
Theory of Computer Science:
Why All That Formal Stuff?

Sergiu Ivanov

sergiu.ivanov@univ-grenoble-alpes.fr

Université Grenoble Alpes

Open Seminar



Question

Computer Science ↔ Maths

What is the relationship?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 1/16



Outline

1. Part 1
Calculus
Formal Languages
Set Theory

2. Part 2
Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? –/16



Outline

1. Part 1
Calculus
Formal Languages
Set Theory

2. Part 2
Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? –/16



Calculus

derivatives
df
dx

integrals

∫ b

a
f dx

How often do we use that in practice?

We use that in games! collisions, ray tracing, …

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 2/16

https://openclipart.org/

https://openclipart.org/


Calculus

derivatives
df
dx

integrals

∫ b

a
f dx

How often do we use that in practice?

We use that in games! collisions, ray tracing, …

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 2/16

https://openclipart.org/

https://openclipart.org/


Calculus

derivatives
df
dx

integrals

∫ b

a
f dx

How often do we use that in practice?

We use that in games! collisions, ray tracing, …

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 2/16

https://openclipart.org/

https://openclipart.org/


Calculus

derivatives
df
dx

integrals

∫ b

a
f dx

How often do we use that in practice?

We use that in games! collisions, ray tracing, …

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 2/16

https://openclipart.org/

https://openclipart.org/


Outline

1. Part 1
Calculus
Formal Languages
Set Theory

2. Part 2
Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? –/16



Formal Languages

Finite alphabet: V = {a1,a2, . . . ,an} letters

Word = any finite sequence of letters

▶ a1a2, a1a1a1, a2a2a1a1a2a2

Language over V = any set of words over V

regular languages, finite automata, pushdownautomata, Turing

machines, context-free language, pumping lemma, …

Why? Why?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 3/16



Formal Languages

Finite alphabet: V = {a1,a2, . . . ,an} letters

Word = any finite sequence of letters

▶ a1a2, a1a1a1, a2a2a1a1a2a2

Language over V = any set of words over V

regular languages, finite automata, pushdownautomata, Turing

machines, context-free language, pumping lemma, …

Why? Why?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 3/16



Formal Languages

Finite alphabet: V = {a1,a2, . . . ,an} letters

Word = any finite sequence of letters

▶ a1a2, a1a1a1, a2a2a1a1a2a2

Language over V = any set of words over V

regular languages, finite automata, pushdownautomata, Turing

machines, context-free language, pumping lemma, …

Why? Why?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 3/16



Formal Languages

Finite alphabet: V = {a1,a2, . . . ,an} letters

Word = any finite sequence of letters

▶ a1a2, a1a1a1, a2a2a1a1a2a2

Language over V = any set of words over V

regular languages, finite automata, pushdownautomata, Turing

machines, context-free language, pumping lemma, …

Why? Why?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 3/16



Formal Languages

Finite alphabet: V = {a1,a2, . . . ,an} letters

Word = any finite sequence of letters

▶ a1a2, a1a1a1, a2a2a1a1a2a2

Language over V = any set of words over V

regular languages, finite automata, pushdownautomata, Turing

machines, context-free language, pumping lemma, …

Why? Why?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 3/16



Formal Languages: Compilers

Programming languages are formal languages

▶ alphabet for C = {if, for, int, +, *, . . .}

1 + 2 ∗ 3 =⇒
parsing

+

1 ∗

2 3

Compiler = parser + binary code generator

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 4/16



Formal Languages: Regular Expressions

[letter]
(
[letter]

∣∣∣ [digit])* q0 q1
[letter]

[letter]

[digit]

finite automaton

▶ a, ab, c2, x2a, …

Formal regular expressions ∼ finite automata

Regexp = rather extended regular expressions

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 5/16



Formal Languages: Regular Expressions

[letter]
(
[letter]

∣∣∣ [digit])* q0 q1
[letter]

[letter]

[digit]

finite automaton

▶ a, ab, c2, x2a, …

Formal regular expressions ∼ finite automata

Regexp = rather extended regular expressions

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 5/16



Formal Languages: A Philosophy of Computers

strictly less powerful

q0 q1
[letter]

[letter]

[digit]

Finite automata

<

a b 1· · · · · ·

qi

Turing machines

Computers correspond towhich?

Finite automata!
▶ all resources are finite

but
Programming languages

are Turing powerful!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 6/16



Formal Languages: A Philosophy of Computers
strictly less powerful

q0 q1
[letter]

[letter]

[digit]

Finite automata <

a b 1· · · · · ·

qi

Turing machines

Computers correspond towhich?

