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Abstract. In this paper, we study the computational complexity of the cooperative and

non-cooperative rational synthesis problems, as introduced by Kupferman, Vardi and co-

authors in recent papers for general LTL objectives. We investigate these problems on mul-

tiplayer turn-based games played on graphs, and provide complexity results for the classical

omega-regular objectives. Most of these complexity results are tight and shed light on how

to solve those problems optimally.

1 Introduction

In this paper, we study the computational complexity of the rational synthesis problem

as introduced in [15, 19]. Rational synthesis uses k � 1 player non-zero sum games to

formalize the problem of synthesising a system (modeled by Player 0) that is executed in

an environment made of several components (modeled by Players 1, ..., k). The behaviour of

the components composing the environment is assumed to be rational, and not necessarily

fully antagonistic as in the classical two player zero-sum setting, see e.g. [23]. Rationality

of the environment is modelled by assuming that the components behave according to

a Nash equilibrium. Rational synthesis has been introduced in [15, 19] in two different

settings.

In the first setting, called cooperative rational synthesis [15], the environment cooper-

ates with the system in the sense that its components agree to play a Nash equilibrium

that is winning for Player 0 (if it exists). In other words, in the cooperative setting, one

assumes that once a Nash equilibrium winning for Player 0 is proposed, all the players

will adhere to the suggested strategies.

In the second setting, called non-cooperative rational synthesis [19], the components

of the environment may follow any strategy, providing it is a Nash equilibrium. In this

setting, one has to output (if it exists) a strategy σ0 for the system which has to be winning

against all the possible strategy profiles that include σ0 for Player 0 and which are Nash

equilibria.

The main contribution of the original papers is to propose and to motivate the def-

initions above. The only computational complexity results given in those papers are as



follows: the cooperative and non-cooperative rational synthesis problems are 2ExpTime-

c for specifications expressed in linear temporal logic (LTL), thus matching exactly the

complexity of classical zero-sum two-player LTL synthesis [21]. The upper bound is ob-

tained by reductions to the satisfiability problem of formulas in Strategy Logic [20] (SL).

The reduction to SL and the use of LTL specifications does not allow one to understand

finely the computational complexity aspects of solving the underlying n player non-zero

sum games.

Contributions To better understand the computational complexity of the rational syn-

thesis problems and how to manipulate their underlying games algorithmically, we consider

variants of those problems for games played on turn-based graph structures for reacha-

bility, safety, Büchi, coBüchi, parity, Rabin, Streett and Muller objectives. We also study

the computational complexity of solving those games when the number of players is fixed.

This parameterised analysis makes sense as the number of components forming the envi-

ronment may be limited in practical applications. The results we obtain are summarized

in Table 1.

Cooperative Non-Cooperative

Unfixed k Fixed k Unfixed k Fixed k

Safety NP-c Ptime-c Pspace-c Ptime-c

Reachability NP-c Ptime-c Pspace-c Ptime-c

Büchi Ptime-c[25] Ptime-c[25] Pspace-c Ptime-c

co-Büchi NP-c[25] Ptime-c Pspace-c Ptime-c

Parity NP-c[25] UP X co� UP , parity-h Exptime, Pspace-h Pspace, NP-h, coNP-h

Streett NP-c [25] NP [25], NP-hard Exptime,Pspace-h Pspace-c

Rabin PNP , NP-h, coNP-h PNP , coNP-h Exptime, Pspace-h Pspace-c

Muller Pspace-c Pspace-c Exptime, Pspace-h Pspace-c

LTL 2Exptime-c[15] 2Exptime-c[15] 2Exptime-c[19] 2Exptime-c[19]

Table 1: Complexity of rational synthesis for k players.

On the positive side, our results show that for a fixed number of players, for objectives

that admit a polynomial time solution in the two-player zero-sum case (reachability, safety,

Büchi and coBüchi), cooperative and non-cooperative rational synthesis can be solved in

PTime. On the negative side, for rich omega regular objectives defined by parity, Rabin,

or Streett objective, the complexity increases. First, games with parity objectives cannot

be solved in polynomial time unless PTime equals NP while it is conjectured that this

result does not hold for two-player zero sum parity games. Second, games with Rabin or

Streett objectives are PSpace-C for the non-cooperative setting while they have solution

in nondeterministic polynomial time for their zero-sum two player versions. When the

number of players is not fixed, the complexity is usually substantially higher than for the

two-player zero-sum case. For example, non-cooperative rational synthesis is PSpace-H

for all objectives, so even for safety objectives.

2



Cooperative rational synthesis is a particular case of the more general problem of

checking the existence of a constrained Nash equilibrium in a multiplayer game, where

the strategy of Player 0 is required to be winning. The complexity of constrained Nash

equilibria has been studied by Ummels in [25] for some classes of objectives, based on a

characterisation of Nash equilibria by means of LTL formulas to be checked on the game

arena. This directly gives us upper-bounds for cooperative synthesis and Büchi, coBüchi,

parity and Streett objectives. For the other objectives, we extend this characterization.

Solutions to the non-cooperative case are much more involved and are based on a fine tuned

application of tree automata techniques. This is a central contribution of our paper. In

particular, our tree automata have exponential size but we show how to test their emptiness

in PSpace to obtain optimal algorithms for Streett, Rabin and Muller objectives and fixed

number of players.

The tree automata that we construct not only allow us to test the existence of solution

to the non-cooperative rational synthesis problem but also to symbolically represent all

the strategies for the system that are solutions. This set is thus regular and can be ma-

nipulated with automata-based techniques. Also, it should be clear that those techniques

are amenable to symbolic implementations when the game structure is given with binary

decision diagrams. This is important as it shows that our techniques pave the way to

implementations that have proven useful and efficient by the computer aided verification

community, and implemented in tools like nuSMV [13] for example. To obtain lower-

bounds, we had to design several original and intricate reductions that explain cleanly

why some of those problems are intractable.

Related works Non-zero games for synthesis are gaining attention recently, see e.g. [5] for

a survey of recent results. Secure equilibria were introduced for two players in [10] and

their potential for synthesis was demonstrated in [9]. Secure equilibria are refinement of

Nash equilibria [24]. Doomsday equilibria extend secure equilibria to the n player case, and

their complexity complexity is studied in [8]. Subgame perfect equilibria, that also refines

Nash equilibra, were first studied in [24, 25]. To model rationality of players, the notion

of admissible strategy is used in [4, 14] instead of the notion of Nash equilibria, and the

computational complexity of related decision problems is studied in [7]. Synthesis rules

for reactive systems based on admissibility are studied in [6]. All those works consider

games played on a game structure with classical omega-regular objectives and provide

tight complexity results for almost all the relevant synthesis problems. This is not the

case for cooperative and non-cooperative rational synthesis for which only the complexity

for specifications given in LTL was known [15, 19]. This paper provides algorithms and

computational complexity results for cooperative and non-cooperative rational synthesis

that allows us to better understand the complexity picture of non-zero sum games played

on graphs with omega-regular objectives.

Structure of the paper In Sect. 2, we recall the definition of the cooperative and non-

cooperative synthesis problem as introduced in [15, 19], together with the game structure
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variant and objectives that we study here. Sect. 3 provides lower and upper complexity

bounds for the cooperative rational synthesis problem. Sect. 4 provides results for the non-

cooperative variant. Sect. 5 summarizes complexity results when the number of players is

fixed.

2 Preliminaries

2.1 Trees and Tree Automata

Let Λ be a set of directions and Σ be an alphabet. A Σ-labeled Λ-tree is a mapping

t : Λ� Ñ Σ. Its set of nodes is Λ� and the empty word ε is the root. For every x P Λ� and

c P Λ, the node xc P Λ� is called the successor of x. A branch is an infinite sequence of

directions π P Λω. Given a tree t and a node x, the subtree of t at node x is a mapping

tx : Λ� Ñ Σ such that txpyq � tpxyq for all y P Λ�.

