MDP where for all s ∈ S, |A(s)| = 1 is a fully-stochastic process called a Markov
chain (MC).

A play of M is an infinite sequence π = s0a0 . . . an−1sn . . . of states and actions such that
δ(si, ai, si+1) > 0 for all i ≥ 0. The prefix up to the n-th state of π is the finite sequence
π[..n] = s0a0 . . . an−1sn. The suffix of π starting from the n-th state of π is the run π[n..] =
snansn+1an+1 . . . . Moreover, we denote by π[n] the n-th state sn of π. Finite prefixes of plays of
the form h = s0a0 . . . an−1sn are called histories. We sometimes denote the last state of history
h by Last(h). We resp. denote the sets of runs and histories of an MDP M by Plays(M) and
Hists(M).

Fix an MDP M = (S, A, δ). A sub-MDP of M is an MDP M′ = (S′, A′, δ′) with S′ ⊆ S,
∅ ≠ A′(s) ⊆ A(s) for all s ∈ S′, Supp(δ(s, a)) ⊆ S′ for all s ∈ S′, a ∈ A′(s), δ′ = δ|S′×A′ .
Such a sub-MDP M′ is an end-component (EC) of M if and only if the underlying graph of
M′ is strongly connected, i.e., there is a run between any pair of states in S′. Given an EC
M′ = (S′, A′, δ′) of M, we say that its sub-MDP M′′ = (S′′, A′′, δ′′), S′′ ⊆ S′, A′′ ⊆ A′, is a
sub-EC of M′ if M′′ is also an EC. We let EC(M) denote the set of ECs of M, which may be
of exponential size as ECs need not be disjoint.

The union of two ECs with non-empty intersection is itself an EC: hence we can define the
maximal ECs (MECs) of an MDP, i.e., the ECs that cannot be extended. We let MEC(M)
denote the set of MECs of M, of polynomial size (because MECs are pair-wise disjoints) and
computable in polynomial time [CH14].

s t
a

b

0.5
0.5 1

Figure 2.2: A simple MDP.

The counterparts of ECs in MCs are bottom
strongly-connected components (BSCCs). In our for-
malism, an MC is simply an MDP M = (S, A, δ) with
|A(s)| = 1 for all s ∈ S, thus BSCCs are exactly the ECs
of such an MDP M.

Example 2.3. Consider the MDP depicted in Figure 2.2. This very simple MDP consists of
two states, s and t. The singleton {t} is the only EC which is obviously maximal. Notice also
that |A(s)| = 1 for all s ∈ S. Thus, this particular instance is in fact an MC. In particular, as
explained, the ECs correspond to BSCCs. ◁

Strategies, probability measure, and events
We use the same notion of strategies as the previous chapter, we allow the memory strategies
to be arena dependent. For the sake of clarity, we restate the necessary definitions using the
formalism of MDPs.

A strategy σ is a function Hists(M) → Dist(A) such that for all h ∈ Hists(M) ending in s,
we have Supp(σ(h)) ⊆ A(s). The set of all strategies is Σ. Recall that a strategy is pure if all
histories are mapped to Dirac distributions, i.e., the support is a singleton.
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A strategy σ can be encoded by a Moore machine (Q, σn, σu, ι) where Q is a finite or infinite
set of memory elements, ι the initial distribution on Q, σn the next action function σn : S×Q→
Dist(A) where Supp(σn(s, q)) ⊆ A(s) for any s ∈ S and q ∈ Q, and σu the memory update
function σu : A× S×Q→ Q.

We say that σ is finite-memory if |Q| < ∞, and K-memory if |Q| = K; it is memoryless
if K = 1, thus only depends on the last state of the history. We see such strategies as functions
s 7→ Dist(A(s)) for s ∈ S. When Q is infinite, σ is infinite-memory. The entity choosing the
strategy is often called the controller.

An MDPM, a strategy σ encoded by (Q, σa, σu, ι), and a state s induce a Markov chainMσ
s

and a probability measure Pσ
M,s.

Mσ
s is defined as follows:

• State space is S×Q.

• The initial distribution ισ
M,s equals ι(q) for any state (s, q) where q ∈ Q and 0 otherwise.

• The probabilistic transition function δσ
M,s : S×Q× A→ Dist(S×Q) is defined as follows

∀(s, q), (s′, q′) ∈ S×Q, δσ
M,s((s, q), (s′, q′), a) =

{
σn(s, q)(a) · δ(s, a, s′) if q′ = σu(s, q, a) ,

0 otherwise.

A run of Mσ
s is an infinite sequence of the form (s0, q0)a0(s1, q1)a1 . . ., where each (si, qi)

ai−→
(si+1, qi+1) is a transition with non-zero probability inMσ

s , and s0 = s.
Pσ

M,s is defined over the Borel σ-algebra induced by the cylinders of (SA)ω. It is uniquely
defined thanks to Carathéodory’s extension theorem [ADD99].

Given E ⊆ (SA)ω, Pσ
M,s[E] is the probability of the runs of Mσ

s whose projection1 over M
is in E, i.e., the probability of event E when M is executed with initial state s and strategy σ.
We may drop some of the subscriptsM, s, and σ when the context is clear.

LetM = (S, A, δ) be an MDP, σ ∈ Σ be a strategy, and E ⊆ (SA)ω be an event, We say that:

• E is sure, denoted Sureσ
M,s[E], if Plays(Mσ

s ) ⊆ E.

• E is almost-sure, denoted ASureσ
M,s[E], if Pσ

M,s[E] = 1.

Let π be a play and E a measurable set of plays, we say that E is prefix-independent if for every
n > 0 we have that π[n..] ∈ E if and only if π ∈ E.

Asymptotic properties of MDPs
Given a run ρ = s0a0s1a1 . . . ∈ Plays(M), let

Inf(ρ) = {s ∈ S | ∀ i ≥ 0, ∃ j > i, sj = s} ,

denote the set of states visited infinitely-often along ρ, and let

infAct(ρ) = {a ∈ A | ∀ i ≥ 0, ∃ j > i, aj = a} ,

similarly denote the actions taken infinitely-often along ρ.
Let limitSet(ρ) denote the pair (Inf(ρ), infAct(ρ)). Note that this pair may induce a well-

defined sub-MDP M′ = (Inf(ρ), infAct(ρ), δ|Inf(ρ)×infAct(ρ)). A folk result in MDPs (cf., [BK08])
is the following:

1The projection of a run (s0, q0)a0(s1, q1)a1 . . . in Mσ
s to M is simply the run s0a0s1a1 . . . in M.
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For any state s of an MDPM, for any strategy σ ∈ Σ, we have:

ASureσ
M,s[{ρ ∈ Plays(Mσ

s ) | limitSet(ρ) ∈ EC(M)}],

that is, under any strategy, the limit behavior of the MDP almost-surely coincides with an
EC. This property is a key tool in the analysis of MDPs with prefix-independent events, as it
essentially says that we only need to identify the “best” ECs and maximize the probability to
reach them.

2.3 Window objectives in Markov decision processes
Objectives
An objective for an MDP M = (S, A, δ) is a measurable set of runs E ⊆ (SA)ω. Given an MDP
M = (S, A, δ), an initial state s, a threshold α ∈ [0, 1] ∩ Q, and an objective E, the threshold
probability problem is to decide whether there exists a strategy σ ∈ Σ such that Pσ

M,s [E] ≥ α.
Furthermore, if it exists, we want to build such a strategy. In the remaining of this chapter, we
always assume an MDP M = (S, A, δ) with either

• a weight function wght : A→ Z where the largest absolute weight is denoted W, or

• a priority function prty : S→ {0, 1, . . . , d}, with d ≤ |S|+ 1 (w.l.o.g.).

This choice is left implicit when the context is clear.
When studying the complexity of decision problems, we make the classical assumptions:

• The size of the model |M| is polynomial in |S|.

• The weights and probabilities are encoded in binary.

• The largest priority d, as well as the upcoming window size λ, are encoded in unary.

• When a problem is polynomial in W, we say that it is pseudo-polynomial, i.e., it would be
polynomial if weights were given in unary.

Parity objectives

Consider an MDPM with a priority function prty. The parity objective requires that the smallest
priority seen infinitely often along a run be even, i.e.:

Parity = {ρ ∈ Plays(M) | min
s∈Inf(ρ)

prty(s) = 0 (mod 2)} .

The corresponding threshold probability problem is in PTIME and pure memoryless strategies
suffice [CJH04].

Mean-payoff objectives

Consider a weighted MDP M. Let ρ ∈ Plays(M) be a run of M. The mean payoff of a run
ρ = s0a0s1a1 . . . ∈ Plays(M) denoted MP(ρ) is the limit of the average of the accumulation of
weights along ρ, i.e.:

MP(ρ) = lim inf
n

1
n + 1

n∑
i=0

wght(ai) .
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Given a threshold ν ∈ Q, the mean-payoff objective accepts all runs whose mean-payoff is above
ν, i.e.:

MeanPayoffν = {ρ ∈ Plays(M) | MP(ρ) ≥ ν} .

The corresponding threshold probability problem is in PTIME using linear programming, and
pure memoryless strategies suffice (see, e.g., [RRS17]). Note that ν can be taken equal to zero
w.l.o.g., and the mean-payoff function can be equivalently defined using lim sup2.

Window objectives
Good window

Given an MDPM with priority function p, we define the good window parity objective,

GWpar(λ) =
{

ρ ∈ Plays(M) | ∃ l < λ,
(
p(ρ[l]) mod 2 = 0 ∧ ∀ k < l, p(ρ[l]) < p(ρ[k])

)}
requiring the existence of a window of size bounded by λ and starting at the first position of the
run, for which the last priority is even and is the smallest within the window.

Similarly, given a weighted MDP M and λ > 0, we define the good window mean-payoff
objective

GWmp(λ) = {ρ ∈ Plays(M) | ∃ l < λ, MP
(
ρ[0, l + 1]

)
≥ 0}

requiring the existence of a window of size bounded by λ and starting at the first position of the
run, over which the mean-payoff is at least equal to zero (w.l.o.g.).

For the sake of factorization, we use subscripts mp and par for mean-payoff and parity variants
respectively. Using this new notation, let Ω in {mp, par} and a run ρ ∈ Plays(M), we say that
an Ω-window is closed in at most λ steps from ρ[i] if ρ[i,∞] is in GWΩ(λ). If a window is not
yet closed, we call it open.

Fixed windows

s0 s1

s2

a, −1

b, 0c, 1

1

1 .5

.5

(a) Mean-payoff MDP.

λ

(b) Accumulation of costs along a play.

Figure 2.3: For any λ, both DFWmp(λ) and FWmp(λ) are not satisfied.

Given λ > 0 and Ω in {mp, par}, the direct fixed window objective, denoted DFWΩ(λ), is:

DFWΩ(λ) = {ρ ∈ Plays(M) | ∀ j ≥ 0, ρ[j,∞] ∈ GWΩ(λ)} ,

that is, all the Ω-windows have to be closed within λ steps along the run.
We also define the fixed window objective, denoted FWΩ(λ), as follows:

FWΩ(λ) = {ρ ∈ Plays(M) | ∃ i ≥ 0, ρ[i,∞] ∈ DFWΩ(λ)} ,

that is the prefix-independent version of the previous one, i.e., DFWΩ(λ) is eventually satisfied
along every run.

2in the classical one-dimension setting for finite MDPs
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Example 2.4. Consider the arena from Figure 2.3a. This is the same Markov chain from
Figure 2.1 but this time equipped with weight function. We are dealing with mean-payoff
objective now. Let us start by considering the fixed window setting. Fix a window size λ, then
by definition of DFWmp(λ) our goal is to build a play π such that inside every sliding window the
mean-payoff is positive at some point. Consider Figure 2.3b where we display the accumulation of
weights along a play. From this figure we can get the intuition that in order to close each window,
the run has to leave state s1 before consuming the entire time frame λ. Using classical argument
on Markov chains involving Borel Cantelli Lemma, one can show that almost-surely, that a run
will stay in state s1 for a long enough period of time leading to window that never closes. This
tends to show that DFWmp(λ) cannot be satisfied. Moreover, this never closing window can occur
at any point in any play, hence FWmp(λ) cannot be satisfied neither. ◁

Bounded windows

The bounded window objective, denoted BWΩ, is:

BWΩ = {ρ ∈ Plays(M) | ∃λ > 0, ρ ∈ FWΩ(λ)} .

This objective requires the existence of a bound λ for which the fixed window objective is satisfied.
Notice that this bound need not be uniform along all runs. A direct variant may also be defined,
but turns out to be ill-behaved in the stochastic context, we exhibit an example, later in the
chapter, displaying such behaviors. Hence we focus on the prefix-independent version.

s

1
t

0
a

b

0.5
0.5 1

Figure 2.4: A parity MDP with no uniform bound over all the runs.

Example 2.5. Consider the MDP depicted in Figure 2.4, the MC from Figure 2.2 with priorities
assigned to states. In this MPD, for any window size λ > 0, there is probability 1/2λ−1 that
objective DFWpar(λ) is not satisfied. Hence,

∀λ > 0, PM,s[DFWpar(λ)] < 1 .

Now let DBWpar be the direct bounded window objective evoked above and defined as follows:

DBWpar =
⋃
λ>0

DFWpar(λ) .

We claim that PM,s[DBWpar] = 1. Indeed, any run ending in t belongs to DBWpar, since it belongs
to DFWpar(λ) for λ equal to the length of the prefix outside t plus one. Since t is almost-surely
reached (since it is the only BSCC of the MC), we conclude that DBWpar is indeed satisfied
almost-surely. ◁

2.4 Solving fixed window objectives
Our approach for solving fixed window objectives is rather straight forward. We take advantage
of the fact that the size of the window is fixed and unfold our MDP using the size of the window
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as a bound for the unfolding. We will show that in the direct setting, this naive approach is
optimal. However in the prefix-independent setting, we can improve over this unfolding, but we
will nevertheless establish some useful properties of an optimal strategy. These properties will
be used to obtain more efficient bound. Before, we give some insights of this so-called unfolding.

LetM = (S, A, δ) be an MDP, Ω = {par, mp}, and λ > 0 be the window size, we build a new
MDP denoted M̃λ

Ω. The obtained MDP is unweighted, it keeps track in each of its states of the
current state of M, the size of the current open window as well as the current sum of weights
(or the minimal seen priority) along the window: these two values are reset whenever a window
is closed (left-hand side of the disjunction) or stays open for λ steps (right hand-side). A key
underlying property used here is the so-called inductive property of windows [CDRR15, BHR16a].

Definition 2.6 (Inductive property of windows). Let ρ = s0a0s1a1 . . . be a run of an MDP. Fix
a window starting in position i ≥ 0. Let j be the position in which this window closes (assuming
it does). Then, all windows in positions from i to j also close in j.
Remark 2.7. The validity of this property is easy to check by contradiction; if it would not be the
case, then the window would close before j.
Remark 2.8. This property is fundamental in our reduction: without it we would have to keep
track of all open windows in parallel, which would result in a blow-up exponential in λ.

λ-MP-unfolding
Let M = (S, A, δ) be an MDP with weight function wght, and λ > 0 be the window size. The
λ-MP-unfolding of M is the MDP M̃λ

mp = (S̃, A, δ̃) is defined as follows:

• S̃ = S × {0, . . . , λ} × {−λ ·W, . . . , 0}.

• δ̃ : S̃× A→ Dist(S̃) is defined as follows for all a in A:

δ̃ ((s, l, z), a) (t, l + 1, z + w(a)) = ν if (δ(s, a)(t) = ν) ∧ (l < λ) ∧ (z + w(a) < 0) ,

δ̃ ((s, l, z), a) (t, 0, 0) = ν if (δ(s, a)(t) = ν) ∧ [(z + w(a) ≥ 0) ∨ ((l = λ) ∧ (z < 0))] .

• Once an initial state sini ∈ S is fixed inM, the matching initial state in M̃λ
mp is s̃init = (sini, 0, 0).

Let Bmp be the following set:

Bmp = {(s, l, z) | (l = λ) ∧ (z < 0)} . (2.1)

By construction of M̃λ
mp, runs visiting Bmp correspond to runs containing windows staying open

for λ steps.

λ-Parity-unfolding
Let M = (S, A, δ) be an MDP with priority function prty, and λ > 0 be the window size. The
λ-Parity-unfolding of M is the MDP M̃λ

par = (S̃, A, δ̃) defined as follows:

• S̃ = S× {0, . . . , λ} × {0, 1, . . . , d}.