Finite automata!
▶ all resources are finite

but
Programming languages

are Turing powerful!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 6/16



Formal Languages: A Philosophy of Computers
strictly less powerful

q0 q1
[letter]

[letter]

[digit]

Finite automata <

a b 1· · · · · ·

qi

Turing machines

Computers correspond towhich?

Finite automata!
▶ all resources are finite

but
Programming languages

are Turing powerful!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 6/16



Formal Languages: A Philosophy of Computers
strictly less powerful

q0 q1
[letter]

[letter]

[digit]

Finite automata <

a b 1· · · · · ·

qi

Turing machines

Computers correspond towhich?

Finite automata!
▶ all resources are finite

but
Programming languages

are Turing powerful!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 6/16



Formal Languages: A Philosophy of Computers
strictly less powerful

q0 q1
[letter]

[letter]

[digit]

Finite automata <

a b 1· · · · · ·

qi

Turing machines

Computers correspond towhich?

Finite automata!
▶ all resources are finite

but
Programming languages

are Turing powerful!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 6/16



Outline

1. Part 1
Calculus
Formal Languages
Set Theory

2. Part 2
Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? –/16



Set Theory

A = {a,b,c, . . . }

When do programmers use set theory?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 7/16



Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

house =
{

, , , . . .
}

Inheritance = set inclusion

house ⊆ building

Every house is a building, but not every building is a house.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

https://openclipart.org/


Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

house =
{

, , , . . .
}

Inheritance = set inclusion

house ⊆ building

Every house is a building, but not every building is a house.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

https://openclipart.org/


Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

house =
{

, , , . . .
}

Inheritance = set inclusion

house ⊆ building

Every house is a building, but not every building is a house.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

https://openclipart.org/


Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

house =
{

, , , . . .
}

Inheritance = set inclusion

house ⊆ building

Every house is a building, but not every building is a house.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

https://openclipart.org/


Classes and Types “are” Sets

A class/type is a set of objects sharing a property.

house =
{

, , , . . .
}

Inheritance = set inclusion

house ⊆ building

Every house is a building, but not every building is a house.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 8/16

https://openclipart.org/

https://openclipart.org/


Types and Operations on Sets
MyType x; x ∈ MyType

struct Person {
String name;
int age;

}

Person = String × int =
{(“Vasile”, 1234), (“Ion”,−2), . . . }

union Variant {
String str;
int num;

}

Person = String ∪ int =
{“Vasile”, 1234, “Ion”,−2, . . . }

f :: Int -> Double
f x = x / 2

f : Z → R ∈ RZ

How about ∩, \, … ?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 9/16

https://openclipart.org/

https://openclipart.org/


Types and Operations on Sets
MyType x; x ∈ MyType

struct Person {
String name;
int age;

}

Person = String × int =
{(“Vasile”, 1234), (“Ion”,−2), . . . }

union Variant {
String str;
int num;

}

Person = String ∪ int =
{“Vasile”, 1234, “Ion”,−2, . . . }

f :: Int -> Double
f x = x / 2

f : Z → R ∈ RZ

How about ∩, \, … ?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 9/16

https://openclipart.org/

https://openclipart.org/


Types and Operations on Sets
MyType x; x ∈ MyType

struct Person {
String name;
int age;

}

Person = String × int =
{(“Vasile”, 1234), (“Ion”,−2), . . . }

union Variant {
String str;
int num;

}

Person = String ∪ int =
{“Vasile”, 1234, “Ion”,−2, . . . }

f :: Int -> Double
f x = x / 2

f : Z → R ∈ RZ

How about ∩, \, … ?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 9/16

https://openclipart.org/

https://openclipart.org/


Types and Operations on Sets
MyType x; x ∈ MyType

struct Person {
String name;
int age;

}

Person = String × int =
{(“Vasile”, 1234), (“Ion”,−2), . . . }

union Variant {
String str;
int num;

}

Person = String ∪ int =
{“Vasile”, 1234, “Ion”,−2, . . . }

f :: Int -> Double
f x = x / 2

f : Z → R ∈ RZ

How about ∩, \, … ?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 9/16

https://openclipart.org/

https://openclipart.org/


Types and Operations on Sets
MyType x; x ∈ MyType

struct Person {
String name;
int age;

}

Person = String × int =
{(“Vasile”, 1234), (“Ion”,−2), . . . }

union Variant {
String str;
int num;

}

Person = String ∪ int =
{“Vasile”, 1234, “Ion”,−2, . . . }

f :: Int -> Double
f x = x / 2

f : Z → R ∈ RZ

How about ∩, \, … ?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 9/16

https://openclipart.org/

https://openclipart.org/


Types and Operations on Sets
MyType x; x ∈ MyType

struct Person {
String name;
int age;

}

Person = String × int =
{(“Vasile”, 1234), (“Ion”,−2), . . . }

union Variant {
String str;
int num;

}

Person = String ∪ int =
{“Vasile”, 1234, “Ion”,−2, . . . }

f :: Int -> Double
f x = x / 2

f : Z → R ∈ RZ

How about ∩, \, … ?