Tree automata A finite nondeterministic tree automaton over Σ-labeled Λ-trees is a

tuple T � pQ,Q0, δ, αq where Q is the set of states, Q0 is the set of initial states, α � Qω

is the accepting condition and δ is the transition relation of the form δ : Q�Σ Ñ 2ΛÑQ,

i.e., it maps any pair of states and labels to a set of mappings from directions to states

(states sent the children of the current node). A run of T on a tree t is Q-labeled D-

tree r : D� Ñ Q such that rpεq P Q0 and for all h P D�, all d P D, the mapping

d P D ÞÑ rphdq P Q is in δprphq, tphqq. The image of a branch π � λ1λ2 � � � P Λ
ω by r is

the word in Qω defined by rpεqrpλ1qrpλ1λ2q . . . . With respect to the accepting condition

α � Qω, r is accepting if all its branches are in α, and the language of T is the set LαpT q
of trees for which there exists an accepting run.

We say that a tree automaton T is deterministic if the transition relation is of the

form δ : Q � Σ Ñ D Ñ Q, i.e., it maps any pair of states and labels to one mappings

from directions to states. In this case, we equivalently say that the transition relation is

of the form δ : Q � Σ � D Ñ Q. Also, a tree automaton is a safety automaton if the

winning condition consists on all the sequences in Qω that avoid a certain set S of states,

i.e., α � QωzQ�SQω

2.2 Multiplayer Games and Rational Synthesis

Multiplayer Games Let k P N. A multiplayer arena (k � 1-players arena) is a tuple

A � xΩ, V, pViqiPΩ, E, v0y, where Ω � t0, 1, ..., ku is a finite set of players, pV,Eq is a finite

directed graph whose vertices are called states, v0 P V is the initial state and pViqiPΩ is a

partition of V where Vi is the set of states controlled by Player i P Ω. A play in A starts

in the initial state v0 and proceeds in rounds. At each round, the player controlling the

current state chooses the next position according to E. Wlog we assume that each vertex

has a successor by E and that player’s rounds are ordered according to their index4, i.e.

4 Otherwise we just add a polynomial number of extra intermediate states and the winning objectives

considered in this paper can be modified accordingly.
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E �
�
iPΩ Vi�Vi�1 mod k. Formally, a play π � u0u1 . . . is an infinite path in V ω such that

u0 � v0 and pvi, vi�1q P E for each i ¥ 0. The prefix (or history) of π up to vn is written

πr:ns and its last state πpnq. We denote by � the prefix relation. We let PlayspAq stand for

the set of plays, and PrefspAq for its closure under �. Finally, for π P V ω, we write infpπq

for the set of states occurring infinitely many times in π and πæVi for the restriction of a

play only to the states of Player i.

A strategy of Player i P Ω in A is a total function σi : V �Vi ÞÑ V s.t. for all x P V �, for

all v P Vi, pv, σipxvqq P E. Note that as rounds are ordered, σi has type V �Vi ÞÑ Vi�1 mod k.

A play π is consistent with σi if πpn � 1q � σipπr:nsq for all n ¥ 0 s.t. πpnq P Vi. The

outcome of σi is the set of plays outpσiq � PlayspAq that are consistent with σi. Given

h P V �, we define σi|h as σi|hph
1q � σiphh

1q for all h1 P V �Vi. A winning objective (or just

objective) is a set O � V ω. A Player i’s strategy σi is winning for O if outpσiq � O. In

this paper, we consider the following classical ω-regular objectives [?]:

– Safety : Given the set S � V called the set of safe states, SafepSq � tπ P V ω | @n ¥ 0 :

πpnq P Su.

– Reachability : Given the set T � V called the set of target states, ReachpT q � tπ P

V ω | Dn ¥ 0 : πpnq P T u � SafepT̄ q.

– Büchi : BuchipF q is the set of sequences in which some state in F � V occurs infinitely

many times, i.e. BuchipF q � tπ P V ω | infpπq X F � ∅u.
– co-Buc̈hi : coBuchipF q is the set of sequences in which all states of F � V occurs finitely

many times, i.e. coBuchipF q � tπ P V ω | infpπq X F � ∅u � BuchipF q.

– Streett : Given a set Ψ � 2V � 2V , the Streett condition for Ψ is the set of infinite

sequences π P V ω such that for all pairs pL,Rq P Ψ such that πpkq P L for infinitely

many k P ω, it is the case that πpkq P R for infinitely many k P ω, i.e. StreettpΨq �

tπ P V ω | @pL,Rq P Ψ, pinfpπq X L � ∅q ùñ pinfpπq XR � ∅qu.
– Rabin: Given a set Ψ � 2V � 2V , the Rabin condition for Ψ is the set of infinite

sequences π P V ω such that there is a pair pL,Rq P Ψ such that πpkq P L for infinitely

many k P ω and πpkq P R for finitely many k P ω, i.e. RabinpΨq � tπ P V ω | @pL,Rq P

Ψ, pinfpπq X L � ∅q and pinfpπq XR � ∅qu � Streettpψq.

– Parity : Given a function p : V ÞÑ ω, called a priority function, Parityppq is the set of

infinite plays π P V ω such that the least number occurring infinitely often in ppπq is

even, i.e. Parityppq � tπ P V ω | mintppπpnqq | n ¥ 0u is evenu.

– Muller : Given a Boolean formula µ over the set of states V , the Muller condition for

µ is the set of infinite sequences π P V ω such that the set of states appearing infinitely

often in π satisfies µ, i.e., Mullerpµq � tπ P V ω | infpπq |ù µu

Note that the Büchi and co-Büchi conditions are Parity conditions with two priorities

and a Büchi (resp. co-Büchi) condition F is also a Streett condition pV, F q (resp. pF,Hq)

or a Parity condition p : V Ñ t0, 1u with ppvq � 0 if v P F and ppvq � 1 otherwise (resp.

p : V Ñ t1, 2u with ppvq � 1 if v P F and ppvq � 2 otherwise).
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A multiplayer game is a pair G � xA, pOiqiPΩy, where pOiqiPΩ is the tuple of objectives

for each Player i P Ω. The notations Plays and Prefs carries over naturally to G by consider-

ing its underlying arena. For X P tReach, Safe,Buchi, coBuchi,Street,Rabin,Parity,Mulleru,

a multiplayer X-game is a multiplayer game where each player has an X-objective. For

a strategy σi, i P Ω, we denote by Grσis the (possible infinite) game obtained from G in

which Player i plays the strategy σi.

Nash equilibria A (pure) strategy profile σ̄ in G � xA, pOiqiPΩ is a tuple σ̄ � pσiqiPΩ,

where σi is a strategy for player i P Ω. The outcome of a strategy profile σ̄, written

outpσ̄q is the play consistent with each σi, i P Ω (it always exists and is unique). Given

a strategy profile σ̄ and a strategy τ for i P Ω, we write pσ̄�i, τq for the strategy profile

obtained by replacing σi with τ in σ̄. Given winning objectives pOiqiPΩ for each player,

the payoff of a strategy profile σ̄ is the vector paypσ̄q P t0, 1un defined by paypσ̄qris � 1

if and only if outpσ̄q P Oi. We write payipσ̄q for Player i’s payoff paypσ̄q. Payoffs are

compared by the pairwise natural order on their bits, denoted by ¤, i.e., paypσ̄q ¤ paypβ̄q

if payipσ̄q ¤ payipβ̄q for all i P Ω.