• δ̃ : S̃× A→ Dist(S̃) is defined for all a in A as follows:

δ̃ ((s, l, c), a) (t, l + 1, min(c, prty(t))) = ν if (δ(s, a)(t) = ν) ∧ (l < λ− 1) ∧ (c mod 2 = 1) ,

δ̃ ((s, l, c), a) (t, 0, prty(t)) = ν if
(
δ(s, a)(t) = ν

)
∧

(
l = λ− 1

)
∧

(
c mod 2 = 1

)
,

δ̃ ((s, l, c), a) (t, 0, prty(t)) = ν if
(
δ(s, a)(t) = ν

)
∧

(
c mod 2 = 0

)
.
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• Once an initial state sini in S is fixed inM, the associated one in M̃λ
par is s̃init = (sini, 0, prty(sini)).

Let Bpar be the following set:

Bpar = {(s, l, c) | (l = λ− 1) ∧ (c mod 2 = 1)} . (2.2)

s t
a, −1

b, 1
.5

.5 1

(a) Mean payoff MDP with objective DFWmp(2).

{s, 0, 0}

a, −1

{s, 1,−1}

a, −1

⊥

{t, 1,−1}

b, 1

{t, 0, 0}

.5 .5

(b) The associated λ-MP-unfolding

Figure 2.5: An MDP and its associated unfolding.

Example 2.9. In Figure 2.5, an arena together with its associated unfolding are depicted. For
the sake of clarity the states ⊥ and {t, 0, 0} are sinks but the outgoing edges are not drawn. In
this example, the window size λ is 2. Notice that the second components keeps track of the period
of time the window stays open. From state {s, 1,−1}, the play moves to state ⊥. This is due to
the following facts:

• at this stage, the window has to be closed in one step,

• the only possible action weighs −1,

• the accumulation of weights is −1.

Thus, the current opened window cannot be closed in one step. Once a window didn’t close before
the appropriate duration, i.e., the state ⊥ is reached, this window remains open forever, this is
detected by the fact that ⊥ is a sink. ◁

Properties of the unfolding
Let M be an MDP and M̃λ

Ω its associated unfolding with Ω ∈ {mp, par}, define the following
sets of plays of M̃λ

Ω:

Reach(M̃λ
Ω) = (S̃A)∗BΩA(S̃A)ω, Safety(M̃λ

Ω) = (S̃A)ω \ Reach(M̃λ
Ω),

Buchi(M̃λ
Ω) = ((S̃A)∗BΩA)ω, coBuchi(M̃λ

Ω) = (S̃A)ω \ Buchi(M̃λ
Ω).

We will use the above sets as objective in the MDPs obtained by unfolding to detect winning
strategies. In particular we establish that:

• DFWΩ(λ) can be solved by simply solving a safety objective over the unfolding.

• FWΩ(λ) can be solved by simply solving a coBüchi objective over the unfolding.

In order to obtain the above properties, we establish a mapping whose key property is to
preserve the probability of winning in both MDPs (the original and the unfolded).
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Mapping.

Fix an initial state sini inM and let s̃init be its corresponding initial state in M̃λ
Ω. Let Hists(M, sini)

denote the histories ofM starting in s̃init.
Define the mapping πM̃λ

Ω
, and its inverse πM, between histories of Hists(M, s̃init) and Hists(M̃λ

Ω, s̃init).
We use

πM̃λ
Ω

: Hists(M, sini)→ Hists(M̃λ
Ω, s̃init)

for the M-to-M̃λ
Ω direction, and

πM : Hists(M̃λ
Ω, s̃init)→ Hists(M, sini)

for the opposite one. We define πM̃λ
Ω

inductively as follows:

• πM̃λ
Ω

(s̃init) = s̃init.

• Let h ∈ Hists(M, sini), h̃ = πM̃λ
Ω

(h), a ∈ A, s ∈ S. Then, πM̃λ
Ω

(h · a · s) = h̃ · a · s̃, where s̃

is obtained from Last(h̃), a and s following the unfolding construction.

We define πM as its inverse, i.e., the function projecting histories of Hists(M̃λ
Ω, s̃init) to (SA)∗S.

We naturally extend these mappings to runs based on this inductive construction. We also
extend these mappings over strategies. Let σ be a strategy in M. We define its twin strategy
σ̃ = πM̃λ

Ω
(σ) in M̃λ

Ω as follows:

∀h̃ ∈ Hists(M̃λ
Ω, sini), σ̃(h̃) = σ(πM(h̃)) .

Note that this strategy is well-defined as M and M̃λ
Ω share the same actions and πM is well-

defined over Hists(M̃λ
Ω, s̃init) (i.e., each history h̃ has an image in Hists(M, sini)). Similarly, given

a strategy σ̃ in M̃λ
Ω, we build a twin strategy σ = πM(σ̃) using πM̃λ

Ω
. Hence we also have a

one-to-one mapping over strategies.
We say that two objects (histories, runs, strategies) are π-twin if they are the image of one

another through mappings πM and πM̃λ
Ω
.

Probability-wise equivalence.

For any any history h, we denote by Cyl(h) the cylinder set spanned by h, i.e., the set of all
possible extensions of h. Cylinder sets are the building blocks of probability measures in MCs,
as all measurable sets belong to the σ-algebra built upon them [BK08].

Lemma 2.10. Let M, M̃λ
Ω, πM and πM̃λ

Ω
be defined as above. Fix any couple of π-twin

strategies (σ, σ̃) for M and M̃λ
Ω respectively. Then, for any couple of π-twin histories (h, h̃) in

Hists(M, sini)× Hists(M̃λ
Ω, s̃init), we have that

Pσ
M,sini

[Cyl(h)] = Pσ̃

M̃λ
Ω,s̃init

[Cyl(h̃)]. (2.3)

Since the previous lemma holds for all cylinders, we may extend its claim to any event.

Corollary 2.11. Let M, M̃λ
Ω, πM and πM̃λ

Ω
be defined as above. Fix any couple of π-twin

strategies (σ, σ̃). Then, for any couple of π-twin events (E, Ẽ) ⊆ Plays(M, sini)×Plays(M̃λ
Ω, s̃init),

we have:
Pσ

M,sinit
[E] = Pσ̃

M̃λ
Ω,s̃init

[Ẽ].
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Correctness of the reductions.

Lemma 2.12. Let M = (S, A, δ) be an MDP, λ > 0 be the window size, Ω ∈ {mp, par},
M̃λ

Ω = (S̃, A, δ̃) be the λ-Ω-unfolding of M, s ∈ S be a state of M, and s̃ ∈ S̃ be its π-twin state
in Mλ. The following assertions hold.

1. For any strategy σ in M, there exists a strategy σ̃ in M̃λ
Ω such that

Pσ̃

M̃λ
Ω,s̃

[Safety(M̃λ
Ω)] = Pσ

M,s[DFWΩ(λ)] ∧ Pσ̃

M̃λ
Ω,s̃

[coBuchi(M̃λ
Ω)] = Pσ

M,s[FWΩ(λ)].

2. For any strategy σ̃ in M̃λ
Ω, there exists a strategy σ in M such that

Pσ
M,s[DFWΩ(λ)] = Pσ̃

M̃λ
Ω,s̃

[Safety(M̃λ
Ω)] ∧ Pσ

M,s[FWΩ(λ)] = Pσ̃

M̃λ
Ω,s̃

[coBuchi(M̃λ
Ω)].

Moreover, such strategies can be obtained through mappings πM and πM̃λ
Ω

.

Memory requirements and complexity
Thanks to the reductions established in Lemma 2.12, along with the fact that pure memoryless
strategies suffice for safety and co-Büchi objectives in MDPs [BK08], we obtain the following
result.

Theorem 2.13. Pure finite-memory strategies suffice for the threshold probability problem for
all fixed window objectives. That is, given MDP M = (S, A, δ), initial state s ∈ S, window size
λ > 0, Ω ∈ {mp, par}, objective O ∈ {DFWΩ(λ), FWΩ(λ)} and threshold probability α ∈ [0, 1] ∩Q,
the following assertions are equivalent:

• There exists a strategy σ ∈ Σ such that Pσ
M,s[O] ≥ α.

• There exists a pure finite-memory strategy σ′ such that Pσ′

M,s[O] ≥ α.

Complexity-wise, these reductions also yield algorithms for the threshold probability problem
in the fixed window case.

Theorem 2.14. The threshold probability problem is

1. in PTIME for direct fixed window parity objectives, and pure polynomial-memory optimal
strategies can be constructed in polynomial time.

2. in EXPTIME for direct fixed window mean-payoff objectives, and pure pseudo-polynomial-
memory optimal strategies can be constructed in pseudo-polynomial time.

Remark 2.15. Theorem 2.14 does not claim anything about the prefix-independent case. This is
postponed to a latter analysis where we take advantage the asymptotic properties of MDPs and
prefix-independence. We develop a specific technique to solve our problem when restricted to an
end-component. This tailor-made approach yields better algorithms.

We also obtain these almost matching lower bounds. Details are skipped and can be found
in [BDOR19, BDOR20].
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Theorem 2.16. The threshold probability problem is

1. PTIME-hard for direct fixed window parity objectives, and polynomial-memory strategies are
in general necessary;

2. PSPACE-hard for direct fixed window mean-payoff objectives (even for acyclic MDPs), and
pseudo-polynomial-memory strategies are in general necessary.

Remark 2.17. An interesting feature in the setting of direct fixed window objectives is that
almost-surely winning coincides with surely winning. Therefore, the threshold probability problem
for DFWmp(λ) collapses to P when the threshold is 1 [CDRR15].

2.5 Detour through end-components
In this section, we restrict our focus on the end-components. We will exhibit several properties
that allow us to classify end-component. We will in particular show that in order to maximize the
probability of a prefix-independent window objective, it is sufficient to maximize the probability
to reach a “good” end-component.

In order to formalize the notion of a good end-component, we establish a strong link between
ECs and two-player games; either the probability to win a window objective in an end-component
C is zero, or it is one and there exists a sub-end-component C where the controller can actually
win surely, i.e., in a two-player game played on this sub-end-component.

We start by defining the notion of λ-safety.

Definition 2.18 (λ-safety). Let M be an MDP, Ω ∈ {mp, par}, λ > 0, and C = (SC , AC , δC) ∈
EC(M), we say that C is λ-safeΩ if there exists a strategy σ ∈ Σ in C such that:

∀s ∈ SC , Sureσ
C,s[DFWΩ(λ)] .

The above definition essentially says that an EC C is λ-safe if we leave the control of ran-
domness to some antagonistic entity, the controller still has a strategy to achieve its objective.
With this intuition in mind and existing results in two-player games with window objectives
(cf. [CDRR15] and [BHR16a]), we obtain the following proposition.

Proposition 2.19. Let M be an MDP, Ω ∈ {mp, par}, λ > 0, and C = (SC , AC , δC) ∈
EC(M) be λ-safeΩ. Then, there exists a pure polynomial-memory strategy σΩ,λ,C

safe in C such

that Sure
σΩ,λ,C

safe
C,s [DFWΩ(λ)] for all s ∈ SC.

We now introduce the notion of good ECs.

Definition 2.20. Let M be an MDP, Ω ∈ {mp, par}, and C ∈ EC(M), we say that

• C is λ-goodΩ, for λ > 0, if it contains a sub-EC C′ which is λ-safeΩ.

• C is BW-goodΩ if it contains a sub-EC C′ which is λ-safeΩ for some λ > 0.

The good ECs enjoy the following useful property, they correspond exactly to where window
objectives can be satisfied with non-zero probability, and actually, with probability one. We call
this property zero-one law and it is established in the following lemma:

Lemma 2.21 (Zero-one law). Let M be an MDP, Ω ∈ {mp, par} and C = (SC , AC , δC) ∈ EC(M).
The following assertions hold.
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1. For all λ > 0,

(a) either C is λ-goodΩ and there exists a strategy σ in C such that ASureσ
C,s[FWΩ(λ)] for

all s ∈ SC,
(b) or for all s ∈ SC, for all strategy σ in C, Pσ

C,s[FWΩ(λ)] = 0.

2. (a) Either C is BW-goodΩ and there exists a strategy σ in C such that ASureσ
C,s[BWΩ] for

all s ∈ SC,
(b) or for all s ∈ SC, for all strategy σ in C, Pσ

C,s[BWΩ] = 0.

We present the proof of the above lemma since it helps understand how we use the different
notions presented so-far, in particular how we use the results from the previous section.

Proof. We begin with the fixed variant 1, i.e., Case 1a.
Fix λ > 0 and assume there exists a sub-EC C′ with state space SC′ that is λ-safeΩ. By

Prop. 2.19, there exists a strategy σΩ,λ,C′

safe in C′ such that for all s ∈ SC′ , we have

SureσΩ,λ,C′
safe

C′,s [DFWΩ(λ)] .

Now, since C is an EC, there exists a (pure memoryless) strategy σreach in C that ensures eventually
reaching C′ almost-surely from any state s ∈ SC [BK08]. Hence, the desired strategy σ can be
defined as follows:

• play according to σreach until C′ is reached,

• then switch to σΩ,λ,C′

safe forever.
σ clearly satisfies FWΩ(λ) from anywhere in C almost-surely, thanks to prefix-independence. Note
that it does not ensure it surely in general, as σreach does not guarantee to reach C′ surely either.

Case 1b. Now assume that such a λ-safeΩ sub-EC does not exist. Recall that finite-memory
strategies suffice for FWΩ(λ) objectives by Theorem. 2.13, hence we can restrict our study to
such strategies without loss of generality. Fix any finite-memory strategy σ in C and state s ∈ SC .
The induced MC Mσ

s is finite, hence its runs almost-surely end up in a BSCC [BK08]. Let B be
any BSCC of Mσ

s reached with positive probability. Since there exists no λ-safeΩ sub-EC in C,
there must exist a run ρ̂ in B such that ρ̂ ̸∈ DFWΩ(λ), otherwise, σ would be witness that the
EC obtained by projecting B over SC is λ-safeΩ. From ρ̂, we extract a history ĥ that contains a
window open for λ steps (it exists otherwise ρ̂ would be in DFWΩ(λ)). This history is finite: it
has a probability lower-bounded by some ε > 0 to occur whenever its starting state is visited.
Now, since all the states in B are almost-surely visited infinitely often, we conclude that this
history also happens infinitely often with probability one. Therefore, the probability to win the
prefix-independent objective FWΩ(λ) when reaching B is zero. Since this holds for any BSCC
induced by σ, the claim follows.

The bounded case 2. Case 2a is trivial thanks to 11a and FWΩ(λ) ⊆ BWΩ. Now consider
case 2b. By 11b, we have that Pσ

C,s[FWΩ(λ)] = 0 for all s ∈ SC , λ > 0 and σ in C. Observe that
by definition, we have

BWΩ =
⋃
λ>0

FWΩ(λ).

Fix any strategy σ in C and s ∈ SC . By the additivity rule, we obtain

Pσ
C,s[BWΩ] ≤

∑
λ>0

Pσ
C,s[FWΩ(λ)] = 0 ,

the claim follows.
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Remark 2.22. An interesting consequence of Lemma 2.21 is the existence of uniform bounds on λ
in ECs, in contrast to the general MDP case, as seen in Example 2.5. This is natural, since we
established that winning with positive probability within an EC coincides with winning surely in
a sub-EC; sub-EC that can be seen as a two-player zero-sum game where uniform bounds are
granted by [CDRR15, BHR16a].

We are now able to claim nice properties of winning strategies using the knowledge we gained
about good ECs.

Proposition 2.23. Let M be an MDP, Ω ∈ {mp, par}, and C = (SC , AC , δC) ∈ EC(M).

• If C is λ-goodΩ, for some λ > 0, there exists a pure polynomial-memory strategy σΩ,λ,C
good such

that:
∀s ∈ SC , ASure

σΩ,λ,C
good

C,s [FWΩ(λ)] .

• If C is BW-goodΩ, there exists a pure memoryless strategy σΩ,BW,C
good such that:

∀s ∈ SC , ASure
σΩ,BW,C

good
C,s [BWΩ] .

Remark 2.24. Intuitively, such strategies first mimic a pure memoryless strategy reaching a safeΩ
sub-EC almost-surely, then switch to a strategy surely winning in this sub-EC, which is lifted
from the game interpretation.
Remark 2.25. In the above claim, the strategies we consider are uniform in the game-theoretic
sense. That is, if an objective is achievable from a set of states, we do not need to have a different
strategy for each starting state, and we may instead use the very same strategy from all initial
states. This uniformity is not needed but it is rather obtained for free for both the classical MDP
strategies (reachability, Büchi, etc) [BK08] and the two-player window games [CDRR15, BHR16a].
We use it for the sake of readability and convenience, since it allows to have one strategy per EC
instead of one per state of the EC for example.