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 9/16

https://openclipart.org/

https://openclipart.org/


Outline

1. Part 1
Calculus
Formal Languages
Set Theory

2. Part 2
Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? –/16



Abstract Algebra

Group

▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

▶ inverses: x+ (−x) = (−x) + x = 0

Free Monoid
▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

Who usesmonoids?? Turns out, you do!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10/16

https://openclipart.org/

https://openclipart.org/


Abstract Algebra

Group

▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

▶ inverses: x+ (−x) = (−x) + x = 0

Free Monoid
▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

Who usesmonoids?? Turns out, you do!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10/16

https://openclipart.org/

https://openclipart.org/


Abstract Algebra

Group

▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

▶ inverses: x+ (−x) = (−x) + x = 0

Free Monoid
▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

Who usesmonoids?? Turns out, you do!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10/16

https://openclipart.org/

https://openclipart.org/


Abstract Algebra

Group

▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

▶ inverses: x+ (−x) = (−x) + x = 0

Free Monoid
▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

Who usesmonoids??

Turns out, you do!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10/16

https://openclipart.org/

https://openclipart.org/


Abstract Algebra

Group

▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

▶ inverses: x+ (−x) = (−x) + x = 0

Free Monoid
▶ associativity: x+ (y+ z) = (x+ y) + z

▶ identity: x+ 0 = 0+ x = x

Who usesmonoids?? Turns out, you do!

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 10/16

https://openclipart.org/

https://openclipart.org/


Monoids as Collections

In a free monoid M, no sum cancels out.

Take x ∈ M
x+ 0 = x, same length

x+ y, a longer sum

Formal sums in a free monoid represent collections.

The terms of the sum are the entries.

The sum operator is the concatenation.

▶ [1,3] + [3,7]= [1,3,3,7]

▶ “big” + “banana”= “bigbanana”

A log is a typical free monoid.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 11/16



Monoids as Collections

In a free monoid M, no sum cancels out.

Take x ∈ M
x+ 0 = x, same length

x+ y, a longer sum

Formal sums in a free monoid represent collections.

The terms of the sum are the entries.

The sum operator is the concatenation.

▶ [1,3] + [3,7]= [1,3,3,7]

▶ “big” + “banana”= “bigbanana”

A log is a typical free monoid.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 11/16



Monoids as Collections

In a free monoid M, no sum cancels out.

Take x ∈ M
x+ 0 = x, same length

x+ y, a longer sum

Formal sums in a free monoid represent collections.

The terms of the sum are the entries.

The sum operator is the concatenation.

▶ [1,3] + [3,7]= [1,3,3,7]

▶ “big” + “banana”= “bigbanana”

A log is a typical free monoid.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 11/16



Monoids as Collections

In a free monoid M, no sum cancels out.

Take x ∈ M
x+ 0 = x, same length

x+ y, a longer sum

Formal sums in a free monoid represent collections.

The terms of the sum are the entries.

The sum operator is the concatenation.

▶ [1,3] + [3,7]= [1,3,3,7]

▶ “big” + “banana”= “bigbanana”

A log is a typical free monoid.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 11/16



Outline

1. Part 1
Calculus
Formal Languages
Set Theory

2. Part 2
Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? –/16



“Easy” Parallelism with Functional Programming

Higher-order functions are easier to handle.

for(i = 0; i < n; i++)
vect[i] = vect[i] + 2;

map (λ x → x + 2) vect

easier to parallelise

▶ each step in for explicitly depends on the previous

one: i = i+1

▶ the behaviour of map is explicitly fixed

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 12/16



“Easy” Parallelism with Functional Programming

Higher-order functions are easier to handle.

for(i = 0; i < n; i++)
vect[i] = vect[i] + 2;

map (λ x → x + 2) vect

easier to parallelise

▶ each step in for explicitly depends on the previous

one: i = i+1

▶ the behaviour of map is explicitly fixed

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 12/16



Parallelism vs. Concurrency. Statically.