A strategy profile σ̄ � pσiqiPΩ is called a Nash equilibrium of the multiplayer game G
if paypσ̄�i, τq ¤ paypσ̄q for all players i P Ω and all strategies τ of i. Thus, intuitively,

in a Nash equilibrium no player can improve his payoff by (unilaterally) switching to a

different strategy. We say that a strategy profile σ̄ � pσiqiPΩ is a 0-fixed Nash equilibrium

if paypσ̄�i, τq ¤ paypσ̄q for all players i P Ωzt0u and all strategies τ of i. In other words,

it is a Nash equilibrium in which player 0 cannot change his strategy. Observe that any

Nash equilibrium pσiqiPΩ is a 0-fixed equilibrium, but the converse may not hold.

Let Σi be the set of all the possible strategies of i and O a winning objective for Player

i. We denote by Wi the set of winning states (also called winning set) for Player i and

objective O, i.e. the set of states v such that if the game initially starts in state v, then

Player i has a strategy to win his objective.

2.3 Rational Synthesis

Rational synthesis aims at finding a winning strategy for the system (Player 0) against

an environment composed by several other systems (Players 1, ..., k) that have a rational

behavior. Here rationality is modeled by assuming that the players behave according to

a Nash equilibrium. Rational synthesis has been introduced in [15, 19] in two different

settings. In the first setting, called cooperative rational synthesis [15], the environment

cooperates with the system in the sense that its components agree to play a Nash equilib-

rium that is winning for Player 0 (if it exists). In other words, in the cooperative setting,

one assumes that once a Nash equilibrium winning for Player 0 is proposed, all the agents

will adhere to the suggested strategies.

In the second setting, called non-cooperative rational synthesis [19], the components

of the environment may follow any strategy profile, providing it is a Nash equilibrium. In

this setting, one has to output (if it exists) a strategy σ0 for the system which has to be
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winning against any possible strategy profile that includes σ0 for Player 0 and which is a

Nash equilibrium. Formally,

Definition 1 (Rational Synthesis Problems). The cooperative and non-cooperative

rational synthesis problems ask, given as input an pn � 1q-player game G with winning

objectives pOiqiPΩ, the following questions according to the two settings:

cooperative: Is there a 0-fixed Nash equilibrium σ̄ such that pay0pσ̄q � 1 ?

non-cooperative: Is there a strategy σ0 for Player 0 such that for any 0-fixed Nash

equilibrium σ̄ � xσ0, . . . , σky, we have pay0pσ̄q � 1 ?

Example 1. As an example, consider the two-player game arena of Figure 1 in which Player

0 owns round states and Player 1 square states, with the reachability objectives given by

the set R0 � t2u and R1 � t3u. Consider the Player 0’s strategies σ0 which consists in

looping forever in state 2, and σ10 which eventually goes to state 3.

Let Player 1 cooperate by playing the strategy σ1 that goes to state 2 (making Player

0 win). Both strategy profiles xσ0, σ1y and xσ10, σ1y are solutions to the cooperative setting:

for the first strategy profile Player 1 loses but cannot get better payoff by deviating, and for

the second one Player 1 wins. Strategy σ0 is not a solution to the non-cooperative setting,

because Player 1 could stay forever in state 1 (according to a strategy σ11): The profile

xσ0, σ
1
1y is a 0-fixed NE because even by deviating and going to state 2 Player 1 would still

lose, and it is losing for Player 0. However, σ10 is a solution to the non-cooperative setting:

The only 0-fixed NE in that case are when Player 1 eventually move to state 2, making

him and Player 0 win.

1start 2 3

Fig. 1: Example for rational synthesis

We may refer to Player 0 as the sys-

tem and to the other players as the envi-

ronment. It is shown in [15] and [19] that

both cooperative and non-cooperative ra-

tional synthesis problems are 2Exptime-

complete when the winning objectives

are defined by LTL formulas. In general, the synthesis problem also asks to synthesise

(i.e.construct) such solution if it exists. The existence problem is sometimes referred to as

the realisability problem. All our algorithms also solve the synthesis problem.

3 General characterization of 0-fixed Nash Equilibria

In this section, we give a general method to solve the rational cooperative and non-

cooperative synthesis problems. It is based on effective characterizations of the existence

of 0-fixed Nash equilibria in multiplayer games with safety, reachability, or tail objectives,

through the existence of a path of the arena satisfying certain properties. These properties

will be expressed by LTL formulas.
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Linear-Time Temporal Logic on Game Arenas We do not recall here the semantics

of LTL (we refer the reader to [3] for instance, for an overview of LTL and its semantics),

but we rather make explicit in which context we will use it. In particular, we will use

LTL to express properties of infinite paths in a game arena A � xΩ, V, pViqiPΩ, E, v0y.

In addition to Boolean connectives, we write U , l, ♦ to denote the until, always and

eventually temporal operators. Given a state s P V , we view s has an atomic proposition,

true in s, and false otherwise. Given S � V , we may freely use S in an LTL formula, where

it stands for the formula
�
sPS s. Therefore, we may write, for instance, l S, to denote

the set of infinite paths in pV zSqω. We denote by LTLpAq the set of LTL formulas over

the set of atomic propositions V , and for a game G whose underlying arena is A, LTLpGq
stands for LTLpAq. A set O � V ω is definable in LTLpAq if there exists an LTLpAq formula

φ such that for all π P V ω, π |ù φ iff π P O. In [?] similar formulas were given for similar

tale objectives (see Corollary[26]).

LTL characterization of 0-fixed Nash equilibria For all the winning objectives con-

sidered in this paper, we characterize the existence of a 0-fixed Nash equilibria in a game

by the existence of a path satisfying some LTL formula, that depends on the winning

objectives. For tail objectives, we give a generic way of constructing such an LTL formula.

An objective O � V ω is tail if for all π1 P V
� and π2 P V

ω, π1π2 P O iff π2 P O. In other

words, a path is winning iff one of its (infinite) suffix is. Büchi, coBüchi, parity, Streett,

Rabin and Muller objectives are all tail.

Let G � xA, pOiq0¤i¤ky be a k � 1-player game. Let pWiq0¤i¤k be the winning sets for

the objectives pOiq0¤i¤k, and V be the set of states of A. We define an LTLrGs-formula

φ0Nash that characterizes the existence of a 0-fixed Nash equilibrium in G. It is defined as

follows:

φG0Nash �

$'''&
'''%

�k
i�1pp W

G
i U  Siq _lSiq if Oi are safety objectives of the form

Oi � SafepSiq for some Si � V�k
i�1 ϕi Ñ l W G

i if Oi are either all reachability or all tail

objectives definable by an LTLrGs formula ϕi

The formula φ0Nash characterises 0-fixed Nash equilibria in the following sense:

Lemma 1 (Characterization of 0-fixed Nash Equilibria). Let G be a multiplayer

game with either all safety, all reachability, or all tail objectives, definable in LTLrGs.
Then, the following hold:

1. For all π P PlayspGq, if π |ù φG0Nash, then there exists a 0-fixed Nash equilibrium σ̄ in G
such that outpσ̄q � π,

2. For all 0-fixed Nash equilibrium σ̄ in G, outpσ̄q |ù φG0Nash.

Before proceeding to the proof of Lemma 1, we illustrate this characterization on an

example of safety game.
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v0start

v1v2

:-)

((

ts0, s1, s2u

ts0, s1, s2ut s0, s1, s2u

ts0, s1, s2uts0, s1, s2u

(a) Path consistent with 0-fixed NE

v0start

v1v2

:-)

((

ts0, s1, s2u

ts0, s1, s2ut s0, s1, s2u

ts0, s1, s2uts0, s1, s2u

(b) π not consistent with a 0-fixed NE

Fig. 2: A safety game

Example 2. Consider the game in Fig. 2, played by three agents that control round (Player

0), square (Player 1) and diamond (Player 2) states respectively. The objective the players

is to stay in their safe regions, denoted by the labels s0, s1, s2 (e.g. state v1 is safe for

Player 0 and 1 and unsafe for Player 2). Then, the winning sets for the three players are

W0 � t

:-) ,

(( u, W1 � t

:-) , v1u and W2 � t

:-) u.