The aftermath of Proposition 2.23 is that in order to build an efficient algorithm, one needs
to classify ECs efficiently despite the fact an MDP my contain an exponential number of ECs.
We circumvent this thanks to the following lemma:

Lemma 2.26. Let M be an MDP and C ∈ EC(M). If C is λ-goodΩ (resp. BW-goodΩ), then it is
also the case of any super-EC C′ ∈ EC(M) containing C.

And its corollary,

Corollary 2.27. Let M be an MDP and C ∈ MEC(M) be a maximal EC. If C is not λ-goodΩ
(resp. BW-goodΩ), then neither is any of its sub-EC C′ ∈ EC(M).

The interest of Corollary 2.27 is that the number of MECs is bounded by |S| for any MDP
M = (S, A, δ) because they are all disjoints. Furthermore, the MEC decomposition can be done
efficiently (e.g., quadratic time [CH14]). It remains to discuss how to classify a MEC as goodΩ
or not.

Let M = (S, A, δ). Recall that a MEC C = (SC , AC , δC) ∈ MEC(M) is λ-goodΩ (resp. BW-
goodΩ) if and only if it contains a λ-safeΩ sub-EC. By definition of λ-safety, this is equivalent
to having a non-empty winning set for the controller in the two-player zero-sum game over C
This winning set contains all the states in SC from which the controller has a surely winning
strategy. This winning set, if non-empty, necessarily contains at least one sub-EC of C, otherwise
the opponent could force the controller to leave it and win the game by prefix-independence.
Thus, testing if a MEC is goodΩ consists in solving its two-player game interpretation.

Finally we can state the following main theorem:
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Theorem 2.28 (MEC classification). Let M be an MDP and C ∈ MEC(M). The following
assertions hold.

1. Deciding if C is λ-goodΩ, for λ > 0, is in P for Ω ∈ {mp, par}. Furthermore, a corresponding
pure polynomial-memory strategy σΩ,λ,C

good can be constructed in polynomial time.

2. Deciding if C is BW-goodmp is in NP∩ co-NP and a corresponding pure memoryless strategy
σmp,BW,C

good can be constructed in pseudo-polynomial time.

3. Deciding if C is BW-goodpar is in PTIME and a corresponding pure memoryless strategy
σpar,BW,C

good can be constructed in polynomial time.

2.6 General MDPs
In this section, we take advantage of the results yielded by Theorem 2.28 and combine them
with classical reachability results in MDPs. We obtain two algorithms 1 and 2 where we re-
spectively solve the fixed window and bounded window objectives. In these algorithms, we use
MaxReachability(s, T ) as a sub-routine that computes in an MDP the maximal probability to
reach a subset of states T from an initial state s, cf. [Put14] for the interested reader.

Data: MDP M, state s, Ω ∈ {mp, par}, λ > 0
Result: Maximum probability of FWΩ(λ) from s
T ← ∅;
/* Classification of MECs */
forall C = (SC , AC , δC) ∈ MEC(M) do

if C is λ-goodΩ then
T ← T ⊎ SC ;

/* Computing the maximal probability of reaching a λ-MEC */
ν = MaxReachability(s, T );
return ν;

Algorithm 1: FixedWindow(M, s, Ω, λ)

Data: MDP M, state s, Ω ∈ {mp, par}
Result: Maximum probability of BWΩ from s
T ← ∅;
/* Classification of MECs */
forall C = (SC , AC , δC) ∈ MEC(M) do

if C is BW-goodΩ then
T ← T ⊎ SC ;

/* Computing the maximal probability of reaching a BW-good MEC */
ν = MaxReachability(s, T );
return ν;

Algorithm 2: BoundedWindow(M, s, Ω)

These two algorithms have the following property:
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Lemma 2.29. Given an MDP M = (S, A, δ), an initial state s ∈ S, Ω ∈ {mp, par}, λ > 0, then

FixedWindow(M, s, Ω, λ) = max
σ∈Σ

Pσ
M,s[FWΩ(λ)],

BoundedWindow(M, s, Ω) = max
σ∈Σ

Pσ
M,s[BWΩ].

Using the above lemma, we claim the following bounds for winning strategies.

Theorem 2.30. The threshold probability problem is

• in PTIME for fixed window parity objectives and fixed window mean-payoff objectives, and
pure polynomial-memory optimal strategies can be constructed in polynomial time;

• in PTIME for bounded window parity objectives, and pure memoryless optimal strategies
can be constructed in polynomial time;

• in NP ∩ co-NP for bounded window mean-payoff objectives, and pure memoryless optimal
strategies can be constructed in pseudo-polynomial time.

Sketch of the proof. These complexity results are obtained as follows,

• the MEC decomposition takes quadratic time [CH14] and yields at most |S| MECs,

• classifying a MEC is in PTIME for fixed variants and bounded window parity, and in
NP ∩ co-NP for bounded window mean-payoff, cf. Theorem 2.28.

• MaxReachability(s, T ) (Line 1) takes polynomial time [Put14].

Overall we have PTIME-membership for all variants except bounded window mean-payoff, where
we are in PTIMENP∩co-NP, which is equal to NP ∩ co-NP [Bra79].

Concerning optimal strategies, they follow from Algorithm. 1 and Algorithm. 2. In particular,

• Inside goodΩ MECs, we play the strategy guaranteed by Theorem. 2.28,

• outside, we simply play a pure memoryless optimal reachability strategy obtained through
the sub-routine MaxReachability(s, T ) [Put14].

We also have the following matching lower bounds:

Theorem 2.31. The threshold probability problem is

• PTIME-hard for fixed window parity objectives and fixed window mean-payoff objectives, and
polynomial-memory strategies are in general necessary;

• PTIME-hard for bounded window parity objectives;

• as hard as mean-payoff games for bounded window mean-payoff objectives.
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2.7 Discussion
Wrap-up
In this chapter, we focused on some properties of Markov decision processes equipped with parity
or mean-payoff objectives. In order to promote robust behavior in the long term, we equipped
this model with the window mechanism. We recall that this mechanism has been used already
in two-player games in [CDRR15, BHR16a, HPR18]. In this case, this mechanism was able to
reduce the complexity of computing winning strategies.

Let us comment on the complexity bounds achieved in this chapter. Indeed, the computa-
tional complexity is already polynomial. When we apply the widow mechanism, this complexity
significantly rises in the case of mean-payoff with direct fixed window. This is a consequence of
the expressive power of this objective, precisely it can encode complex combinatorial problem
such as the shortest paths in Markov decision processes [HK15, RRS17, BGMR18, HJKQ18].
For the case of bounded window mean-payoff we match the complexity bound for two-player
game. This is the best one can achieve since we show that essentially solving this problem for
Markov decision processes amounts to solving a two-player games with the same objective, c.f.
Section 2.6. However, we argue that our main motivation for Markov decision processes does not
concern the complexity bounds but lies elsewhere. It actually concerns the modeling power, as
shown in Example 2.1 and Example 2.4 the window mechanism ensures a better behaved system.

Perspectives
Several extension of the windows mechanism arise:

• One could think of an optimization problem where one computes a strategy that minimizes
the expected window size.

• Study the window mechanism in the setting of simple stochastic games, this has been
achieved in [DGG23] for mean-payoff objectives. The main technical tool is a reduction to
the setting of two-player games.

• An other exciting direction consists in designing a unified framework to described specifi-
cations using the window mechanism. Actually, if such setting exists already in the case of
model checking, one would, for instance, discard a system only in the presence of a robust
counter-example.

A natural candidate for the last item would be the temporal logic prompt LTL [KPV09]. This
formalism has some flavor of the window mechanism but does not coincide with it. In particular,
the inductive property of windows presented in Definition 2.6 does not hold in prompt LTL
causing the formalism to be a lot more complex from a combinatorial point of view. Another
difference is that prompt LTL does not allow for a fixed version.

Nevertheless, interesting fragment of prompt LTL were investigated in the PhD of Léo Tible.
The initial motivation was to compare two views of the model checking. On the one hand, the
universal model checking where one considers all the run of a system. On the other hand, the
fair model checking where one introduces a randomization in the system and considers almost-all
the runs of a system. Such comparison was presented for LTL without promptness constraint,
and for the so-called Muller fragment, the fair model checking was shown to be faster [SVV07].

An extension to prompt LTL was considered and the reported results are that the fair and
universal model checking problems coincide in this case, they both are co-NP-complete. We
also introduced prefix-independent fragment of this fragment, and for this variant the fair model
checking drops to polynomial while the universal one remains co-NP-complete.





Chapter 3

Robustness in timed synthesis

3.1 Outline of the chapter
In this chapter we are interested in the problem of synthesis in the realm of real time systems.
For such systems, timed games are a standard mathematical tool which can model controller
synthesis problems under timing constraints. These consist in zero-sum games played on arenas,
defined by timed automata, whose state space consists in discrete locations and continuous clock
values. However, In timed automata, the abstract mathematical semantics offers arbitrarily
precise clocks and time delays, while real-world digital systems have response times that may
not be negligible, and the control policy cannot ensure timing constraints exactly, but only up
to some error, caused by clock’s imprecision, measurement errors, and communication delays.

In the present chapter, the main focus is thus to ensure that the synthesized control software
is robust, i.e., ensures the specification even in presence of imprecisions [HS06]. In fact, due to
the infinite precision of the semantics, synthesized strategies may not be implemented in a finite-
precision environment; the controlled systems synthesized using timed games formalism may not
satisfy the desired specification at all. In particular, due to perturbations in timings, some infinite
behaviors may disappear completely. We develop algorithms for robust controller synthesis in
timed games: we consider this problem by studying the existence of robust strategies in timed
games, namely, those guaranteeing winning despite an imprecision bounded by a parameter.

In this chapter we overview a series of results obtained in collaboration with Ocan Sankur
and Pierre-Alain Reynier [ORS14]. We present the following contributions:

• We develop a game semantics to capture the problem of robust controller synthesis in timed
automata.

• We develop an abstraction capturing robust strategies, cf. Lemma 3.15.

• We establish complexity bound for the robust control of timed automata and match the
complexity of synthesis without robustness constraints, cf. Theorem 3.16.

• We develop a stochastic setting of the robust controller synthesis problem.

• We study two variation of the stochastic version of the problem and establish complexity
bounds, cf. Theorem 3.17 and Theorem 3.24.

This chapter follows the following organization:

49
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• In Section 3.2, we recall some basic notion on timed automata, timed games, and present
a game semantics for robust timed games.

• In Section 3.3, we present an abstraction well suited for robustness related questions.

• In Section 3.4, we present an algorithm for solving the problem of robust controller synthesis
in timed games.

• In Section 3.5, we present a setting where the environment is stochastic.

3.2 Timed games
Timed automata
Given a finite set of clocks C, we call valuations the elements of RC

≥0. For a subset R ⊆ C and a val-
uation ν, ν[R← 0] is the valuation defined by ν[R← 0](x) = 0 if x ∈ R and ν[R← 0](x) = ν(x)
otherwise. Given d ∈ R≥0 and a valuation ν, the valuation ν+d is defined by (ν+d)(x) = ν(x)+d
for all x ∈ C. We extend these operations to sets of valuations in the obvious way. We write 0⃗
for the valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k ⪯ x ⪯′ l or k ⪯ x−y ⪯′ l where x, y ∈ C,
k, l ∈ Z ∪ {−∞,∞} and ⪯,⪯′ ∈ {<,≤}. A guard is a conjunction of atomic clock constraints.
A valuation ν satisfies a guard g, denoted ν |= g, if all constraints are satisfied when each x ∈ C
is replaced with ν(x). We write ΦC for the set of guards built on C. A zone is a subset of RC

≥0
defined by a guard.

Definition 3.1 (Timed automata). A timed automaton A over a finite alphabet of actions
A is a tuple (L, C, ℓ0, A, E), where L is a finite set of locations, C is a finite set of clocks,
E ⊆ L × ΦC × A × 2C × L is a set of edges, and ℓ0 ∈ L is the initial location. An edge
e = (ℓ, g, a, R, ℓ′) is also written as ℓ

g,a,R−−−→ ℓ′. A state is a pair q = (ℓ, ν) ∈ L × RC
≥0. An edge

e = (ℓ, g, a, R, ℓ′) is enabled in a state (ℓ, ν) if ν satisfies the guard g.

The set of possible behaviors of a timed automaton can be described by the set of its runs
Runs(A), as follows. A run in Runs(A) is a sequence q1e1q2e2 . . . where qi ∈ L × RC

≥0. For
qi = (ℓ, ν), either:

• ei ∈ R>0, in which case qi+1 = (ℓ, ν + ei) (delay), or

• ei = (ℓ, g, a, R, ℓ′) ∈ E, in which case ν |= g and qi+1 = (ℓ′, ν[R← 0]) (discrete move).

Example 3.2. Consider the timed automaton of Figure 3.1. On the left-hand side a timed
automaton, cf. Figure 3.1a, and on the right-hand side a run over this automaton, cf. Figure 3.1b.
At the initial location ℓ0 a time lapse of at least 1 time unit but no more than 2 time units is
necessary in order to enable the guard. This is depicted by the solid diagonal starting at (0, 0).
Once inside the guard, the darker gray triangle, the transition is taken and clock y is rest to 0, cf.
the dashed vertical line. The run continues from the new configuration, i.e., (ℓ1, (1.1, 0)) and so
on and so forth. ◁

Remark 3.3. In Figure 3.1b, the light gray areas correspond to the possibles trajectories, the
darker ones correspond to the moment where guards are enabled. These darker places are the
basic intuition of the region based abstraction.
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ℓ0 ℓ1 ℓ2
1<x<2,a,y:=0

y≥2,a,y:=0

x≤2,a,x:=0

(a)

1

1

2

2

3

3

x
0

0

y

ℓ1

ℓ2

(b)

Figure 3.1: A run of a timed automaton.

Region automaton
Following [DDMR08, Pur00, BA11], we assume that the clocks are bounded above by a known
constant1 in all timed automata we consider.

Fix a timed automatonA = (L, C, ℓ0, A, E), we define regions following the definition of [AD94].
Let C be the largest integer appearing in A. Alur et. al., consider an equivalence relation R

of finite index defined over RC
≥0 × RC

≥0 as follows:
Let ν and ν′ two valuations in RC

≥0, then (ν, ν′) is in R if:

• For all c in C, either both ν(c) and ν′(c) are greater than C, or ⌊ν(c)⌋ = ⌊ν′(c)⌋.

• For all c, c′ in C, if both ν(c) and ν(c′) are lower than C, then:

frac(ν(c)) ≤ frac(ν(c′)) ⇐⇒ frac(ν′(c)) ≤ frac(ν′(c′)) ,

frac(ν(c)) = 0 ⇐⇒ frac(ν′(c)) = 0 .

Definition 3.4 (Regions). The set Reg(A) of regions of a timed automaton A is the set of all
the equivalences classes induced by the relation R.

For any valuation ν, let [ν] denote the region to which ν belongs.
A region r is non-punctual if it contains some ν ∈ r such that ν + [−ε, ε] ⊆ r for some ε > 0.

It is punctual otherwise.
By extension, we say that (ℓ, r) is non-punctual if r is for some location ℓ.

Definition 3.5 (Region automaton). Fix a timed automaton A = (L, C, ℓ0, A, E), the region
automaton is a finite automaton whose states are pairs (ℓ, r) where ℓ is in L and r is in Reg(A).
A transition (ℓ, r) ∆−→ (ℓ, s) exists if s is non-punctual2, and there exist ν ∈ r, ν′ ∈ s and d > 0
such that ν′ = ν + d. A transition (ℓ, r) e−→ (ℓ′, s) with e = (ℓ, g, R, ℓ′) if r |= g and r[R← 0] = s.

Remark 3.6. The set of regions is finite and exponential in the number of clocks, cf. [AD94] for
more details.

1Any timed automaton can be transformed to satisfy this property.
2Note this slight modification in the definition of the region automaton.
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Figure 3.2: Regions of a timed automaton.

Example 3.7. In Figure 3.2a we recall the run from the automaton of Figure 3.1. We highlight
the regions visited along this run. Notice how, the regions correspond exactly to the moment
when the guards are enabled. ◁

We define paths over the region automaton as π = q1e1q2e2 . . . qn where each qi is a state,
and ei ∈ E ∪ {∆}, such that qi

ei−→ qi+1 for all 1 ≤ i ≤ n− 1. The length of the path is n, and is
denoted by |π|.