Parallelism

Concurrency

1. problem → independent subproblems

2. solve subproblems independently

▶ no shared resources

multiple threads share resources
▶ synchronisation

Types allow static differentiation between

parallel threads and concurrent threads.

▶ monads

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 13/16



Parallelism vs. Concurrency. Statically.

Parallelism

Concurrency

1. problem → independent subproblems

2. solve subproblems independently

▶ no shared resources

multiple threads share resources
▶ synchronisation

Types allow static differentiation between

parallel threads and concurrent threads.

▶ monads

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 13/16



Parallelism vs. Concurrency. Statically.

Parallelism

Concurrency

1. problem → independent subproblems

2. solve subproblems independently

▶ no shared resources

multiple threads share resources
▶ synchronisation

Types allow static differentiation between

parallel threads and concurrent threads.

▶ monads

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 13/16



Parallelism vs. Concurrency. Statically.

Parallelism

Concurrency

1. problem → independent subproblems

2. solve subproblems independently

▶ no shared resources

multiple threads share resources
▶ synchronisation

Types allow static differentiation between

parallel threads and concurrent threads.

▶ monads

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 13/16



Outline

1. Part 1
Calculus
Formal Languages
Set Theory

2. Part 2
Collections
Parallel and Concurrent Programming
Factoring Out Some Repeating Patterns

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? –/16



Successive Lookups

personByName :: String -> Maybe Person
carByPerson :: Person -> Maybe Car
model :: Car -> Maybe String

Suppose we want to know the model of John’s car.

case personByName "John" of
Nothing -> Nothing
Just john ->

case carByPerson john of
Nothing -> Nothing
Just johnsCar -> model johnsCar

Imagine what happens if one has longer chains.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 14/16

https://openclipart.org/

https://openclipart.org/


Successive Lookups

personByName :: String -> Maybe Person
carByPerson :: Person -> Maybe Car
model :: Car -> Maybe String

Suppose we want to know the model of John’s car.

case personByName "John" of
Nothing -> Nothing
Just john ->

case carByPerson john of
Nothing -> Nothing
Just johnsCar -> model johnsCar

Imagine what happens if one has longer chains.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 14/16

https://openclipart.org/

https://openclipart.org/


Successive Lookups

personByName :: String -> Maybe Person
carByPerson :: Person -> Maybe Car
model :: Car -> Maybe String

Suppose we want to know the model of John’s car.

case personByName "John" of
Nothing -> Nothing
Just john ->

case carByPerson john of
Nothing -> Nothing
Just johnsCar -> model johnsCar

Imagine what happens if one has longer chains.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 14/16

https://openclipart.org/

https://openclipart.org/


Successive Lookups

personByName :: String -> Maybe Person
carByPerson :: Person -> Maybe Car
model :: Car -> Maybe String

Suppose we want to know the model of John’s car.

case personByName "John" of
Nothing -> Nothing
Just john ->

case carByPerson john of
Nothing -> Nothing
Just johnsCar -> model johnsCar

Imagine what happens if one has longer chains.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 14/16

https://openclipart.org/

https://openclipart.org/


Factoring out Patterns (Monads! \o/)

We often want to do the same thing over and over be-

tween two function calls:

▶ check whether the previous lookup returned a value

▶ handle states

▶ strictly specify and handle side effects

Monads help factor out such patterns.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 15/16



Factoring out Patterns (Monads! \o/)

We often want to do the same thing over and over be-

tween two function calls:

▶ check whether the previous lookup returned a value

▶ handle states

▶ strictly specify and handle side effects

Monads help factor out such patterns.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 15/16



Factoring out Patterns (Monads! \o/)

We often want to do the same thing over and over be-

tween two function calls:

▶ check whether the previous lookup returned a value

▶ handle states

▶ strictly specify and handle side effects

Monads help factor out such patterns.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 15/16



Factoring out Patterns (Monads! \o/)

We often want to do the same thing over and over be-

tween two function calls:

▶ check whether the previous lookup returned a value

▶ handle states

▶ strictly specify and handle side effects

Monads help factor out such patterns.

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 15/16



Conclusion

Thinking formally may be useful.

Don’t overdo it tho.

▶ that’s the subject of my next talk

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 16/16



Conclusion

Thinking formally may be useful.

Don’t overdo it tho.

▶ that’s the subject of my next talk

Sergiu Ivanov, Université Grenoble Alpes Theory of Computer Science: Why All That Formal Stuff? 16/16


	Part 1
	Calculus
	Formal Languages
	Set Theory

	Part 2
	Collections
	Parallel and Concurrent Programming
	Factoring Out Some Repeating Patterns