First, consider the path π � v0v1p

:-) qω that satisfies
�2
i�1pp Wi U  Siq _ lSiq. We

can build a 0-fixed Nash equilibrium σ̄ that is represented in Fig. 2a with bold arrows

which has as outcome the path π. On the other hand, consider the path π1 � v0v1v2p

(( qω,

in bold in Fig.2b. It does not satisfy
�2
i�1pp Wi U  Siq _ lSiq. Suppose that π is the

outcome of a strategy profile σ̄, then σ̄ is not a 0-fixed Nash equilibrium. Indeed, Player

1 reaches for the first time an unsafe state (

(( ), after visiting v1, which is in his winning

region. Therefore, Player 1 would better deviate and go to state

:-) .

Proof (Proof of Lemma 1). Statement 1, safety objectives The strategy profile σ̄ is intu-

itively defined as follows: as long as the current history is a prefix of π, then the players

play according to π. If at some point, some player, say Player i, decides to deviate from π,

ending up in a state s, then if s R Wi, all the players but Player i punish him by playing

a strategy that will make him lose, otherwise, they play any strategy. Let us give some

arguments to justify that it is a 0-fixed equilibrium. The outcome of σ̄ is π, and if a player

wins along π, then he has no incentive to deviate. If some player, say Player i, loses along

π, then suppose that he decides eventually to deviate from π: either he has already lost

before deviating and therefore his deviation is useless, or he deviates to a state v before

visiting an unsafe state for the first time, but in that case, since π |ù  Wi U  Si, we

have v R Wi (otherwise the previous state would be winning), and all the other players

retaliate, making his deviation useless, again.
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Let us define σ̄ formally. For a state s RWi, we let prets,ij qj�i a retaliating profile, i.e.,

a profile a strategies for the players j � i that make Player i lose. We also pick a profile

of strategies pβ0, . . . , βkq. Then, we define σj as follows, for x P V �Vj :

σ̄jpxq �

$'&
'%

πrl � 1s if x � v0v1...vl is a prefix of π

rets,ij psx2q if condition (1) is satisfied

βjpxq otherwise

where condition (1) requires that x can be decomposed into x � x1sx2 such that x1 P V
�Vi,

x1 is a prefix of π, s RWi, x1s is not a prefix of π (meaning that Player i has deviated to

a losing state).

Clearly, we have outpσ̄q � π. We claim that σ̄ is a 0-fixed Nash equilibrium. Towards

a contradiction, we suppose that some player i (1 ¤ i ¤ k) loses, and can win by playing

another strategy σ1i (when the other players stick to their strategies σ̄�i). Then necessarily,

outpσ̄�i, σ
1
iq deviates from π after some prefix x1 of π such that x1 P V

ωVi. Let s P V and

y P V ω such that outpσ̄�i, σ
1
iq � x1sy. Then, if s R Wi, the other players retaliate making

outpσ̄�i, σ
1
iq losing for Player i, which is a contradiction. Therefore s PWi. Let s1 be the last

state of x1. Then s1 P Wi since s1 P Vi and it has a successor in Wi (s). Now, we consider

two cases: piq suppose that some state of x1 is unsafe for Player i, then it contradicts the

fact that outpσ̄�i, σ
1
iq is winning for Player i; piiq if x1 P pSiq

�, then since π is losing for

Player i, there is an unsafe state for Player i that occurs after the prefix x1, contradicting

the fact that π |ù  Wi U  Si, since the last state of x1 is in Wi. In all cases, we have

found a contradiction, showing that such a strategy σ1i cannot exist.

Statement p2q, safety objectives Assume that some player, say i for 1 ¤ i ¤ k does not

win, i.e. outpσ̄q |ù ♦ Si. Towards a contradiction, assume that outpσ̄q *  WiU Si. Con-

sider the first occurrence j of state satisfying  Si in outpσ̄q, i.e. j � argmintj | outpσ̄qrjs R

Siu (it exists since outpσ̄q |ù ♦ Si). Clearly, there exists a position 0 ¤ t   j such that

outpσqrts P Wi (otherwise outpσ̄q would satisfy  WiU Si). At that position, Player i

could have deviated and apply a winning strategy, thus getting a strictly better payoff,

contradicting the fact that σ̄ is a 0-fixed Nash equilibrium.

Statements p1q and p2q, reachability and tail objectives The proofs of these two state-

ments are very similar to that of safety objectives. The only difference here is that the

objectives are either all reachability or all tail, and therefore one has to make sure that

on π, the players that lose never visit their winning region, because if it is so, they would

have an incentive to deviate: indeed, the satisfaction of their winning objective would be

independent from the prefix up to a visit to their winning region. For statement p1q, the

profile of strategies σ̄ is: follow the path π as long as the play stays in π, and the first

time the play deviates (say Player i deviates from π), then if π is losing for Player i, then

apply from that point on a retaliating strategy (as a coalition of all the players j � i),

otherwise apply any strategy. If π is not winning for Player i, the retaliating strategy exists

by definition of φ0Nash, since the first position after the deviation would not be in Wi.
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Conversely, any 0-fixed NE σ̄ satisfies φ0Nash. Indeed, if it is not the case, then there

exists some player that satisfies  φi and ♦Wi. When reaching its winning region, this

player would better apply a winning strategy and strictly increase his payoff. �

As a consequence of Lemma 1, we also get a characterization of Nash equilibria in

multiplayer games, for safety, reachability and tail objectives. The case of tail objectives

was already covered in [25]. We give this result since it might be of independent interest

for the reader.

Let G � xA, pOiq0¤i¤ky be a k � 1-player game. Let pWiq0¤i¤k be the winning sets for

the objectives pOiq0¤i¤k, and V be the set of states of A. We define an LTLrGs-formula

φNash as follows:

φNash �

$'''&
'''%

�k
i�0pp Wi U  Siq _lSiq if Oi are safety objectives of the form

Oi � SafepSiq for some Si � V�k
i�0 ϕi Ñ l Wi if Oi are either all reachability or all tail

objectives definable by an LTLrGs formula ϕi

The following characterization of Nash equilibria was given in [25] for tail objectives

only. We extend it to safety and reachability objectives.

Corollary 1 (Characterization of Nash Equilibria ([25] for tail objectives)). Let

G be a multiplayer game with either all safety, all reachability, or all tail objectives, defin-

able in LTLrGs. Then, the following hold:

1. For all π P PlayspGq, if π |ù φNash, then there exists a Nash equilibrium σ̄ in G such

that outpσ̄q � π,

2. For all Nash equilibrium σ̄ in G, outpσ̄q |ù φNash.

Proof. Let G � xA, pOiq0¤i¤ky where the set of states V is partitioned into V0, V1, . . . , Vk.

We define the k� 2-player game G1 � xA1, pO1
iq0¤i¤k�1y where A1 is the k� 2-game arena

obtained from A by increasing the index of each player by one (Player i becomes Player

i � 1), and by adding a new Player 0, who owns no states, i.e. V 1 � V , V 1
0 � ∅ and

V 1
i � Vi�1 for all 1 ¤ i ¤ k � 1. The structure (transition relation) of A is kept. Player 0

in G1 has the trivial objective V ω, and O1
i � Oi�1 for all 1 ¤ i ¤ k � 1. Then, there exists

a 0-fixed Nash equilibria in G1 iff there exists a Nash equilibria in G. Then, it suffices to

apply Lemma 1 to get the result. Note that the trivial objective is a tail objective, but can

be seen as a reachability objective where all states are target states, as well as a safety

objective where all states are safe. �

4 Cooperative Rational Synthesis Problem(CRSP)

General solution to cooperative rational synthesis Lemma 1 allows us to give a

generic procedure to solve the cooperative rational synthesis problem, which is based on

the following direct consequence of Lemma 1:

11



Lemma 2. Let G be a k� 1-player game with either all safety, all reachability, or all tail

objectives, definable in LTLrGs by formulas pϕiq0¤i¤k. There is a solution to the cooperative

synthesis problem iff there exists a path π P PlayspGq such that π |ù φ0Nash ^ ϕ0.