The region automaton and the timed automaton it abstracts are bond through a relation
called timed bisimulation [BK08]. Intuitively, this relation implies that the region automaton is
a sound and complete abstraction for the timed automaton, that is:

Given a run ρ = p1e1p2e2 . . . pn over A with ei ∈ R>0 ∪ E, its projection on regions is a path
π = q1e′

1q2e′
2 . . . qn in the region automaton such that pi ∈ qi, and e′

i = ei if ei ∈ E and e′
i = ∆

otherwise.
Conversely, given a path π = q1e′

1q2e′
2 . . . qn in the region automaton, there exists a run

ρ = p1e1p2e2 . . . pn over A such that pi ∈ qi, and e′
i = ei if ei ∈ E and if e′

i = ∆ then there exist
a delay δ such that ei = δ.

This last fact implies, that checking a reachability property over a timed automaton can be
done over its region automaton. Actually any ω-regular property can be checked over the region
automaton [BK08].

Now that we have introduced the main notions, we can move to the core of this chapter, this
concerns the synthesis problem.

Robustness game for timed synthesis
Usually, a timed game played over a timed automaton involves two entities; a controller and an
environment. In each location, the controller chooses a delay and an action such that at least
one guard is satisfied. The environment solves the non-determinism and the play carries on.

Example 3.8. In order to grasp some intuition, consider Figure 3.3, where the timed automaton
from the previous example is viewed as a game. Since this automaton is deterministic, only
controller plays. Clearly the controller can choose delays such that he induces an infinite run. This
is displayed in Figure 3.3b, his strategy is straight-forward, he needs to choose delays satisfying
the guard in ℓ2 but he should not wait for too long otherwise he risks causing the play to be
blocked in ℓ1. At this point, one can just try to play “as soon as possible” in ℓ1, but this will
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also cause the play to be blocking. This he needs to find a balance. However this balance is
mathematically sound, it can never be implemented in a real life scenario. Let us sketch the issue:
we first propose the following strategy σ:

• σ(ℓ1, x, 0) 7→ 2−x
2 ,

• σ(ℓ2, 0, y) 7→ y − 2.

This strategy waits in ℓ2 a time laps that ensures sufficient “room” in ℓ1 to play. Nevertheless,
there is an unavoidable progress of time causing the time to converge toward (2, 0). The effect
of this convergence is to play faster and faster in ℓ1. This phenomenon translates in real life to
devices requires infinitely small precision. ◁

ℓ0 ℓ1 ℓ2
1<x<2,a,y:=0

y≥2,a,y:=0

x≤2,a,x:=0

(a) Timed automaton seen as a timed
game.

1

1

2

2

3

3

x
0

0

y

ℓ1

ℓ2

(b) in order to play infinitely, Controller
has to enforce the convergence.

Figure 3.3: An infinite play in the timed game.

The main interest of this chapter is to develop algorithms for the timed synthesis problem
where the designed solutions are implementable, i.e., solution that do not rely on convergence.
We base our analysis on the theory of robustness for timed automata [Pur00, BA11]. We extend
the framework of robustness in timed automata to the setting of two-player game. Especially,
we define the following game semantics, where we ask the controller to ensure a specification
without requiring to convergence phenomena.

Intuitively, let δ > 0, Player 1, also called Controller chooses a delay d > δ and an action a ∈ A
such that every a-labeled enabled edge is such that its guard is satisfied after any delay in the
set d + [−δ, δ] (and there exists at least one such edge). Then, Player 2, also called Perturbator
chooses an actual delay d′ ∈ d + [−δ, δ] after which the edge is taken, and chooses one of the
enabled a-labeled edges. Hence, Controller is required to always suggest delays that satisfy the
guards whatever the perturbations are.

In the game of Figure 3.3, Controller cannot ensure the specification since Perturbator can
always manage to bock the play. Indeed, being able to ensure a specification against a non-
controllable perturbation can be seen as being able to ensure the same specification without
requiring to an infinitely small precision hence the implementability. We now formalize the
above game semantics. The automaton of this example was presented in [Pur00] where it was
shown to be not robust.
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Parameterized timed game

Formally, given a timed automaton A = (L, C, ℓ0, A, E) and δ > 0, we define the parameterized
timed game of A w.r.t. δ as a two-player turn-based game Gδ(A) between players Controller
and Perturbator. The state space of Gδ(A) is partitioned into VC ∪ VP where VC = L × RC

≥0
belong to Controller, and VP = L × RC

≥0 × R≥0 × A belong to Perturbator. The initial state
is (ℓ0, 0⃗) ∈ VC . The transitions are defined as follows: from any state (ℓ, ν) ∈ VC , there is a
transition to (ℓ, ν, d, a) ∈ VP whenever d > δ, for every edge e = (ℓ, g, a, R, ℓ′) such that ν +d |= g,
we have ν + d + ε |= g for all ε ∈ [−δ, δ], and there exists at least one such edge e. Then, from
any such state (ℓ, ν, d, a) ∈ VP , there is a transition to (ℓ′, ν′) ∈ VC iff there exists an edge
e = (ℓ, g, a, R, ℓ′) as before, and ε ∈ [−δ, δ] such that ν′ = (ν + d + ε)[R← 0]).

ℓ0 ℓ1
1<x<2

y:=0

Figure 3.4: Interaction in the Parameterized timed game between Controller and Perturbator.

Example 3.9. Let δ > 0, and consider Figure 3.4. In the left-hand side a transition in some
timed automaton. Assume that it is Controller’s turn to play and that the current configuration
is (ℓ0, 0, 0). Controller needs to pick a delay d such that 1 < x < 2 is satisfied but remember
that he has to allow a perturbation of d with at most ±δ. We depicted these possibilities in the
right-hand side of Figure 3.4. Controller picks a delay inside the region ((1, 1), (2, 2)), he makes
sure that this delay is within a distance δ from the borders. We symbolize his pick with the
bullet inside the region. It is now Perturbator’s turn to make his move, he applies a perturbation
ε bounded by δ and the play proceeds, i.e., clock y is reset, and we repeat the same interaction
from (ℓ1, ε, 0). ◁

Plays and strategies

A play of Gδ(A) is a finite or infinite sequence q1e1q2e2 . . . of states and transitions of Gδ(A),
with q1 = (ℓ0, 0⃗), where ei is a transition from qi to qi+1.It is said to be maximal if it is infinite
or cannot be extended.

A strategy for Controller is a function that assigns to every non-maximal play ending in some
(ℓ, ν) ∈ VC , a pair (d, a) where d > δ and a is an action such that there exists a transition from
(ℓ, ν) to (ℓ, ν, d, a).

Robust timed synthesis problem

Let δ > 0, and let (σ, τ) be a pair of strategies, respectively for Controller and Perturbator, we
denote ρ the unique maximal run that is compatible with both σ and τ . We will be interested
in Büchi objectives, therefore we are given a subset of the locations of A that we call the Büchi
set and denote B.

A Controller’s strategy σ is winning w.r.t. B if against any Perturbator’s strategy τ the run ρ
that is compatible with the pair (σ, τ) is infinite and visits infinitely often a location of B.
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The robust timed synthesis problem asks, given a timed automaton A and a Büchi set B, if
there exists a δ > 0 such that Controller has a winning strategy in Gδ(A) w.r.t. B. When this
holds, we say that Controller wins the robust timed game for A, otherwise that Perturbator does.

ℓ0

ℓ1

ℓ2

1<x<2,a,y:=0

y≥2,a,y:=0 x≤2,a,x:=0

(a) Not robustly controllable.

ℓ0

ℓ1

ℓ2

ℓ3 ℓ4

ℓ5

ℓ6
x<1

x=1
x:=0

x>1
x:=0

x<3

2<x<3

2<x<3
x:=0

x:=0

x≤1

x≤1
x:=0

(b) Robustly controllable.

Figure 3.5: Two timed games

We conclude this section by recapping the introduced game semantics in the following exam-
ple.

Example 3.10. In Figure 3.5, two timed games are depicted. On the left, the timed game from
the previous examples which is not robustly controllable for the Büchi objective {ℓ2}. Recall that
we have seen that, Perturbator can enforce that the value of x be increased by δ at each arrival
at ℓ1, thus blocking the run eventually (cf. [SBMR13] for full details). The timed game on the
right is robustly controllable for the Büchi objective {ℓ1, ℓ2, ℓ3}. For the sake of simplicity we
assume that all transitions have the same label. The cycle around ℓ1 cannot be taken forever, as
value of x increases due to perturbations. The cycle around ℓ2 can be taken forever, but Controller
cannot reach ℓ2 due to the equality x = 1. Controller’s strategy is thus to loop forever around ℓ3.
This is possible as for both choices of Perturbator in location ℓ4, clock x will be reset, and thus
perturbations do not accumulate. If one of the two resets were absent, Perturbator could force
the run to always take that branch, and would win the game. ◁

3.3 An abstraction for solving the robust timed synthesis
Let us first give a flavor of the main challenge to overcome here. Recall the game of Figure 3.3, we
have already sketched why a robust solution does not exist. Notice however that if we rely on the
region automaton abstraction, it is possible to develop an infinite play. This is due to the fact that
the region automaton does not offer sufficiently accurate knowledge on the evolution dynamics
of configurations in the abstracted timed automaton. Thus, it cannot detect convergence, this is
why we need to rely on different abstractions. Actually we will use regions to check the existence
of an infinite play (as if there is no solution clearly there is no robust solution), then we will use
the so-called orbit graph to check whether the witnessed solution is robust or not.

Folded orbit graphs
A vertex of a region r is any point of r̄ ∩ NC , where r̄ denotes the topological closure of r. Let
V(r) denote the set of vertices of r. We also extend this definition to V((ℓ, r)) = V(r).

With any path π of the region automaton, we associate a labeled bipartite graph Γ(π) called
the folded orbit graph of π [Pur00] (FOG for short). Intuitively, the FOG of a path gives
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the reachability relation between the vertices of the first and last regions. Formally, for a
transition τ = q1e1q2, its orbit graph Γ(τ) = (V1 ∪ V2, (q1, q2), E) is a bipartite graph where
V1 = {(1, v)}v∈V(q1), and V2 = {(2, v)}v∈V(q2). For any

(
(1, u), (2, v)

)
∈ V1× V2, we have an edge

((1, u), (2, v)) ∈ E, if, and only if u
ē1−→ v, where e1 = ∆ if e1 = ∆, and otherwise e1 is obtained

by replacing the guard by its closed counterpart. Note that each vertex has at least one successor
through e1 [AD94].

In order to extend Γ(·) to paths, we use a composition operator ⊕ between FOGs, defined
as follows. If G = (V1 ∪ V2, (q1, q2), E) and G′ = (V ′

1 ∪ V ′
2 , (q′

1, q′
2), E′) denote two FOGs, then

G⊕G′ is defined if, and only if, q2 = q′
1, that is, when the path defining the former graph ends

in the first state of the path defining the latter graph. In this case, the graph G′′ = G ⊕ G′ =
(V1 ∪ . . . V ′

2 , (q1, q′
2), E′′) is defined by taking the disjoint union of G and G′, merging each node

(2, v) of V2 with the node (1, v) of V ′
1 . Now, we extend Γ(·) to paths by induction, as follows.

Consider any path π = q1e1 . . . qn−1en−1qn, and let G = (V1 ∪ V2, (q1, qn−1), E) be the FOG
Γ(q1e1 . . . qn−1), given by induction. Let G′ = (U ∪U ′, (qn−1, qn), E′) denote the bipartite graph
of qn−1en−1qn. Then, we let Γ(π) = G ⊕ G′. If the given path π = q1 . . . q1 is a cycle, then we
define Γ(π) on the node set V(q1), by merging the nodes of the bipartite graph corresponding to
the same vertex. Note that delays of duration zero are allowed when defining orbit graphs.

y

0
x

1

1

2

2

ℓ1

∆

y

0
x

1

1

2

2

ℓ1

e1

y

0
x

1

1

2

2

ℓ2

∆

y

0
x

1

1

2

2

ℓ2

e2

y

0
x

1

1

2

2

ℓ1

∆

y

0
x

1

1

2

2

ℓ1

Figure 3.6: The orbit graph of a (cyclic) path of regions automaton of the automaton of Fig. 3.5a.

Example 3.11. In Figure 3.6, we give an example of an orbit graph. In the top part of the figure
we display the regions visited along a path in the timed automaton of Figure 3.5a. In the bottom
part we display the orbit graph induced by this path. Notice how in the orbit graph, the focus
shifts from each region to its corners. Actually, we will see later that through the vertices of the
orbit graph, and the way they are connected to each other, we will be able to detect convergence.
In Figure 3.7 we depicted the fully factorized ◁

Figure 3.7: The FOG of the cycle of Fig. 3.6 “folded” over the corners of the region in ℓ1.

Properties of FOGs
As explained in the beginning of the section we will use FOGs to discriminate between valid
solutions and spurious ones in the regions automaton. In order to achieve this, we will first give
some properties enjoyed by FOGs.
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A FOG is said to be complete if the edge relation between its vertices is complete. Complete
FOG are of particular interest to us as they exactly correspond to paths whose reachability
relation, between valuations of the initial and last region, is complete [BA11]. This actually
implies that there is no convergence phenomena along the path.

Another important notion that we will heavily rely on, is the one of aperiodic cycles. These
are closely related to cycles whose FOG is a complete. In particular a long enough iteration of
the former gives the latter and conversely, any cycle that owns some power with a complete FOG
is aperiodic.

The following lemma formalizes the relation between aperiodic cycles and cycles with complete
orbit graphs.

Lemma 3.12. If π is an aperiodic cycle, then Γ(πn) is a complete graph for all n ≥ (|C|+ 1)×
(|C|+ 1)!. Conversely, if π is a cycle such that Γ(πn) is a complete graph for some n ≥ 1, then π
is aperiodic.

With the above lemma in mind we can sketch a characterization of “good” cycles . Consider
a cycle ρ in the region automaton of some timed automaton A. There is no convergence when ρ
is iterated if and only if Γ(ρ) is aperiodic. The intuition we can get from this last remark is that
the goal of Controller will be to enforce his Büchi objective using an aperiodic cycle. Therefore
we will design an algorithm that build a strategy for Controller to achieve this enhanced Büchi
objective.

3.4 Robustness game
In this section, we will define an abstraction based on region automata in order to characterize
winning in the robust timed game. We recall that the usual region automaton does not carry
enough information for our purpose; for instance, the blocking behavior in Figure 3.5a cannot
be detected in the region automaton, which does contain infinite runs. We therefore define, on
top of the usual region construction, a complex winning condition W characterizing accepting
runs along aperiodic cycles. In order to be able to transfer the condition W to the continuous
semantics of the timed automaton, we study the properties of W on the abstract region game,
and derive two necessary and sufficient conditions, CC and CP , for winning which will be used to
design an algorithm for solving the parameterized timed game.

Abstract arena and strategies
We fix a timed automaton A = (L, C, ℓ0, A, E). The region game automaton of A is a finite
automaton R(A) = (V, v0, E), defined on the alphabet Λ = Reg(A)×A, where V = L×Reg(A) is
the set of states (ℓ, r) of the region automaton, the initial state is v0 = (ℓ0, [⃗0]), and the transitions

are defined as follows. We have (ℓ, r) (r′,a)−−−→ (ℓ′, s) if and only if the edges (ℓ, r) ∆−→ (ℓ, r′) and
(ℓ, r′) a−→ (ℓ′, s) exist in the region automaton of A. Thus R(A) is a non-deterministic finite
automaton. In this game, Controller’s strategy consists in choosing actions, while Perturbator’s
strategy consists in resolving non-determinism.

We consider standard notions of finite-memory, and memoryless strategies in this game and,
given a finite-memory strategy σ, we denote by R(A)[σ] the automaton obtained under σ.

Winning condition in R(A)

We define set W of winning plays in the game R(A): an infinite play is winning, i.e. it belongs
to W, if the following two conditions are satisfied:
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1. an accepting state is visited infinitely often,

2. finite factors with complete folded orbit graphs are visited infinitely often.

The above game with the introduced winning condition is determined as state in the next
proposition, it can also be solved in EXPTIME.