Then, in order to solve the cooperative synthesis problem, it suffices to compute the

winning sets Wi, for i � 1, . . . , k, and to model-check the formula φ0Nash ^ ϕ0 against the

game arena underlying G. Depending on the winning objectives, the formula φ0Nash ^ ϕ0

may have different forms, which may impact the complexity of model-checking it. One

objective of this paper is to give tight complexity bounds for the model-checking of this

formula and, thus, to the cooperative rational synthesis problem.

4.1 Safety games

In the case of safety condition, the characterization of a 0-fixed Nash equilibrium intuitively

expresses the fact that either Player i always stays in its safe set of states, or it is the case

that he loses by eventually reaching a unsafe state, but he couldn’t play better, i.e., the

play didn’t pass through a state from which he has a winning strategy.

Based on Lemma 2, we can provide an algorithm to solve the cooperative rational

synthesis problem for safety games. It suffices to model-check the LTL formula lS0 ^�k
i�1pp WiU Siq _ lSiq against the game arena. We show it can be done in NP, based

on the following property: if a path satisfies of the game arena satisfies the formula, then

there is a lasso path xyω satisfying it, such that x and y have polynomial length. Then,

the nondeterministic algorithm solving the synthesis problem simply guesses such a path

and verifies, in polynomial time, that it satisfies the desired property.

Lemma 3. The cooperative rational synthesis problem for multiplayer safety games is in

NP.

Proof. To solve the NP membership of this problem, it suffices to check the existence of a

path in the game arena that satisfies the LTL formula ϕ � lS0^
�k
i�1pp WiU Siq_lSiq.

First, it is well-known that two-player safety games can be solved in polynomial time,

and therefore the winning sets Wi can be computed in polynomial time.

Then, given a lasso path π � xyω, it can be checked in polynomial time (in |x| and

|y| and the size of the game arena) whether π |ù ϕ. Indeed, viewing the sets Wi and Si

as atomic propositions, one can easily construct a 5-state automaton equivalent to each

of the subformula pp WiU Siq _lSiq, for which checking the acceptance of xyω can be

done in polynomial time.

It remains to show that we can bound the length of x and y polynomially.

Let π P V ω be a path satisfying ϕ. For each i P t1, . . . , ku, we consider the first

occurrence of an unsafe state of Player i in π, and decompose π according to these positions

as follows. Formally, π is decomposed as π � x1vP1x2vP2 ...xlvPl
xl�1 such that for all

j P t1, . . . , lu, Pj � t1, . . . , ku and vPl
is the first occurrence of a state which is unsafe for

all the players in Pl (Pl is maximal for that property).
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Fig. 3: Cooperative Safety: Reduction from 3-SAT

First, we remove the cycles in all xj , j P t1, . . . , lu, leading to a new path of the form

x11vP1x
1
2vP2 ...x

1
lvPl

xl�1 where the x1j are loop-free. This preserves the satisfaction of ϕ, i.e.

π1 |ù ϕ. Indeed, by doing so, the subformula lS0 is still satisfied, and for all i P t1, . . . , ku,

if lSi was satisfied by π, then it is still satisfied in π1. If  WiU Si was satisfied in π, then

by the choice of our decomposition, removing the cycles still preserve the existence of an

unsafe state for Player i in π1, and all the states before its first occurrence in π1 satisfies

 Wi.

Second, we modify xl�1 into a short lasso path x1l�1px
2qω, where x2 is a simple loop,

and x1l�1 is loop-free. This can be done by taking x1l�1 to be shortest prefix of xl�1 to a

state v that repeats in the future, and to take x2 has any loop from v to v, shortened into

a simple loop by removing all inner-cycles. All these operations preserve the properties of

satisfying lSi for all i P t0, . . . , ku.

Then, we set x � x11vP1x
1
2vP2 ...x

1
lvPl

x1l�1 and y � x2. Then, xyω |ù ϕ, and |xy| ¤

npk � 2q, concluding the proof. �

Lemma 4. The cooperative rational synthesis problem for multiplayer safety games is

NP-hard.

Proof. The proof for the NP-hardness of this problem is done by reduction from 3SAT .

Given a Boolean formula ϕ � C1 ^ ...^Ck in conjunctive normal form where each clause

has at most three literals, we construct a pk � 1q-player safety game Gϕ as follows (its

arena is depicted in Fig.3): Let X � tx1, ..., xmu be the set of variables that appear in

ϕ. The game Gϕ has three states x, 1x and 0x controlled by the system (Player 0) for all

variables x P X. The two latter states correspond to the two possible truth values of x.

For all i P t1, . . . ,m � 1u, there are edges from each xi to both 1xi and 0xi and from 1xi
and 0xi to xi�1. There is a state Cj controlled by Player j for each clause in ϕ and two

states Us and Ue (which will be unsafe for the system and the environment respectively).

We add edges from 1xm and 0xm to C1, from Cj to Cj�1 for all 1 ¤ j   k, and from

every Cj to Us and from Ck to Ue. In Fig. 3 the system plays the round states and each

environment Player i plays the diamond state Ci.

We let V be the set of states (vertexes) of Gϕ, x1 being the initial one. All states

but Us are safe for Player 0, i.e. S0 � V ztUsu. The unsafe states for Player j � 0 are

Ue, as well as the state 0x if  x appears in Cj , and the state 1x if x appears in Cj , i.e.

Sj � V zpt0x |  x P Cju Y t1x | x P Cju Y tUeuq.
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Let us now prove the correctness of this reduction, i.e. ϕ is satisfiable iff there is a

0-fixed strategy Nash equilibrium winning for Player 0 in Gϕ. Suppose first that ϕ is

satisfiable by a valuation ν � X Ñ t0, 1u of its variables. The strategy σ0 of the system

is then to choose the truth values of the literals according to this valuation: choose 1x if

νpxq � 1, and 0x otherwise. By doing so, all the players of the environment visit at least

one unsafe state before reaching C1. Indeed, let j P t1, . . . , ku. Since Cj is satisfied by ν,

there is a litteral ` in Cj such that νp`q � 1. If ` � x for some x P X, then 1x is unsafe

for Player j, but that is exactly the choice of Player 0 to go to 1x (and similarly when

` �  x). After reaching C1, the choices of the players j � 0 are to go down to Ck and then

to Ue. This profile is winning for Player 0, and losing for all the other players. They have

no incentive to deviate since they have already lost before making any choice. Therefore,

it is a 0-fixed Nash equilibrium.

Conversely, if there is a solution for the cooperative synthesis problem, the only way to

obtain a Nash equilibrium σ winning for the system is to make all the players j 1 ¤ j ¤ k

lose before reaching C1. Indeed, if σ is winning for the system, then outpσq eventually

reaches Ue, which is losing for the environment. In order to prevent the deviation of the

environment to Us (which is safe for the environment), it is necessary that all the players

but Player 0 has lost before reaching C1. By definition of their sets of unsafe states, the

only way to make them lose before reaching C1 is a to chose a valuation that satisfies the

formula, if it exists. �

As a consequence of Lemma 3 and 4, one gets:

Theorem 1. The cooperative rational synthesis problem for multiplayer safety games is

NP-complete.

4.2 Reachability games

In this section, we prove the NP-completness of the cooperative rational synthesis prob-

lem with reachability objectives. We provide a similar algorithm as in the case of safety

objectives. However, observe that unlike the case of two-player zero-sum games, there is

no duality between reachability and safety, and no natural reduction from reachability to

safety.

Based on Lemma 2, in order to solve the rational cooperative synthesis problem in

reachability games, it suffices to have a procedure that test the existence of the path in

the game that satisfies ♦R0 ^
��k

i�1l Ri Ñ l Wi

�
. We prove that such a formula has

short (polynomial length) lasso witnesses, and therefore we obtain an NP procedure for

the synthesis problem.

Lemma 5. The cooperative rational synthesis problem for multiplayer reachability games

is in NP.
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Proof. We start by showing that each path π such that π |ù ϕ where:

ϕ � ♦R0 ^
� k©
i�1

l Ri Ñ l Wi

�

can be shortened into a lasso path π� such that π� |ù ϕ and π� can be decomposed into a

prefix of length at most nk followed by a simple loop. In fact, let L be the maximal set of

players such that π |ù
�
iPL ♦Ri. Then, it is sufficient to enucleate the first occurrences of

states in Ri for all i P L along π, and eliminate all the cycles between these occurrences.

This leads to a new path π1 where each player i P L accomplishes its reachability objective

in at most n|L| steps and such that π1 |ù
�
iRLl Wi. Let j be the smallest position in π1

such that each player i P L has accomplished its reachability objective, i.e. j � mint` ¥ 0 |

π1r: `s |ù
�
iPL ♦Riu. Then, π� is obtained from π1 by considering the first cycle (reduced

to a simple cycle) appearing from the vertex π1pjq on.

Therefore, the NP algorithm works as follows: guess a lasso-path of length at most

npk � 1q, check whether it fulfils ϕ, and use it to build a winning strategy that uses as

much memory as the length of the path. This is correct by the small lasso property proved

before, and Lemma 2. �

We finally show that the cooperative rational synthesis problem for reachability games

is NP-hard. The proof is by reduction from 3-SAT, and is a slight modification of the

reduction for the safety objectives (Lemma 4).

In this latter reduction, remind that given a 3-SAT formula ϕ � C1 ^ � � � ^ Ck in

conjunctive normal form, we build a k � 1-reachability game Gϕ over the arena of Figure

3. For safety, one actually shows that ϕ is satisfiable if and only if Gϕ admits a 0-fixed NE

where all the players composing the environment lose, i.e. reach the complement of their

safety sets S1, . . . Sk. As for the system, avoiding his only forbidden state Us amounts to

reach Ue (since in Gϕ, Us and Ue are the only two states that are eventually reached).

Therefore, there is a solution for the safety sets tV ztUsu, pSiqi�1...ku iff there is a solution

for the reachability sets ttUeu, pS̄iqi�1...ku, which shows the following lemma.

Lemma 6. The cooperative rational synthesis problem for reachability games is NP-hard.

As a consequence of Lemma 5 and Lemma 6, we obtain the following theorem:

Theorem 2. The cooperative rational synthesis problem for reachability games is NP-

complete.

4.3 Büchi and ω-regular winning conditions

In the following, we treat the cooperative rational synthesis problem in the case of ω-

regular objectives, in particular for Büchi, co-Büchi, Streett and Parity objectives. For

these objectives, we can rely on results shown by Ummels in [25], following the next

remark.

15



Remark 1. In [25] is studied the complexity of finding a Nash equilibrium σ̄ in a k-player

game with Büchi, co-Büchi, Streett and Parity objectives, such that x ¤ paypσ̄q ¤ y,

for two given threshold x, y P t0, 1uk. The cooperative synthesis problem reduces to this

setting, by taking x � p1, 0, . . . , 0q and y � p1, 1, . . . , 1q. Note that in [25], the threshold

Nash equilibria problem was not studied for safety and reachability and Muller conditions.

For Rabin conditions, there is a remark in the conclusions of [25] that a PNP complexity

can be obtained.

Based on Remark 1 and the results of [25], one obtains the upper-bound of following

theorem:

Theorem 3. The cooperative rational synthesis problem for multiplayer games is:

– in PTime for Büchi objectives,

– NP-complete for co-Büchi, Streett and parity objectives.

Proof. As we have said, the upper bounds are direct consequences of the results of [25]

and remark 1. Let us show the NP lower bound for co-Büchi, Streett and parity objectives.

Co-Büchi objectives. It is shown in [25][Theorem 15] that the problem of finding a Nash

equilibrium co-Büchi multiplayer games with a payoff between the thresholds p1, 0, 0, ..., 0q

and p1, 1, 1, ..., 1q is NP-hard. The result follows from Remark 1.

Parity. It follows directly from these two facts: piq the problem is NP-hard for co-

Büchi objectives, piiq a co-Büchi objective given by a set of states F can be equivalently

expressed by the priority function pF such that pF pvq � 1 if v P F , and 2 otherwise.

Streett. As for parity, a Streett condition can easily express a co-Büchi condition F ,

by taking the set of pairs tpF,Hqu. The result follows from the NP-hardness of co-Büchi

objectives. �

Rabin games Let consider the k�1-player Rabin game G � xA, pRabinpψiqq0¤i¤ky where

each Player i has the objective ψi � tpL1, R1q, ..., pLmi , Rmiqu. Then, based on Lemma 2

and the fact that the Rabin condition ψi can be equivalently expressed by the LTLrGs
formula ϕi �

�ni
j�1pl♦Lij^♦l Rijq, solving the cooperative rational synthesis in Rabin

games is equivalent to find a path satisfying the formula

φG0Nash ^ ϕ0 �
n0ª
j�1

pl♦L0j ^ ♦l R0jq ^
k©
i�1

�
l Wi _

niª
j�1

pl♦Lij ^ ♦l Rijq
�

.

Theorem 4. The cooperative rational synthesis problem for multiplayer Rabin games is

in PNP .

Proof. We first show that given the sets Wi for 1 ¤ i ¤ k, each path π � xyω such that

π |ù φG0Nash^ϕ0 can be shortened into a lasso path π1 � x1py1qω such that π1 |ù φG0Nash^ϕ0

and |x1y1| ¤ n2 � nk.
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First, we mark as red node the first occurrence along xy of a state in Wi for every

player not satisfying ϕi. We also mark as red node the first occurrence along y of states

in Lij and Rij(if any) for every player and every pair in the Rabin condition. Note that

along x at most k red nodes are marked and along y we have at most n states since we

marked the first occurrence of a state and the game arena has n states.

Then, by removing all the loops in x and y that don’t contain red nodes we obtain x1

and y1 such that |x1| ¤ nk and |y1| ¤ n2. Note that the property π1 |ù φG0Nash ^ ϕ0 also

holds since we didn’t remove key nodes(red nodes on y) from π.

Then the PNP algorithm will run as follows. First, it guesses a path π � xyω of

polynomial length (as we saw |xy| ¤ n2 � nk is enough) and mark the states in xy by Wi

or  Wi by checking in NP time if s P Wi for each state. This can be done in PNP time.

Then, in polynomial time check if π |ù φG0Nash ^ ϕ0 by checking if for each player is a pair

pLij , Rijq such that Lij appears in y but not Rij . If not, Wi should not be a label of a

state in xy. If it is, the algorithm rejects. �

Theorem 5. The cooperative rational synthesis problem for multiplayer Rabin games is

NP-hard and co-NP-hard.

Proof. As in the case of Parity and Streett games, the NP-hardness comes directly from the

fact that we can easily express a co-Büchi condition F into a Rabin condition ψ � tpV, F qu

where V is the set of states of the game arena.

To show the co-NP-hardness, we reduce from the two-players zero-sum Rabin games

which are NP-hard. Let G � xV, VA, VB, E, v0, ψy be such a game where the protagonist

(Player A) has the Rabin objective ψ. We construct the game G1 by considering a copy of

G together with two extra states v and v1 and transitions from v to both v1 and the initial

state of G and a self loop on v1. Then, Player 0 controls the states belonging to Player B

in G and Player 1 controls the states belonging to Player A in G together with the newly

introduced states v and v1.