Proposition 3.13. The game (R(A),W) is determined, admits finite-memory strategies for both
players, and wining strategies can be computed in EXPTIME.
Proof. Sketch of the proof The above proposition is proved by showing that condition 2) of W
can be rewritten as a Büchi condition: the set of folded orbit graphs constitute a finite monoid (of
exponential size) which can be used to build a Büchi automaton encoding condition 2). Using a
product construction for Büchi automata, one can define a Büchi game of exponential size where
winning for any player is equivalent to winning in (R(A),W).

Now that we have a sketched an algorithm for solving (R(A),W), it remains to show that
(R(A),W) is an appropriate abstraction for our purpose. That is, there exists a robust controller
in A if and only if there exists a winning strategy in (R(A),W).

From the abstract game to the robust timed game

We introduce two conditions for Perturbator and Controller which are used to build concrete
strategies in the parameterized timed game.

CP : There exists a finite memory strategy τ for Perturbator such that no cycle in R(A)[τ ]
reachable from the initial state is winning aperiodic.

CC : There exists a finite-memory strategy σ for Controller such that every cycle in R(A)[σ]
reachable from the initial state is winning aperiodic.

Remark 3.14. We relied on the determinacy of (R(A),W), we write that either all cycles are
aperiodic, or none is, respectively under each player’s winning strategies.

The next lemma shows (R(A),W) enjoys the sought properties:

Lemma 3.15. The winning condition W is equivalent to CP and CC :
• Perturbator wins the game (R(A),W) if and only if property CP holds.

• Controller wins the game (R(A),W) if and only if property CC holds.
In both cases, a winning strategy for W is also a witness for CC (resp. CP ).
Sketch of the proof. The proof is obtained through the following facts:

• finite-memory strategies are sufficient to win the game (R(A),W), thanks to the previous
proposition;

• given a folded orbit graph γ, there exists n such that γn is complete if and only if γ is
aperiodic;

• the concatenation of a complete FOG with an arbitrary FOG is complete.

This last lemma yields the following theorem

Theorem 3.16. The robust timed synthesis problem is EXPTIME-complete.
The hardness follows from classical techniques encoding a bounded tape alternating Turing

machine.
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3.5 Probabilistic Semantics
In some systems, considering the environment as a completely adversarial opponent is a bold
assumption. In order to model an environment with less pessimistic behavior we consider two
different models of timing imprecision.

The first one consists in considering random perturbations rather than adversarially chosen
ones, we refer to this semantic as the stochastic game semantics. This semantics is defined as
follows; Controller suggests delays and actions, Perturbator resolves non-determinism by choosing
an edge, and the delay is perturbed uniformly at random (and independently at each step) in
the interval [−δ, δ].

In the second semantic the perturbations are randomized and the non-determinism in action
is resolved according to a uniform distribution. We refer to this semantics as the MDP semantics.
This semantics is defined as follows; Controller suggests delays and actions, the non-determinism
is resolved by picking an edge according to a uniform distribution, and the delay is perturbed
uniformly at random (and independently at each step) in the interval [−δ, δ].

Stochastic Game Semantics
Formally, the state space is partitioned into VC ∪ VP as previously. Strategies for Controller
determine a delay and an action (d, a) ∈ R≥0 × A at any step, and, given Controller’s move,
strategies for Perturbator simply choose an edge e with label a. The transition is then determined
by choosing a delay at random in the interval [d− δ, d + δ], and taking the edge e.

Once both players have chosen a strategy, we can define a probability. Our definitions follow
closely [BBB+08a]. In particular, we define the probability measure on cylinders defined by the
notion of constrained symbolic paths. This allows us to reuse the proofs of [BBB+08a] to derive
the a well-defined measure, cf. [BBB+08a], and [BBB+08b, pages 40-42].

We define the probabilistic robust timed synthesis as the problem of deciding if Controller has
a strategy ensuring the Büchi condition almost surely. It turns out that the same characterization
from Lemma 3.15 holds in the probabilistic case.

Theorem 3.17. Under the stochastic game semantics, if CC holds then Controller wins almost-
surely; if CP holds then Perturbator wins almost-surely.

Recall that CC and CP are complementary (Lemma 3.15). This is actually a quite powerful
result since it yields the following corollary

Corollary 3.18. Under the stochastic game semantics, Controller wins with either probability 0
or 1.

MDP semantics
In the MDP semantics, for given δ > 0, at each step, Controller picks a delay d ≥ δ, and an
action a such that for every edge e = (ℓ, g, a, R, ℓ′) such that ν + d |= g, we have ν + d + ε |= g
for all ε ∈ [−δ, δ], and there exists at least one such edge e. Then, a perturbation ε ∈ [−δ, δ],
and an edge satisfying the above conditions are chosen independently and uniformly at random.
Thus in this semantics, Controller’s strategy resolves all non-determinism, and defines a random
process. We denote by GMDP

δ (A) the resulting game, and Pσ
GMDP

δ
(A),s

the probability measure on
Runs(A, s) under strategy σ.

Remark 3.19. In the MDP semantics, Perturbator does not have any strategical power, in other
word we can say that always plays the strategy where he resolves the non-determinism uniformly
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at random. Thus this semantics is a particular case of the stochastic game one. Therefore it
follows that Pσ

GMDP
δ

(A),s
is well defined for any Controller’s strategy σ.

For a given timed Büchi automaton, we denote by ϕ the set of accepting runs. We are
interested in the two following problems:

Definition 3.20 (Almost-sure winning). Does there exist δ > 0 and a strategy σ for Controller
such that Pσ

GMDP
δ

(A),s0
(ϕ) = 1?

Definition 3.21 (Limit-sure winning). Does there exist, for every 0 ≤ ε ≤ 1, a perturbation
upper bound δ, and a strategy σ for Controller such that Pσ

GMDP
δ

(A),s0
(ϕ) ≥ 1− ε?

ℓ0 ℓ1
x≤1,a,x:=0

x≤1,a x≤1,a,x:=0

Figure 3.8: Limit-sure VS. almost-sure.

Example 3.22. Consider the automaton of Figure 3.8. This automaton is loosing under the
MDP semantics for the almost-sure objective but winning under the same semantics for the
limit-sure objective. Indeed, notice that as long as a play reaches state ℓ1, then Controller is
ensured to win since he can always play in the center of the region and be safe w.r.t. to any
perturbation. However, from state ℓ0, he has to ensure that the play leaves this state before it is
blocked, but for any ε > 0, there always will be small portion of plays that will stay in state ℓ0
for a duration long enough to allow the accumulation of the randomly chosen perturbations to
block the play in the same state. Hence, this small proportion of plays will be loosing. ◁

Remark 3.23. Observe that the second problem has a very concrete interpretation in terms of
controller synthesis: given a quantitative constraint on the quality of the controller, what should
be the precision on clocks measurements to be able to synthesize a correct controller?

The main result of this section is:

Theorem 3.24. One can decide in EXPTIME whether Controller wins almost-surely (resp. limit-
surely) in the MDP semantics of a timed Büchi automaton.

In order to establish the above theorem, we define two conditions W ′ and W ′′. The former
will be used to witness almost-sure winning, the latter will be used to witness limit-sure winning.

Almost-sure winning

We consider the region game automaton R(A) of A, viewed as a (finite-state) Markov decision
process, in which the non-determinism of actions is resolved according to a uniform distribution.
Given a strategy σ̂ for Controller and a state v, we denote by Pσ̂

R(A),v the resulting measure on
Runs(R(A), v). The initial state of R(A) is v0. We introduce A new winning condition:

Definition 3.25 (Condition W ′). Consider the region game automaton R(A) of A, viewed as a
(finite-state) Markov decision process. Let σ̂ be a Controller’s strategy in R(A). σ̂ is winning
for W ′ from a state v if:

• Pσ̂
R(A),v(ϕ) = 1,
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• every outcome of R(A)[σ̂] starting in v contains infinitely many factors whose FOG is
complete.

Remark 3.26. Observe that the first item is an almost-sure requirement while the second is a sure
requirement. This latter requirement can be seen as a condition in a game where random choices
are made by an adversarial entity. Thus in following proposition, we slightly abuse the definition
of an MDP.

Proposition 3.27. Controller wins almost-surely in the MDP semantics of a timed Büchi
automaton A if and only if Controller wins the game (R(A),W ′) from v0.

Thus it remains to solve the game (R(A),W ′).

Lemma 3.28. The game (R(A),W ′) is determined, admits finite-memory strategies for both
players, and wining strategies can be computed in EXPTIME.

As observed before, the condition on FOGs can be expressed as a deterministic Büchi au-
tomaton. We thus obtain a winning condition expressed as the conjunction of an almost-sure
Büchi condition with a sure Büchi condition. We can solve these games in polynomial time using
standard attractors computation. The finite memory strategy essentially alternates between the
strategies for the these two objectives.

Finally Proposition 3.27 follows, using similar ideas from the setting of Section 3.4 together
with the fact that any almost-surely winning strategy σ̂ in (R(A),W ′) yields an almost-surely
winning strategy σ in A.

Limit-sure winning

In order to solve the problem under this semantics, we again introduce a new winning condi-
tion denoted by W ′′. This winning condition again mixes an almost-sure objective with a sure
objective. Denote first by Win′ the set of winning states of Controller in the game (R(A),W).

Definition 3.29 (Condition W ′′). Then W ′′ is defined as the almost-sure reachability of the set
Win′.

With this last condition, we characterize a solution in this setting as follows:

Proposition 3.30. Controller wins limit-surely in the MDP semantics of a timed Büchi automaton
A if and only if Controller wins the game (R(A),W ′′) in v0.

The proof of this proposition relies on the following lemma, and uses techniques similar to
those involved in the proof of Proposition 3.27.

Lemma 3.31. The game (R(A),W ′′) is determined, admits finite-memory strategies for both
players, and wining strategies can be computed in EXPTIME.

3.6 Discussion
wrap-up
In this chapter we developed a formal framework for studying the problem of robust synthesis
in real-time systems. Our approach relies on a game semantics used in [SBMR13]. This game
semantics build a parameterized problem. A restriction of this parameterized problem to deter-
ministic timed automata was already considered and solved in [SBMR13]. In the case where the
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automaton is deterministic, the power of Perturbator is restricted as it only modifies the delays
suggested by Controller, but has no non-determinism to resolve. From a technically stand point,
the algorithm consists in finding an aperiodic cycle, these are cycles that are “stable” against
perturbations. This notion was defined in [BA11] to study entropy in timed languages and was
also at the core of this chapter.

A variant of the semantics we considered was studied in [BMS12] for deterministic timed
automata and shown to be EXPTIME-complete for reachability due to an implicit presence of
alternation. Timed games, Büchi conditions, or stochastic environments were not considered.

Probabilistic timed automata (PTA) where the non-determinism is resolved following proba-
bility distributions have been studied [Jen96, Bea03, KNSS02]. Our results consist in deciding
almost-sure and limit-sure Büchi objectives in PTAs subject to random perturbations in the
delays. Note that PTAs are equipped with a possibly different probability distribution for each
action. Although we only consider uniform distributions, these two settings are equivalent for
almost-sure and limit-sure objectives. Games played on PTA were considered in [FKNT10] for
minimizing expected time to reachability with NEXPTIME ∩ co-NEXPTIME algorithms.

To the best of our knowledge, the work presented in this chapter is the first to study a
stochastic model of perturbations for synthesis in timed automata.

Our results on stochastic perturbations can also be seen as a new interpretation of robustness
phenomena in timed automata. In fact, in the literature on robustness in timed automata,
non-robust behaviors are due to the accumulation of the imprecision δ along long runs, and
in the proofs, one exhibits non-robustness by artificially constructing such runs (e.g. [DDMR08,
SBMR13]). In contrast, in the stochastic setting, we show that non-robust behaviors either occur
almost-surely, or can be avoided almost-surely (Theorem 3.17).

Perspectives
So far most of the algorithmic results regarding robust synthesis of timed systems rely on region
based techniques. A first natural direction to consider would be to design symbolic approaches.
A first step has been made in [BMRS19] where the deterministic setting of [SBMR13], the next
step would be to extend this symbolic approach to the non deterministic setting presented earlier
in the present chapter.

The results partially answer the challenges posed in [CHP11] since we present a solution for
the problem for unknown parameter δ. However, it still remains to extend our result to the more
general setting of concurrent timed games introduced in [CHP11].

In the context of robust synthesis under the MDP semantics, we have only considered qual-
itative question, i.e., almost-sure winning, limit-sure winning. But it would be also interesting
from a system design point of view to develop techniques quantifying the robustness of system.
For instance one could try to define a threshold problem aiming at computing strategies ensuring
that the measure of non-robust runs is bounded away from some probability 0 < p < 1.

Finally, one can aim at designing a notion of “repair” for non robust systems in the sense
that a system can be robust if a strict subset of the clocks is precise. As a first step one can
aim at defining a problem where some clocks are subjected to perturbation while others are not.
This could be used in a system where some clocks are used for synchronization purposes, those
clocks should thus be precise by assumption. An even simpler version of this problem could be
imagined where some transitions are perturbed and others are precise. We define all these latter
problem as instance of a new notion of robustness that we call partial robustness. A first step
towards this direction was made in the results presented in [BBGDO24].



Chapter 4

Rational synthesis

4.1 Outline of the chapter
In this chapter we depart from the setting of zero-sum games to the one of non zero-sum multi-
player games. In this setting, the synthesis problem aims at building a strategy profile, i.e.,
a strategy for each player. The computed profile is satisfactory if it ensures some rationality
constraint that we will define later. This problem is called the rational synthesis.

There are two forms of rational synthesis: cooperative and non-cooperative [KS22]. Cooper-
ative rational synthesis can be seen as the synthesis of a Nash equilibrium that satisfies a given
specification, and this is akin to the problem of equilibrium checking [AGH+21]. One must practi-
cally convince every player that everyone else is playing their part of the Nash equilibrium. Since
no one has an incentive to change their strategy, the Nash equilibrium should be played, and
the specification of the system should be satisfied. Non-cooperative rational synthesis [KPV14]
is different in that, one suggests a strategy for only a given player (considered to be a controlled
entity). The problem becomes to automatically constructs a strategy for the controller such that
against any Nash equilibrium which contains the controller’s strategy, the specification of the
system holds.

We introduce and study the problem of rational synthesis and its implementability with re-
spect to common resources. These are resources like water, air, coal, pastures, or fish stocks [Ost90].
They are non-excludable: they are out there for the taking. They are rivalrous: one agent’s con-
sumption can limit or prevent another agent to consume it. We will focus on the resource
of energy, as it is understood in the literature in Computer Science. In fact, it is both more
abstract, and much more than “energy”: it captures any common-pool resource that can be con-
veniently quantified by assigning a number to it, and where a bigger number indicates a greater
amount of the resource. Energy also is a kind of resource that typically can be framed as a
commons [MCB+17].

For a long time, it was believed that common-pool resources were bound to collapse due to
the actions of self-interested agents, causing the resources to be depleted or spoiled. The great
contribution of E. Ostrom [Ost90] was to evidence wide-ranging instances where this is not in
fact the case, and to identify design principles of successful common-pool resource management.
The models and algorithmic solutions presented here are contributions to the pursued efforts of
engineering solutions for commons management. Specifically, we investigate the synthesis of a
common controller which is compliant with rational behavior of all the player, modeled as a Nash
equilibrium, but also sustainable with respect to the common resource.

Throughout this chapter, the player interact in turn-based fashion in a finite arena, which is
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a graph where in each state one player decides the next edge to follow. To each edge is associated
an integer which corresponds to the energy cost incurred by the whole system when it follows
this edge. Each player has a qualitative objective.

We propose two types of players: careless and careful. Careless player bother only about
their objective. Careful player also pay attention to not deplete the system’s resources. We will
see that this two types of players induce two different notions of equilibria.

In what follows, we report a series of contribution obtained in collaboration with Rodica
Condurache, Catalin Dima, and Nicolas Troquard [CDOT21, CDOT23]. The results that we
preview are:

• We introduce the notions of cooperative careless and cooperative careful rational synthesis,
cf., Definition 4.6 and Definition 4.11.

• We develop algorithm tool to study the above problem when the specification for all the
players are given in term of parity objectives, cf., Proposition 4.9 and Proposition 4.16.

• We give tight complexity bounds for the both settings of the cooperative rational synthesis,
cf., Theorem 4.10 and Theorem 4.18.

• We introduce the problem of non-cooperative rational synthesis in the context of common
resources, cf., Equation 4.3.

• We develop an algorithmic framework for solving this latter problem cf., Proposition 4.20.

• We establish complexity bound for this latter problem, cf. Theorem 4.25.