Formally, G1 � xV 1, V0, V1, E
1, v10, ψ0, ψ1y where V 1 � V Y tv, v1u, V0 � VB, V1 �

VAYtv, v
1u, E1 � EYtpv, v0q, pv, v

1q, pv1, v1qu, v10 � v and the objectives of the two players

are defined as ψ0 � tptv
1u,Hqu and ψ1 � ψ. That is, Player 0 wins if the game goes in the

state v1 and Player 1 wins if it is satisfied the winning condition of the protagonist in the

game G.

We claim that there is a solution to the rational synthesis problem in G1 iff there is no

winning strategy for Player A in G. Indeed, if there is a solution to the rational synthesis,

there is a 0-fixed Nash equilibrium pσ0, σ1q winning for Player 0. The only possibility that

this happens is if σ1pvq � v1 in which case Player 1 looses. But since pσ0, σ1q is a 0-fixed

Nash equilibrium, for any other strategy σ11 s.t. σ11pvq � v0, outpσ0, σ
1
1q doesn’t satisfy

Rabinpψ1q. That is, there is a strategy σB for Player B in G such that @σA a strategy pf

Player A, outpσA, σBq �|ù Rabinpψq which means that Player A has no winning strategy in

G.

17



Suppose now that there is no solution to the rational synthesis. It means that there

is no 0-fixed Nash equilibrium pσ0, σ1q such that outpσ0, σ1q satisfies Rabinpψ0q. That is,

whatever strategy σ0 chooses Player 0, Player 1 prefers to go in the copy of G where he has

a strategy to win. That is, Player A has a winning strategy σA in G to ensure Rabinpψq.

Muller games Let G � xA,MullerpµiqiPΩy be a multiplayer Muller game with winning

condition for Player i given as the boolean formula µi � l1 Op1 l2 Op2 ... lmi where

Opj P t^,_u for all 1 ¤ j   mi and each literal lj is either a state vj P V or its negation

 vj .

Let define the LTL formula ϕi from µi by replacing each vj by the subformula l♦vj .

Then, we claim that for any path π, we have that π satisfies Mullerpµiq iff π |ù ϕi.

Intuitively, it holds since whenever a v P infpπq, it satisfies both the Muller condition

v and the LTL formula l♦v. And if v R infpπq, both Muller condition  v and LTL

formula ♦l v �  l♦v are satisfied by π.

Then, in the cooperative setting, using the characterization of 0-fixed Nash equilibria

for ω-regular objectives, the problem is to decide the existence of a path satisfying the

LTL formula ϕ � ϕ0 _
�k
i�1pϕi _ l Wiq where ϕi, 0 ¤ i ¤ k is defined as above. The

formula ϕ us an LTL formula in the fragment BpLl♦pPqYL♦,^pPqq where P corresponds

to the atomic propositions associated to the states of G and to each Wi. For this fragment

of LTL, it is shown in [1] that the solving a two-player game with the protagonist having

the LTL objective is in Pspace and therefore also the cooperative rational synthesis for

Muller objectives is.

For the Pspace-hardness, we reduce from the problem of solving two-players zero-sum

Muller games with Muller objective µ that is well known to be Pspace-hard. In the newly

constructed game keep the game arena and set the objective of Player 0 to be µ and the

objective of Player 1 to be  µ. Then, it is obvious that there is a 0-fixed Nash equilibrium

pσ0, σ1q winning for Player 0 iff there is a winning strategy σ0 for the Player 0 in the

zero-sum two-player game.

5 Non-Cooperative Rational Synthesis Problem(NCRSP)

In this section, we study the complexity of non-cooperative rational synthesis problem

(when the number of players is not fixed). In this setting the environment may not co-

operate with the system, and may play (rationally) any strategy profile providing it is a

0-fixed Nash equilibrium.

In the cooperative setting, in the cases where we could not rely on existing results

[25], namely reachability and safety objectives, we get our upper bounds via a reduction

to a model-checking problem. In the non-cooperative setting, we cannot rely on existing

results.

In Lemma 1, we have characterised 0-fixed NE by means of an LTL formula φG0Nash. This

allowed us to solve cooperative rational synthesis problem by model-checking against the
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game G, the formula φG0Nash ^ϕ0, where ϕ0 is Player 0’s objective. It is tempting to think

that non-cooperative rational synthesis reduces to a two-player zero-sum game between

Player 0, whose objective is φG0Nash Ñ ϕ0, and the coalition of the other players. However,

the three state game arena from Example 1 shows that this is not true in general. Indeed,

in this example there is a solution to non-cooperative rational synthesis problem, but no

solution to the two-player game with objective plR̄1 Ñ lW̄1q Ñ ♦R0. Since W1 � t3u,

whatever the strategy of Player 0 is, if Player 1 stays in state 1 forever, the path π � p1qω

satisfies plR̄1 Ñ lW̄1q but not ♦R0 and therefore Player 0 loses. The intrinsic reason

why the reduction to two-player games is incorrect lies in the definition of non-cooperative

rational synthesis problem: once a Player 0’s strategy σ0 is fixed, only 0-fixed NE with

respect to σ0 are considered, while the formula φ0Nash can be satisfied by paths which are

outcomes of some 0-fixed NE, fixed for a different strategy of Player 0.

Intuitive solution Let fix a strategy σ0 that we represent as a tree tσ0 and use tree automata

to define the set of strategies that are solutions to the non-cooperative rational synthesis.

The emptiness of tree automata is then checked by solving a two-player zero-sum game,

whose complexity is carefully analyzed for all the winning conditions considered in the

paper.

Strategy trees and good deviations Let A be a k� 1-players arena with set of states

V and let σ0 : V �V0 Ñ V be a strategy of Player 0 in A. We explain how σ0 is encoded as

a tree. The labels are in the set Σ � V Y t�i | 1 ¤ i ¤ ku Y t#u and the set of directions

is V . Therefore, any node of the tree is an history h in the game arena A. Then, if h � ε

(root node), we set its label to #. Otherwise, it is of the form h � h1v, then there are two

cases:

(i) if v P V0, then tσ0phq � σ0phq,

(ii) if v P Vi for i � 0, then tσ0phq � �i (only the turn i is encoded)

Intuitively, the ”letter” �i in the strategy tree encodes the fact that Player i could do any

choice in the turn-based (k+1)-player game G. We denote by T0 the set of strategy trees

tσ0 . Note that not all Σ-labeled V -tree is a strategy tree.

We now want to characterize the strategy trees tσ0 s.t. σ0 is a solution to non-

cooperative rational synthesis problem in a game G � xA, pOiqiPΩy with either all safety,

all reachability, or all tail objectives. The strategy tree tσ0 is a solution of the problem if

for all branches π, either it is winning for Player 0, or π doesn’t correspond to a 0-fixed

Bash equilibrium and there is a player that could deviate and win considering the system

plays the strategy σ0. That is,

π |ù φ
Grσ0s
Nash Ñ α0

The branch π is not the outcome of a 0-fixed NE iff some player loses (π R Oi for some

i � 0) and there is a prefix h from which Player i has a winning strategy against all other

players (and the strategy σ0). We call the history h a good deviation point. Formally, h is

a good deviation point if there exists i P t1, . . . , ku s.t. π R Oi and there is a strategy σi for
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Player i s.t. for all strategies pσjqiPt1,...,kuztiu, h.outpσ0|h, ..., σi�1|h, σi|h, σi�1|h, ..., σk|hq P

Oi. A branch π P V ω has a good deviation if some of its prefix h is a good deviation point.