This chapter is organized as follows:

• In Section 4.2, we present the model we are considering together with necessary formalisms
and notations.

• In Section 4.3, we define and solve the problem of careless cooperative rational synthesis.

• In Section 4.5, we define and solve the problem of careful cooperative rational synthesis.

• In Section 4.6, we define and solve the problem of non-cooperative rational synthesis with
common resources.

4.2 Multi-player games
Multi-player game, profiles, and payoffs
A multi-player game is a tuple G = ⟨S, (S1 ⊎ . . . ⊎ Sn), sini, P, E⟩, where S is a finite set of states,
(S1 ⊎ . . . ⊎ Sn) is a partition of S, sini is an initial state, P = {1, . . . , n} is the set of players, and
E is in an edge relation in S× S. For every edge e = (s, t) in E, recall that src(e) is s and trgt(e)
is t.

For an arena G, we denote by Plays(G) the set of elements sinis1s2 . . . in Sω such that for all
i ≥ 0, (si, si+1) is in E. The set Hist(G) is the set of finite and proper prefixes of elements in
Plays(G). For a history h in Hist(G), Last(h) denotes the last element of h. Finally, Histi(G) for
i in P is the set of elements in Hist(G) whose last element is in Si i.e.,

Histi(G) = {h ∈ Hist(G) | Last(h) ∈ Si} .
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We use the same notion of strategies from Chapter 1 for two-player games, i.e., a strategy
for player i is a function σi : Histi(G) → S mapping a history whose last element is s to a state
s′ such that (s, s′) ∈ E.

For a strategy σi for player i, we define the set of outcomes, denoted by out (σi), as the set
of plays that are compatible with σi i.e.,

out (σi) = {π ∈ Plays(G) | ∀j ≥ 0, π[..j] ∈ Histi(G) =⇒ σi(π[..j]) = π[j + 1]} .

Once a strategy σi for each player i is chosen, we obtain a strategy profile σ = ⟨σ1, . . . , σn⟩. σ-i is
the corresponding partial profile without the strategy for player i. For a strategy σ′

i for a player
i, we write ⟨σ-i, σ′

i⟩ the profile ⟨σ1, . . . , σ′
i, . . . , σn⟩. We denote by out (σ) the unique outcome of

the strategy profile σ.
Each player will be assigned an objective. An objective Obj is a subset of Plays(G). We write

Obji to specify that it is the objective of player i. We define the payoff Payoffi(σ) of player i
w.r.t. the profile σ as follows: {

Payoffi(σ) = 1 if out (σ) ∈ Obji,
Payoffi(σ) = 0 otherwise.

Example 4.1. In Figure 4.1, a three-player game is depicted. In this example, the initial state
is a, it is controlled by the first player, the second plays controls state b, and the third player
controls state c. The other states can belong to any players. The objective of the first player
consists in the set of plays that reach (1, 1, 0), the objective of the second player consists in the
set of plays reaching state (1, 1, 0) or state (0, 1, 0), and the objective of the third player consists
in the set of plays reaching state (0, 0, 1). An example of a profile σ, could be the one where every
player plays to its right. In this case out (σ) = abc(1, 1, 0)ω, and the payoffs of σ are

Payoff1(σ) = Payoff2(σ) = 1 , Payoff3(σ) = 0 .

◁

a b

(0, 1, 0)

c

(0, 0, 1)

(1, 1, 0)

Figure 4.1: A multi-player game.

We recall that a zero-sum game is a game consisting of only two players with opposing
objectives, i.e.,

∀i ∈ {1, 2}, Obj3−i = Plays(G) \ Obji .

Thanks to the zero-sum nature, we can define the notion of a winning strategy for player i,
i.e., a strategy σi s.t. out (σi) is a subset of Obji.

Given a a multiplayer arena G = ⟨S, (S1 ⊎ . . . ⊎ Sn), sini, P, E⟩, we write Gi,-i for the zero-sum
game where player 1 is i, and player 2 is the coalition of the rest of players seen as one entity,
i.e.,

S1 = Si, S2 =
⋃
j ̸=i

Sj , Obj1 = Obji, Obj2 = Plays(G) \ Obj1 .
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Solution Concept
We define in our setting the notion of equilibrium introduced by Nash. A Nash equilibrium is
a profile of strategies in which no player could do better by unilaterally changing his strategy,
provided that the other players keep their strategies unchanged.

Formally, a strategy profile σ is a Nash equilibrium (NE) if for any strategy σ′
i for any player

i in P we have:
Payoffi(σ) ≥ Payoffi(⟨σ-i, σ′

i⟩) .

We write NE(G) for the set of all the profiles that are Nash equilibria in G.

a b

(0, 1, 0)

c

(0, 0, 1)

(1, 1, 0)

(a)

a b

(0, 1, 0)

c

(0, 0, 1)

(1, 1, 0)

(b)

a b

(0, 1, 0)

c

(0, 0, 1)

(1, 1, 0)

(c)

a b

(0, 1, 0)

c

(0, 0, 1)

(1, 1, 0)

(d)

Figure 4.2: Nash equilibria in multi-player games

Example 4.2. Consider the games depicted in Figure 4.2. In Figure 4.2a, we highlight the profile
from Example 4.1. We claim that this profile is not a NE. For instance, in Figure 4.2b we show
that player 3 can unilaterally deviate and increase his payoff from 0 to 1. Once more this new
profile is not an equilibrium since player 2 can deviate this time as it is shown in Figure 4.2c.
The profile obtained and displayed in Figure 4.2d is a NE. It is not the only one, but in this
example one can see it is not possible to obtain an equilibrium where player 3 gets a payoff of 1.◁

The rational synthesis problem
The goal of the rational synthesis is to check the possibility of building equilibria satisfying a
given specification. We define the rational synthesis problem as follows:

Problem 4.3 (Rational synthesis). Let G = ⟨S, (S1 ⊎ . . . ⊎ Sn), sini, P, E⟩ be a multi-player game.
Let Obj1, . . . , Objn be objectives for players in P. Let also Obj ⊆ Sω be a general objective.
The rational synthesis problem consists in deciding whether there exists σ ∈ NE such that
out (σ) ∈ Obj.
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Notice that in the above definition a valid solution assumes cooperation from all the play-
ers. Thus two notions of the rational synthesis were introduced, cooperative [FKL10] and non-
cooperative [KPV14]. The cooperative version coincides with the latter defined problem, the
non-cooperative will be introduced later in the chapter.

4.3 The cooperative and rational synthesis in the commons
Energy objectives
Let cst : E→ Z be a cost function. To lighten the notation, we write cst(s, t) instead of cst((s, t)).
Let h = sini . . . sn be a history in Hist(G); we abusively write cst(h) to mean the extension of cst
to histories that is:

cst(h) = cst(sini, s1) +
n−1∑
i=1

cst(si, si+1) .

The energy objective for a game G equipped with a cost function cst is given by the set
Energy(G) described as follows:

Energy = {π ∈ Plays(G) | ∀i ≥ 1, cst(π[..i]) ≥ 0} .

We denote by W the largest absolute value that appears in cst, i.e.

W = max{|c| ∈ Z | ∃e ∈ E, cst(e) = c} .

Throughout this chapter, values of cst are encoded in binary unless explicitly said otherwise.
Let G be a zero-sum game equipped with both a priority function prty and a cost function

cst, the energy parity objective EnergyParity for this game is given by the set

EnergyParity = Energy ∩ Parity .

The following problem will be instrumental in our development. Given an energy-parity game
and a state, the initial credit problem asks whether there exists an initial value for the energy
such that the first player has a strategy to ensure both objectives. This problem was solved by
Chatterjee et. al. [CD12b].

Theorem 4.4 ([CD12b]). The initial credit problem can be solved in O(|E| . D . |S|d+2 . W)
where d is the highest priority in the game.

Synthesis in the common

Our goal here is to introduce a notion of rational synthesis where the players share a resource
(the energy in our case). However, we differentiate between two type of players, careless and
careful. A careless player is player who is not interested in the energy level while careful player
is. With these two types of player in mind, we introduce two different notions of the cooperative
rational synthesis; the careless cooperative rational synthesis, and the careful cooperative rational
synthesis. In the former one, all the players are considered careless and only the general objective
contains an energy condition. In the latter, all the players as careful and are concerned with not
depleting the energy stored.

Example 4.5. Consider the arena depicted in Figure 4.3. Player 1 (circle) controls state a, his
objective is given by the set of all the plays that ultimately reach state (1, 1, 0). Player 2 (square)
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a b

(0, 1, 0)

c

(0, 0, 1)

(1, 1, 0)−1 −1

−1 −2

−1

+1 +1

0

0

0

Figure 4.3: A multi-player game equipped with a cost function.

controls state b, his objective is given by the set of all the plays that ultimately reach either state
(1, 1, 0) or (0, 1, 0). Player 3 (diamond) controls state c, his objective is given by the set of all the
plays that ultimately reach state (0, 0, 1).

Assume that the general specification in this game coincides with the objective of player 1,
then a valid solution for the careless cooperation rational problem has to be an equilibrium that
meets the objective of player 1 and is sustainable energy-wise.

Clearly from state a, player 1 has to move the play to state b, but since the cost of this edge
is −1 he has to take the self-loop in a at least once. Suppose player 1 takes the self-loop in state
a 3 times then moves the play to state b. Suppose further player 2 chooses to advance to state c.
The current energy level is then 1. Now it is up to player 3 to decide where the play ends.

Despite the fact that he meets his objective by going to state (0, 0, 1), in the careful setting
player 3 cannot go to this state since the cost of that transition is −2 bringing the energy level
below 0. Therefore, the only possible move is towards (1, 1, 0). The resulting strategy profile is a
fixed Nash equilibrium. Indeed, player 2 has no incentive to deviate, and since player 1 meets his
objective, the described strategy is a solution to the careful rational synthesis problem.

Note that not all Nash equilibria are solutions for the cooperative rational synthesis. For
instance, if in state b, player 2 moves the play to (0, 1, 0), the resulting outcome is a Nash
equilibrium but it is not in player 1’s objective.

One can also see that the careless synthesis problem has no solution. This is due the fact that
any path which is in player 1’s objective would have to take the transition from c to (1, 1, 0). But
this is player 3’s decision to make, who is unsatisfied by doing this and could deviate to state
(0, 0, 1) which is beneficial since the new play is in his objective.

4.4 Careless cooperative rational synthesis

We first focus on the case where all the players are careless, we start by formalizing our problem
in the careless setting.

Definition 4.6. Let G = ⟨S, (S1 ⊎ . . . ⊎ Sn), sini, P, E⟩ be a game, cst : E→ Z be a cost function,
Obj1, . . . , Objn be parity objectives (one for each player), Obj be a general parity objective, and
let σ be a strategy profile. Then σ is a solution to the careless cooperative rational synthesis
problem if:

out (σ) ∈ Energy ∩ Obj, and σ ∈ NE .

We denote the set of all the solutions by NE(G).
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Logical Characterization
Our goal here is to provide a formal tool to recognize “good” outcomes, i.e. plays that are
generated by profiles that are solutions to our problem. Our formal tool will heavily rely on a
logical characterization using a quantitative version of the Linear Temporal Logic (LTL).

eLTL
Since we are considering quantitative extension for the rational synthesis problem, the following
extension of LTL will come in handy. Introduced in [BBFR13], it is evaluated over plays as
follows:

ρ |=Energy ϕ ⇐⇒ (ρ |= ϕ) ∧ (ρ ∈ Energy) .

Essentially, this logic is defined similarly to LTL but is evaluated over weighted runs and run ρ
satisfies a formula ϕ if and only if it as a model for ϕ and cst(ρ[..n]) ≥ 0 for any n ≥ 1.

Problem 4.7 (Energy LTL Model checking). Given an arena G, a cost function cst : E→ Z, and
an LTL formula ϕ, decide whether there exists a play π in Plays(G) such that π |=Energy ϕ ?

Theorem 4.8 ([BCHK14, DG09]). Problem 4.7 is PSPACE-complete.

Reduction to eLTL model-checking
Let G = ⟨S, (S1 ⊎ . . .⊎ Sn), sini, P, E⟩ be a multi-player game where each player i is given a parity
objective Obji induced by a priority function prtyi and assume that G is endowed with a cost
function cst : E→ Z.

For each player i, we denote by Win[Obji] the set of states from where i has a winning strategy
for his objective Obji against the coalition -i. This set is described by the propositional formula∨

s∈Win[Obji] s. For each player, the set Win[Obji] can be computed by any classical algorithm for
the parity objectives, in non-deterministic polynomial time [Zie98].

For each player i, we denote by Φprtyi
the LTL formula that defines the set of plays in Parityi(G).

This formula is defined as follows:

Φprtyi
≡

∧
s∈S

prtyi(s) is odd

(
23s→

∨
s′∈S

prtyi(s′)<prtyi(s)
prtyi(s′) is even

23s′
)

Consider the following formula:

ΦNE ≡
∧
i≥1

¬Φprtyi
→ 2¬

 ∨
s∈Win[Obji]

s


The intuition behind the above formula is that along any play π a player that did not achieve
his parity goal and never visited his winning region cannot deviate and improve his payoff.
In [CFGR16a], it is shown that any play satisfying the above formula is the outcome of some
profile in NE(G).

Fact 1 ([CFGR16a]). Let G = ⟨S, (S1 ⊎ . . . ⊎ Sn), sini, P, E⟩ be an arena where each player i is
given an objective Obji induced by a priority function prtyi then:

∀σ, out (σ) |= ΦNE ⇐⇒ σ ∈ NE(G) .
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We now take advantage of both Fact 1 and Theorem 4.8 and get the following proposition.

Proposition 4.9. Let G = ⟨S, (S1⊎ . . .⊎Sn), sini, P, E⟩ be a multi-player game where each player i
is given a parity objective Parityi, cst : E→ Z be a cost function, and let Obj be a general objective.
There exists a solution to the cooperative careless problem if and only if there exists π in Plays(G)
such that:

π |=Energy Obj ∧ ΦNE .

Theorem 4.10. Let G = ⟨S, (S1 ⊎ . . . ⊎ Sn), sini, P, E⟩ be a multi-player game where each player i
is given a parity objective Obji induced by a priority function prtyi and assume that G is endowed
with a cost function cst : E→ Z.Then the careless cooperative rational synthesis is NP-complete
for parity objectives.

To decide if there is a strategy profile σ̄ that is a solution to the careless cooperative synthesis
problem,

we use the following non-deterministic procedure where we add an extra vacuous player that
we call player 0. This player does not control any state but his objective is given by the general
objective Obj.

• Guess a payoff z̄ ∈ {0, 1}n+1 for all the players and with z0 = 1. We denote I = {i ≤ n |
zi = 0}.

• For each player i ∈ I, guess a positional strategy τ-i for the zero-sum game Gi,−i.

• Guess a set U ⊆
⋂

i∈I(S\Win[Parityi]). This set will serve for satisfying the parity conditions
while maintaining the energy level.

• Guess the followings:

i. A subset V s.t. V ⊆ U .

ii. A cycle hpar of size ≤ 2 · |I| · |S| in V that visits all the states of V . hpar is meant to
satisfy the parity conditions.

iii. A cycle hch of size ≤ |S| in U . hch is meant to be a “charging cycle”, useful when hpar

has a negative cost.

iv. Two paths h1
lnk and h2

lnk with h1
lnk[1] = h2

lnk[|h2
lnk|] = hpar[1] and h2

lnk[1] = h1
lnk[|h1

lnk|] =
hch[1] in U . These two paths are meant to connect hch with hpar.

v. A cycle hacc and two paths h1 and h2 of size ≤ |S| s.t. h1[1] = sini, h1[|h1|] =
hacc[1] = h2[1] and h2[|h2|] = hpar[1]. These three items are needed for reaching hpar

with sufficient energy stores and ensuring that the energy level is still non-negative.

Then the algorithm performs the following steps – in which any “check” step which does not
succeed blocks the algorithm:

1. Check whether ∀i, τ-i is winning for -i in the game Gi,-i.

2. Check whether the set V is a subset of U , is strongly connected, and ∀i ≤ n, min{prtyi(s) |
s ∈ U} is odd if and only if i ∈ I.

3. Check that hpar satisfies the desired parity conditions: for each i ̸∈ I, min{prtyi(hpar[j]) |
1 ≤ j ≤ |hpar|} is even.

4. Compute the costs cst(hpar) and cst(hch).
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5. If cst(hpar) ≥ 0, then check that at least one of the following properties hold:

(a) For each j ≤ |h1h2hpar| check that cst(h1h2hpar[..j])≥0.
(b) For each j ≤ |h1hacc| check whether cst(h1hacc[..j]) ≥ 0.

6. If cst(hpar) < 0, check whether cst(hch) > 0 and further perform the iterative checks (5.a)
and (5.b) above. Further check that hlnk has a nonempty intersection with both hpar and
hch.

The hardness is due to the fact that the cooperative setting from [CFGR16a] is a particular
case of our problem and it is already NP-hard for parity objectives.

4.5 Careful cooperative rational synthesis
We now consider the case where all the players are careful about not depleting the resource.

Definition 4.11. Let G = ⟨S, (S1 ⊎ . . . ⊎ Sn), sini, P, E⟩ be a game, cst : E→ Z be a cost function,
objectives Obj1, . . . , Objn, σ be a profile, and Obj a global objective.
σ is a solution to the careful cooperative rational problem if:

out (σ) ∈ Energy ∩ Obj, and
∀σ′

i a strategy for player i ≥ 1, ⟨σ−i, σ′
i⟩ ∈ Obji ∩ Energy =⇒ out (σ) ∈ Obji .

We denote the set of all the solutions by NE(G).

We propose a logical characterization in term of Constrained LTL model checking. This
characterization is used to provide a PSPACE solution to the cooperative synthesis problem. The
PSPACE lower bound is obtained by a reduction from the reachability problem in bounded one-
counter automata. Finally, we establish that the complexity drops to NP when the weights are
represented in unary.

A Logical Characterization
Let x be an integer variable, we will present an extension of LTL that interprets x as a counter
value and allows to write formulas constrained by x. These constraints will be described using
the following grammar:

α ::= x ∼ d | ¬α | α ∧ α . (4.1)

where x is the counter variable, d ∈ Z, and ∼∈ {<, >,≤,≥, =}.
The formulas of 1-CLTL are then:

ϕ ::= α | p | ¬ϕ | ϕ ∨ ϕ | X ϕ | ϕ Until ϕ .

where α is a counter constraint.
Remark 4.12. Note that if we remove α from the above grammar the resulting logic is plain LTL.

Fix a set of atomic propositions PROP. The models of 1-CLTL(PROP) are pairs of mappings
⟨µ1, µ2⟩.

The mapping µ1 : N → 2PROP indicates which are the atomic propositions true in every
instant.

The mapping µ2 : N→ Z indicates the counter value at all instants.
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In these models, propositional variables are evaluated wrt. µ1 and counter constraints are
evaluated wrt. µ2 as follows:

⟨µ1, µ2⟩, i |= p iff p ∈ µ1(i), ⟨µ1, µ2⟩, i |= x ∼ d iff µ2(i) ∼ d .

The temporal operators are evaluated as in LTL.
The formula of this logic are evaluated over the runs of one-counter automata. A one-counter

automaton is a tuple Γ = (L, δ, l0), where L is a finite set of locations, δ is a set of transitions,
and l0 ∈ L is the initial location. A transition in δ is a tuple (l, p, g, l′), where l and l′ are
locations, p ∈ Z is the weight of the transition, and g is a guard generated by the grammar of
Equation (4.1). A run in a one-counter automaton is a pair ⟨µ1, µ2⟩, where µ1 : N → L and
µ2 : N → Z, and for every i ≥ 0, if µ1(i) = l and µ2(i) = c, µ1(i + 1) = l′, µ2(i + 1) = c′, then
there is (l, p, g, l′) ∈ δ such that c′ = c + p and ⟨µ1, µ2⟩, i |= g.

Problem 4.13 (1-CLTL Model checking). Given a one-counter automaton Γ and a 1-CLTL
formula ϕ, decide whether there exists a run ⟨µ1, µ2⟩ such that ⟨µ1, µ2⟩ |= ϕ.

1-CLTL is a particular case of Constrained LTL with propositional variables, one integer
variable, and one-step look-ahead, whose model checking is PSPACE-complete [DG09].

Theorem 4.14. Problem 4.13 is PSPACE-complete.

Reduction to 1-CLTL model checking
Similarly to the careless case, we will express the existence of a solution to the careful synthesis
problem as a model checking question. First we define a mapping Credit : S×P→ N∪{ω}, that
associates with each couple of state and player the minimal initial credit to meet its objective
against the coalition with a positive energy, ω means that the player cannot win with any initial
credit. The minimal initial credit is computed thanks to the algorithm used in [CD12b] that
computes for each state a minimal credit and a winning strategy in an energy-parity game for
the first player (protagonist).

Let Win[Obji] = {s ∈ S | Credit(s, i) ̸= ω}.
Let π be a play in Plays(G), define the extended play in the one-counter automaton:

µπ1(i) = π[i + 1], µπ2(0) = 0, µπ2(i + 1) = cst(π[..(i + 1)]) .

We also define the following 1-CLTL formula:

ΦNE ≡
∧
i≥1

¬Φprtyi
→ 2¬

 ∨
s∈Win[Obji]

s ∧ (x ≥ Credit(s, i))


Now using a construction analogous to the one presented in the proof of Proposition 4.9, we

can state the two following propositions.

Proposition 4.15. Let ⟨µπ1 , µπ2⟩ be the extended play of some play π in G such that

⟨µπ1 , µπ2⟩ |= ΦNE ,

then π is the outcome of an NE.
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Proposition 4.16. There exists a solution to the cooperative careful rational synthesis problem
if and only if there exists a play π such that:

⟨µπ1 , µπ2⟩ |= Obj ∧ ΦNE ∧2(x ≥ 0)

Proposition 4.17. Careful cooperative rational synthesis is PSPACE-complete for Büchi and
Parity objectives when the weights are encoded in binary.

The PSPACE membership follows immediately from the poly-size logical characterization of
solutions using 1-CLTL and Theorem 4.14. On the other hand, the hardness follows by encoding
the problem of reachability in bounded one-counter automata [FJ15]. A bounded one-counter
automaton Γ is a tuple (L, b, δ, l0), where (L, δ, l0) is a one-counter automaton, and b ∈ N is a
counter bound. A transition in δ is of the form (l, p, x ≥ d1 ∧ x ≤ d2, l′) where, p ∈ {−b, . . . , b},
and d1, d2 ∈ {0, . . . , b}. The reachability problem in bounded one-counter automata asks, given
a bounded one-counter automaton Γ = (L, b, δ, l0) and a location t ∈ L, whether there is a run
⟨µ1, µ2⟩ and an i ∈ N such that µ1(i) = t, and µ2(i) = 0. [FJ15, Corollary 12] states that the
reachability problem in bounded one-counter automata is PSPACE-complete.

Theorem 4.18. Careful cooperative rational synthesis is in NP for Parity objectives when weights
are encoded in unary.

4.6 Non-cooperative rational synthesis in the common
We will use the notion of fixed Nash equilibrium. A strategy profile σ is a fixed Nash equilibrium
(f-NE) if for any strategy σ′

i for any player i in P \ {1} we have:

Payoffi(σ) ≥ Payoffi(⟨σ-i, σ′
i⟩) .

We write f-NE(G) for the set of all the profiles that are fixed Nash equilibria in G.
Given an arena G = ⟨S, (S1 ⊎ . . . ⊎ Sn), sini, P, E⟩ and objectives Obj1, . . . , Objn the non-

cooperative rational synthesis problem is to decide whether there exists a strategy σ1 such that
for all strategies σ2, . . . , σn the profile σ = ⟨σ1, . . . , σn⟩ satisfies the following:

out (σ) ∈ f-NE(G) =⇒ out (σ) ∈ Obj1 . (4.2)

We are interested in the setting where the controller is resource-aware, therefore we equip
the arena G with a cost function cst. In this case the problem is to decide whether there exists
a strategy σ1 such that for all strategies σ2, . . . , σn the profile σ = ⟨σ1, . . . , σn⟩ satisfies the
following:

out (σ) ∈ f-NE(G) =⇒ out (σ) ∈ Energy . (4.3)

Since player 1 a.k.a. the controller is concerned with the resource, he wants to guarantee the
feasibility of any rational behavior of the players. The objectives Obj2, . . . , Objn are induced by
LTL formulas. We shall call the problem consisting in designing a controller satisfying (4.3) the
non-cooperative feasible rational synthesis. We shall also call a controller that is a solution a
resource-aware controller.

Given a multi-player arena G = ⟨S, (S1⊎ . . .⊎Sn), sini, P, E⟩ and objectives Obj2, . . . , Objn, the
problem of non-cooperative feasible rational synthesis asks whether the controller has a strategy
σ1 such that for all strategies σ2, . . . , σn of the other players the profile σ = ⟨σ1, . . . , σn⟩ satisfies
Equation 4.3.
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a b c d e f

0

0 0 −1 −1 −1
+1 +1 −1 0 0

Figure 4.4: A three-player game. Player 1 (circle) has a vacuous qualitative objective and thus
only cares about not depleting the resource.

Example 4.19. In the game illustrated on Figure 4.4, there is a solution to the problem of
non-cooperative feasible rational synthesis. Suppose that player 1 (controls circle states)
is only interested in maintaining the energy of the system non-negative. Player 2 and player 3
control the square and diamond states, respectively, and want to reach the state labeled e and f ,
respectively, regardless of the energy level (i.e., their objective are induced by the LTL formulas
Fe and Ff).

Player 1 does not have a winning strategy to ensure that the energy remains above zero.
Indeed, from a, he must go to b where player 2 could go straight to c and player 3 could go
straight to d, bringing the level of energy below zero. The alternative move from a to go to d
necessarily brings the energy below zero at the following step. A strategy σ1 for player 1 which is a
solution to the problem of non-cooperative feasible rational synthesis can be informally described
as follows:

• in a go to b;

• in d go to the state labeled e if the energy is at least 1, and loop otherwise;

• in the state labeled e go to the state labeled f if the energy is at least 1, and loop otherwise;

• in the state labeled f , loop.

When player 1 plays σ1, one possible Nash Equilibrium is when both player 1 and player 2 loop
over c and d, respectively, for ever. This is a Nash equilibrium, because even though both player 2
and player 3 lose (they do not reach either e and f), they do not have a unilateral deviation to
do so. Still, the energy remains above zero, and player 1 satisfies his objective. Another Nash
Equilibrium is when player 2 and player 3 loop over c and d a finite number of times and for
a total of at least 3 times. In these cases, the game reaches the state labeled f , where all the
players satisfy their objectives, including player 1 who satisfy his energy objective. ◁

Before we move on to the resolution of our new synthesis problem, we emphasize that player 1
does not have a qualitative objective. We will later introduce the problem of non-cooperative
feasible rational synthesis with rich specifications where the system’s specification also includes
a qualitative objective, and we will show that we can solve it in a uniform manner.

4.7 Computing a resource-aware controller
We adapt a proof technique initially proposed in [BBMU15] to synthesize Nash equilibria in
concurrent games with ω-regular objectives. It was later successively adapted to solve the prob-
lem of non-cooperative rational synthesis in turn-based games [CFGR16b] and in concurrent
games [COT18]. We will follow more closely the presentation of the latter.
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The negotiation game
The technique consists in constructing a turn-based two-player game (we call it the “negotiation
game”) which is an abstraction of the original multi-player game, in such a way that there is a
winning strategy in the abstraction if and only if there a solution to the non-cooperative rational
synthesis in the original game.

The construction results in a turn-based two-player game with objectives (a Boolean combi-
nation of two parity objectives and an energy objective) for which no known solution exists.

Given a game arena G = ⟨S, (S1 ⊎ . . . ⊎ Sn), sini, P, E⟩ we construct a turn-based 2-player
zero-sum game arena H = ⟨Ŝ, (ŜC ⊎ ŜS), ŝini, Ê⟩ in which Constructor and Spoiler play, and where:

• ŜC is the set of states controlled by Constructor,

• ŜS is the set of states controlled by Spoiler,

• ŝini is the initial state,

• Ê is the transition table defined over Ŝ× Ŝ.

The set Ŝ is:

Ŝ =
(

S× (2P)2)
∪

(
S× (2P)2 × (S ∪ {−})

)
∪

(
S× (2P)2 × (S ∪ {−})

)
× S .

The set ŜC is:

ŜC = {(s, W, D) | (s ∈ S1)} ∪ {(s, W, D) | (s ∈ Si ̸=1 ∧ i ∈W )} ∪ {(s, W, D, t) | (s ∈ Si ̸=1) ∧ (i ̸∈W ∪D)} .

The set ŜS is Ŝ \ ŜC.
Let W and D be two subsets of P, Ê contains the following set of transitions:

(s, W, D) 7→ (t, W, D) if (s ∈ S1) ∧ ((s, t) ∈ E) ,

(s, W, D) 7→ (t, W, D) if (s ∈ Si) ∧ (i ∈ D) ∧ ((s, t) ∈ E) ,

(s, W, D) 7→ (s, W, D, t) if (s ∈ Si ̸=1) ∧ (i ∈W ) ∧ ((s, t) ∈ E) ,

(s, W, D) 7→ (s, W, D, t) if (s ∈ Si) ∧
(
(i ̸∈W ∪D) ∧ ((s, t) ∈ E)

)
,

(s, W, D, t) 7→ (s, W, D, t, r) if (s, r) ∈ E ,

(s, W, D, t) 7→ (s, W, D, t,−) ,

(s, W, D, t,−) 7→ (t, W, D) ,

(s, W, D, t, r) 7→ (q, W ′, D′) ,

where

W ′ = W ∪ {i} if (q = r) ∧ (s ∈ Si) ,

D′ = D ∪ {i} if (q = t) ∧ (s ∈ Si) .

ĉst is defined as follows: (
(s, W, D), (t, W, D)

)
7→ cst(s, t) ,(

(s, W, D, t, r), (r, W ′, D′)
)
7→ cst(s, r) ,(

(s, W, D, t,−), (t, W, D)
)
7→ cst(s, t) ,

0 in all the other cases.

In the negotiation arena, we call the set of states in S×
(
2P)2 × (S∪ {−}) negotiation states.

The states in S×
(
2P)2 are decision states.
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Building a non cooperative solution

A play in the negotiation arena is a sequence of states. For the ease of notation we will consider
the projection of this sequence over the decision states. We denote this set of sequences by
Ŝω ↾dec.

We equip Ŝ with the canonical projection proji that is the projection over the i-th component.
In particular, for every (s, W, D) ∈ Ŝ, we have proj1((s, W, D)) = s, proj2((s, W, D)) = W , and
proj3((s, W, D)) = D. We also extend proji over Ŝ+ and Ŝω as expected.

The set
−−→proj2(π ↾̂S1

C
) (resp.

−−→proj3(π ↾̂S1
C
)) is the set of agents in the limit of W ’s (resp. D’s).

We define the following sets:

ÔbjD = {π ∈ Ŝω | ∃p ∈ −−→proj2(π ↾dec), proj1(π ↾dec) ̸∈ Objp} , (4.4)

ÔbjW = {π ∈ Ŝω | ∀p ∈ −−→proj3(π ↾dec), proj1(π ↾dec) ∈ Objp} , (4.5)

Ênergy = {π ∈ Ŝω | ĉst(π) ≥ 0} . (4.6)

Finally, we obtain the negotiation game by equipping the negotiation arena with the following
winning condition: (

(Ênergy ∪ ÔbjD) ∩ ÔbjW
)

. (4.7)

We briefly explain how it relates to analogous approaches in the literature. In [COT18],
a very similar construction is presented in the case of concurrent arenas but with temporal
objectives. Here we have adapted this construction to the simpler setting of turn-based games.
It may appear that the case of turn-based games was already handled in [CFGR16b]. However,
in the latter work, the approach consists in building a tree automaton. In our case, where the
objective of player 1 is quantitative, this would lead to a new class of weighted tree automata
for which we would need to solve the emptiness problem. In turn, solving the emptiness of this
class of automata would require to solve a new class of turn-based games where the objective is
(Ênergy ∪ ÔbjD) ∩ ÔbjW. Instead, we directly build this turn-based game and extract a solution,
by adapting the construction from [COT18].

The intuition behind the winning condition is the following: Constructor aims at building a
solution. If the strategy he designs a strategy that ensures Energy then this strategy describes
a correct solution. In the case where Energy is not achieved, Constructor has to prove that
the players are not behaving rationally. This is where ÔbjD and ÔbjW come into play. Indeed
ÔbjD ensures that Constructor has detected the possible deviators, while ÔbjW prevents him from
detecting spurious deviations, i.e., allows Constructor to be sure the the player he is suspecting
is following a profitable deviation.

These elements put together entail the following proposition.

Proposition 4.20. There exists a solution to the problem of non-cooperative rational synthesis
in the multi-player game G if and only if there exists a winning strategy for Constructor in H.

Solving the negotiation game
In order to solve the negotiation game we need to design an algorithm for a two-player game
where the winning condition is given by Equation (4.7). We proceed as follows; we use results
from [CD12b] on solving energy parity games, by first encoding the winning condition with an
LTL formula. Then we transform this formula into a parity condition. At this stage one has
to make sure that the formula does not blow up, actually the crux is to encode the winning
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condition of Equation (4.7) by a formula of size polynomial in G. We recall that G is equipped
with a labeling function lbl : S → 2AP where AP is a set of atomic propositions. We equip the
Negotiation Game with a labeling function ̂lbl which maps elements from Ŝ to subsets of ÂP a
fresh set of atomic propositions. This new set of atomic propositions is :

ÂP = AP ∪ {pW , pD | p ∈ P} ,

and the mapping ̂lbl is defined for each state s ∈ Ŝ as follows:

̂lbl(s) = lbl(proj1(s)) ∪ {pW | p ∈ proj2(s)} ∪ {pD | p ∈ proj3(s)} .

Then the set of plays defined in Equations (4.4), resp. (4.5), can be characterized by the
following LTL formulas:

ÔbjD ≡
∨
p∈P

(
FGpD → ¬ObjpD

)
, (4.8)

ÔbjW ≡
∨
p∈P

(
FGpW ↔ ¬ObjpW

)
. (4.9)

Note that the size of both these formulas is polynomial in the size of the original arena G.
We apply classical results from [GTW02] to obtain two deterministic parity automata A1 and

A2, recognizing the sets induced by ÔbjD, resp ÔbjW. The size of both these automata is doubly
exponential in the size of the formulas for ÔbjD resp. ÔbjW that is, O

(
22|G|

)
, where |G| is the

size of the description of G. Finally, by a synchronous composition of both automata with the
arena G (synchronized on the atomic propositions ÂP), we get a new two-player game whose size
is O

(
22|G|

)
in which the winning condition for the Constructor can be expressed as:

(Energy ∪ Parity1) ∩ Parity2 . (4.10)

Remark 4.21. We highlight that in the above game, the sets Parity1 and Parity2 are induced by
priority functions prty1 and prty2 from the automata A1 and A2. A crucial property of prty1 and
prty2 is that their size is polynomial in the size of formulas of Equations (4.8) and (4.9).

We shall call a game where the winning condition is given by Equation 4.10 an EPP game.

EPP games
We design an algorithm for computing a winning strategy for player 1 in an EPP game when it
exists.

Formally we are given a two-player arena G = (S, (S1 ⊎ S2), sini, E) equipped with two prior-
ity functions prty1 and prty2 and a cost function cst. These functions induce three objectives
respectively Parity1, Parity2, and Energy. As explained earlier, we aim at solving games where
the objective is given by the set described in Equation (4.10).

Before designing a solution to these games, we establish a technical lemma. This lemma is
instrumental. It describes a special property of winning strategies in EPP games. Later, we use
this property to reduce any EPP game to a game where the winning condition is given by the set
Energy ∪ Parity for some cost function and some priority function. The solution follows from the
fact that winning strategy from the initial state in the new game for the objective Energy∩Parity
witnesses the existence of a winning strategy in the original game. Energy∩Parity were originally
introduced in [CD12b], under the name energy parity games, here they are called differently in
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order to remain consistent with our notation. We also highlight the fact that problem solved
in [CD12b] is the initial credit problem that it, computing the least possible energy level in the
initial state such that a winning strategy exists for player 1. Note that in this paper the initial
credit is always 0, but this does not change the complexity results obtained in [CD12b].

Lemma 4.22. Let G be a two-player arena, σ1 be a strategy for player 1, and let X = W (Parity1∩
Parity2). Assume that σ1 is winning for the objective (Energy(G) ∪ Parity1) ∩ Parity2. Then for
each path π ∈ out (σ1), the following holds:

π ∈ out (σ1) \ S∗XSω =⇒ π ∈ Energy ∩ Parity2 .

We now present a construction that reduces EPP games to Energy ∩ Parity games.
Let G = (S, (S1 ⊎ S2), sini, E) be a two-player zero-sum game where the objective is given by

Equation (4.10) above. We then build a fresh two-player game Ĝ = (S, S1 ⊎ S2, sini, Ê). The
construction builds the arena schematically depicted in Figure 4.5. Basically, the set of state is
preserved, the edges in S \X are also preserved but edges in X2 are erased and all replaced by
self loop with cost 0.

Before establishing the formal details of our construction, consider Figure 4.5 to build some
intuition.

s t

XS \X

cst(s, t)
0

s3

s2

s1
cst(s1, s2)

cst(s2, s3)

Figure 4.5: Illustration of the game Ĝ arena construction. X is as in Lemma 4.22.

The game Ĝ is formally designed as follows:

• The sets of states is S, S1 and S2 are unchanged and the initial state are the same.

• The set of edges Ê is given by Ê1 ∪ Ê2 where:

Ê1 = {(s1, s2) ∈ E | s1 ̸∈W (Parity1 ∩ Parity2)} ,

Ê2 = {(s, s) | s ∈W (Parity1 ∩ Parity2)} .

• The new priority function over Ŝ is obtained as follows:

p̂rty(s) =
{

0 if s ∈W (Parity1 ∩ Parity2) ,

prty(s) otherwise.

• The new cost function over Ê is defined as follows:

ĉst(s1, s2) =
{

0 when (s1, s2) ∈ Ê2

cst(s1, s2) otherwise.

We will use the above construction to solve EPP games. We first state a couple of facts (X
as in Lemma 4.22):
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Fact 1. For any pair of states (s, t) in (S \X)2 the priority of s and the cost of (s, t) are similar in
G and Ĝ.

Fact 2. Histories and plays in G that never visit X are preserved in Ĝ. Moreover, if such a play in
G is in Energy ∩ Parity2 then it is in Energy ∩ Parity induced by ĉst and p̂rty.

We want to show that the above construction preserves winning strategies in the original game
G. The preservation of strategies is formalized in the following sense:

Proposition 4.23. Let G be an EPP game, then the following assertions are equivalent:

a. Player 1 wins G (from the initial state),

b. Player 1 wins Ĝ (from the initial state) for the objective Energy ∩ Parity induced by ĉst and
p̂rty.

From the previous proposition and classical results, we also obtain a complexity upper-bound
for solving EPP games.

Corollary 4.24. The problem of deciding the existence of a winning strategy in an EPP game is
in NP ∩ co-NP.

The Complexity of computing a resource-aware controller
With the previous results, we can finally establish the complexity of the problem of non-cooperative
rational synthesis when the objectives of the players are induced by an LTL specification. Then,
we extend it to the case where the system has a “rich specification”, that is, in addition to hav-
ing the objective of maintaining the resource non-negative, the controller must also ensure a
qualitative objective.

Theorem 4.25. The non-cooperative feasible rational synthesis problem is 2EXPTIME-complete.

The hardness easily follows from classical LTL synthesis problem [GTW02]. The member-
ship is as follows. From Proposition 4.20 computing a solution for the non-cooperative feasible
rational synthesis amounts to solving a negotiation game where the winning condition is given
by Equation 4.7. But solving a game with this objective according entails solving a game where
the objective is given by Equation 4.10 (which is an EPP game). However the built arena is
double exponential in the size of the original game but has priority functions of polynomial size.
Thanks to Proposition 4.23 we can invoke, the algorithm from [CD12b] where they solve games
where the objective is Energy∩Parity. Finally, notice that the algorithm in [CD12b] runs in time
polynomial in the size of the input arena and exponential in the size of the priority function, thus
using Remark 4.21 commenting the bounds of the negotiation game entails the upper bound.

The Non-Cooperative Feasible Rational Synthesis with Rich Specifica-
tions
Now we consider a multi-player arena G = ⟨S, (S1⊎. . .⊎Sn), sini, P, E⟩ with objectives Obj1, . . . , Objn
induced by LTL formulas and a cost function cst. We aim at designing a strategy σ1 for player 1
such that against any strategies for players 2, . . . , n, the profile σ = ⟨σ1, . . . , σn⟩ satisfies

out (σ) ∈ f-NE(G) =⇒ out (σ) ∈ Energy ∩ Obj1 . (4.11)

We shall call this problem the non-cooperative feasible rational synthesis with rich objectives.
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Theorem 4.26. The non-cooperative feasible rational synthesis with rich specifications is
2EXPTIME-complete.

Again the hardness follows from the classical LTL synthesis problem. To obtain the upper
bound, one can build a negotiation arena for the input, and solve the negotiation with the
following objective (

(Ênergy ∩ Ôbj1) ∪ ÔbjD
)
∩ ÔbjW , (4.12)

where

Ôbj1 = {π ∈ Ŝω | proj1(π) |= Obj1} .

We argue that his new objective can be encoded as a EPP game. Indeed, notice that Equa-
tion (4.12) is equivalent to (

Ênergy ∩ Ôbj1 ∩ ÔbjW︸ ︷︷ ︸
A

)
∪

(
ÔbjD ∩ ÔbjW︸ ︷︷ ︸

B

)
finally we obtain the following set: (

Ênergy ∪A
)
∩ C ,

where

A = Ôbj1 ∩ ÔbjW , B = ÔbjD ∩ ÔbjW , C = A ∪B .

We conclude by applying the result from Proposition 4.24 and noticing that A, B, and C can be
written as LTL formulas whose size is polynomial in the size of the input game.

4.8 Discussion
Wrap-up
In this chapter we presented a series of results regarding the synthesis in the context of multi-
player games. We extend the notion of synthesis problem where one is interested in designing
a control policy to the case where one suggests a policy for multiple entities, i.e. the rational
synthesis. In general one relies on the fact that this policy is compliant with some sort of
rationality to incentivize the agents’ cooperation. We introduced a quantitative notion of the
rational synthesis where the players share a common resource, that we choose to call energy,
beside their own qualitative objective.

Following the qualitative setting, we extended the cooperative and non-cooperative version
of rational synthesis problem.

The cooperative rational synthesis was first studied in work by Ummels [Umm08] where he
considered the following setting. Each agent is assigned an individual specification together
with a list of the specification that “must-hold”. In this case, one aims at constructing a global
controller that ensures a rational behavior for the global system such that its outcome ensures
the “must-hold” specifications. Later, Fisman et. al. [FKL10] gave a logical characterization of
this problem, stating it in terms of model checking with Strategy Logic. This is from where
we borrow the name cooperative rational synthesis, as it assumes that the different part of the
system will agree on a global behavior as long as some rationality is guaranteed, viz., no agent
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has an incentive to unilaterally defect from it. Finally Condurache et. al. [CFGR16a] presented
a complete picture of complexity bounds for a variety of ω-regular specifications.

In a different line of work Bouyer et. al. [UW11] studied the problem of existence of a Nash
equilibrium in systems with qualitative specifications but the obtained results were of negative
nature. The decidability was hard to obtain and quite strict restriction on the behavior of the
agents had to be made in order to handle this case.

While mixing temporal and quantitative specifications is a rather natural idea, it has been
mostly studied in the setting of zero-sum games [CD12b, CHJ05, CRR12, CDGO14, MSTW17].
The model checking of resource-bounded logics of strategies has also been rather extensively
investigated [Ves15, NALR18, ABDL18, ADL20].

Two important extensions of LTL were useful in the results presented in this chapter to obtain
optimal algorithms for parity objectives. They played the role that plays plain LTL in [CFGR16a].
Energy LTL [BBFR13] was used for the careless case, and Constrained LTL [DG09] was used
for the careful case. In fact Energy LTL is a particular case of Constrained LTL. We used both
to highlight the core differences between the careless and the careful cases. Energy LTL allowed
us to verify that an LTL property holds over a run whose energy does not drop below zero,
which was just enough for the careless case. In the careful case, one also needed to check as
much, but needed to check that some states are not traversed with a level of energy too high to
allow a profitable deviation from the agent controlling it. The extended language of Constrained
LTL, allowing the comparison of the level of energy with any constant is providing the necessary
formal machinery. Keeping the energy not only above zero, but below certain bounds in some
states is thus crucial for the careful case. This was reflected by our use of bounded one-counter
automata [FJ15] to obtain optimal lower-bounds for our problems.

We also investigated the problem of non-cooperative rational synthesis in systems with one
common-pool resource, where the specification of the system is a qualitative objective to be
realized in a run that never depletes the common-pool resource (the controller is thus careful),
and the system’s components (apart from the controller) are careless. We do not investigate the
case of careful players in our case. The carefulness of a player, as far as we were concerned, defies
the concept of non cooperation as players (with the exception of the controller) are putatively
uncontrollable, and requiring carefulness seemed therefore contrived.

Perspectives
We first hint at some results that can be derived in the cooperative setting. In the careful case, the
proof of Proposition 4.17 already establishes that the problem is PSPACE-hard for reachability
objectives, and it can be straightforwardly extended to show that the problem is PSPACE-hard
for co-Büchi objectives.

With LTL objectives, a corollary of our results hints at a 2EXPTIME membership for both
settings. This should be obtained by relying on the same techniques used in the original LTL
synthesis problem [PR89].

Another direction that one could look at is to introduce a hybrid setting where a subset of
players is careless and the other is careful. Our results hint at the fact that it should not be
more difficult than the careful case since the logic used in that case subsumes energy LTL, and
thus a formula to describe this new setting for the players could be easily described.

Regarding the non-cooperative setting, we first plan to study the more general case of having
multiple resources in the system, as in [CDJ+22] where we developed an approach for multiple
resources in the cooperative case. Another research direction is investigating the interesting and
more tractable fragments of LTL such as the GR(1) fragment [BJP+12, GNPW22].





Conclusion

In this manuscript, we presented some results that fall in the context of controller synthesis. In
particular, we focused on the problem of implementability. We studied this problem for different
models and with respect to different aspects.

In Chapter 1 we tackled the problem of implementability through memory, i.e., we presented
a series of results that help understand the memory requirements of optimal controllers. In
Chapter 2, we shifted the point of view and focused more on the behavior of an optimal controller,
i.e., we aimed at designing optimal controllers with robust behavior with respect to long term
specifications. In Chapter 3, studied real timed systems. In this formalism, the main challenge is
to design controllers that do not require infinite precision. Finally in Chapter 4, we studied multi-
player games and developed rationality notions taking into account the constraints imposed by
a common resource. Some perspectives have already been proposed in the end of each chapter.
We describe now additional possible developments, more ambitious and long term, that have not
yet been investigated.

Imprecise abstractions A challenge that one usually faces when modeling complex systems
is the size of the state space. To the best of our knowledge, state of the art algorithms for
the controller synthesis assume that the full system is modeled, even though in the case of
imperfect information formalism, the entire system is modeled and only the controller has a
partial knowledge of current state of the model. When the formalism is decidable, almost-all
the techniques rely on abstraction-based techniques. For these abstractions to perform correctly,
one has to prove that they are faithful to the behavior of the initial system. This way one can
transform a correct controller of the abstracted system into a correct controller in the concrete
system. Here we propose to design imprecise abstractions displaying a close enough behavior
with respect to the concrete system. However, one has to still ensure that a correct controller for
the abstraction is going to be good enough for the concrete system (once transformed). We plan
to introduce distance-based techniques to formalize the notion of close enough, and continuity
notion to formalize the notion of good enough.

Timed bisimulation in hybrid systems In this manuscript we presented techniques for han-
dling robustness issues for timed games. In this direction, we aim at extending these techniques
to hybrid systems. Unfortunately, hybrid systems suffer from poor tractability properties. Our
goal in this part is to design simulation-based technique with the aim of identifying tractable
classes of hybrid games. Intuitively, we want to identify classes of hybrid games that can be sim-
ulated by timed automata (and vice-versa). We believe that through such simulations, one can
transfer the techniques developed for timed games to hybrid games. Preliminary work is progress
for this part in the PhD of Mariem Hammami jointly supervised by Catalin Dima, Régine Laleau,
and myself.

83



84 CHAPTER 4. RATIONAL SYNTHESIS

A second goal, is to develop distance-based techniques to tackle an even larger class of hybrid
systems. For instance, in the case where one cannot find a bisimulation between the hybrid
system and a timed system. We aim at developing notion of abstraction that approximates the
behavior of the initial system. The notion distance, should be used here to bring guarantees on
the quality of the abstraction.
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