Let us denote by NCRSPpGq the set of strategy trees tσ0 such that σ0 is a solution to the

NCRSP in G. Then:

Lemma 7. For all strategies σ0 of Player 0, tσ0 P NCRSPpGq iff for all branches π of tσ0
compatible with σ0, either π P O0 or π has a good deviation.

Proof. First, let prove the implication from left to right and consider tσ0 P NCRSPpGq and

a branch π such that π R O0. Then, since tσ0 is a solution to NCRSPpGq, for all σ1, ..., σk

such that outpσ0, σ1, ..., σkq � π, xσ0, σ1, ..., σky is not a 0-fixed Nash equilibrium.

Let σ1, ..., σk such that all the players follow the path π and punish the Player i that

deviates from it by playing the worst strategy profile for him (they play the retaliating

strategies rets,ij against Player i from the state s to which he deviates). That is, each Player

j plays σj defined as

σjpxq �

$'&
'%

πrl � 1s if x � v0v1...vl is a prefix of π

rets,ij psx2q if condition (1) is satisfied

βjpxq otherwise

where βj is an arbitrary strategy of Player j and condition (1) requires that x can be

decomposed into x � x1sx2 such that x1 P V
�Vi, s RW

Grσ0s
i , x1 is a prefix of π, x1s is not

a prefix of π (meaning that Player i has deviated to a losing state when the strategy σ0 is

fixed, i.e., Players 1, ..., j � 1, j � 1, ..., k have a strategy to make him lose under σ0).

Clearly, outpσ0, σ1, ..., σkq � π and therefore by hypothesis, xσ0, σ1, ..., σky is not a 0-

fixed Nash equilibrium. Hence, there is a player i that prefers to deviate from π and has a

strategy σ1i such that outpxσ0, σ1, ..., σi�1, σ
1
i, σi�1, ..., σkyq P Oi. From the construction of

the strategy profile, Player i chooses to deviate to a state in which he has a winning strategy

when Player 0 plays σ0. Let h P V �Vi be the prefix of π after which Player i deviates. Then,

for all strategies σ̃1, ...σ̃i�1, σ̃i�1, ..., σ̃k for the players 1, ..., i� 1, i� 1, ..., k, we have that

h.outpσ0|h, ..., σ̃i�1|h, σ
1
i|h, σ̃i�1|h, ..., σ̃k|hq P Oi which means that there is a good deviation

for Player i and then π has a good deviation h.

In the other direction, let take the strategy treetσ0 and π a branch of tσ0 compat-

ible with σ0 s.t. π R O0. Then, there is a good deviation from π for a Player i that

loses in π. That is, Player i has a strategy σ1i such that he wins by deviating from π

at a position j against any strategy profile that follows π. That is, for all σ1, ..., σk s.t.

outpxσ0, σ1, ..., σkyq � π, xσ0, σ1, ..., σky is not a 0-fixed NE since Player i can deviate and

win. Therefore, tσ0 P NCRSPpGq.
The equivalence is straightforward for the branches π P O0. �

Lemma 8. Let G � xA,O � pOiqiPΩy be a k � 1-player game with n vertices. One can

construct a non-deterministic tree automaton TG (with an exponential number of states in

k, and polynomial in n) with an accepting condition α such that LαpTGq � NCRSPpGq.
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Moreover, for all runs r of TG, for all branches π of r, the number of states appearing in

π is polynomial in n and k.

The nondeterministic tree automaton TG is obtained as a product of two automata.

First, we construct a deterministic safety automaton CG that checks that an accepting

tree tσ0 is a proper encoding of a strategy σ0 in the turn-based game G � xΩ, V �

V0Z ...ZVn, E, v0, pOiqiPΩy. Then, we construct a nondeterministic tree automaton U that

is assumed to run on proper encodings of strategies and checks that it corresponds to a

solution to the NCRSP. Details on the construction of the two automata are given in the

following.

Automaton CG. The deterministic safety automaton CG accepts trees t that are proper

strategy trees encoding a strategy σ0 of Player 0. This automaton is polynomial in the

size of the game and keeps the information about the last direction taken in the tree t and

depending on the player that controls it, checks if the tree is correctly labeled.

Formally, the automaton CG is formally defined as CG � pQC , q
C
0 , δC , αCq where QC �

V Y tK, qC0 u and the transition relation defined as δCpq
C
0 ,#, v0q � v0, δCpq

C
0 , l, dq �K for

any direction d P V if l � #, δCpq � qC0 ,#, dq �K, δCpK, l, dq �K and

δCpv, l, dq �

$''&
''%

d if pv P V0 and pv, lq P Eq

or pv P Vi�0 and l � �iq

K otherwise

Then, the acceptance condition on CG is αC � tη P pQCztKuq
ωu. Note that by the

construction of the automaton, this is a safety condition that asks to avoid K which

appears when being the turn of Player 0(state v P V0), the letter l we read is not a valid

choice of him( pv, lq R E). Also, the automaton CG is deterministic.

Having the definition if the automaton CG in following we construct the automaton U
assuming it only runs on proper tree encodings of strategies.

Automaton U. The construction of U is based on Lemma 7. For each branch, it will

check that it belongs to O0 or it will guess a prefix and check it is a good deviation. To

guess good deviations, the automaton U has to guess subtrees in which at least one player

has a winning strategy. This information is stored in a set W � Ω, with the following

semantics: if U is in some state with set W at some node h P V � and i P W , then Player

i has a winning strategy in the subtree rooted at h. The set of players for which a good

deviation has been guessed is stored in a set D � Ω, with the following semantics: if U is

in some state with set D and i P D, at some node h P V �, then some prefix of h is a good

deviation.

The information in D is monotonic. Whenever i P D in a state, then i P D in all

the successor states. In addition, it is updated by adding players in D depending on the

updates of W . The information on W is maintained as follows: at some node hv P V �,

if i P W and v P Vi, then U non-deterministically chooses a strategy move for the Player
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i and send W to one of the successor of v (and W ztiu in the other ones). If i R W and

v P Vi, there are two possibilities. First, if i P D means that a deviation was guessed before

and then W is sent to all successors. Otherwise, if i R D, there was not guessed a good

deviation point before. Then either the current node h (owned by Player i) is not guessed

to be a good deviation point and D is sent to all successors, or it is guessed to be a good

deviation for Player i and then DYtiu (and W ) are sent to all successors but one in which

is sent D and W Y tiu. If v R Vi, U keeps i PW in all successors of v.

Formally, U � pQU , q
U
0 , δU , αU q where the set of states is QU � tq

U
0 ,Ju Y 2Ω � 2Ω � V

Intuitively, a state q � pW,D, vq stores information about the set W of agents that need a

winning strategy from the current node, the set D of agents that may deviate to win and

the last direction taken.

To define the transition relation, we will define functions mapping directions to states.

If we do not define them for some directions d, it means that d is mapped to J. Then,

considering a state q � pW,D, vq, the transition relation δU is defined as:

– δU pq
U
0 ,#q � tρ0u where ρ0pv0q � pH,H, v0q

– δU pq, v1q � tρ1u where ρ1pv1qppW,D, v1q, v1q, v1 P V1,

– δU pJ, lq � tρ2u where ρ2pdq � J, for all d P V and l � #

– δU pq, �i�0q �

$'''''''''''''''''&
'''''''''''''''''%

tρu if i P D

where ρpv1q � pW,D, v1q for all pv, v1q P E

tρv1 | pv, v
1q P Eu if i PW

where ρv1pv
1q � pW,D, v1q

and ρv1pv
2q � pW ztiu, D Y tiu, v2q for all v2 � v1.

tρu Y tλ | pv, v1q P Eu if i RW and i R D

where λv1pv
1q � pW Y tiu, D, v1q

and λv1pv
2q � pW,D Y tiu, v1q@v2 � v1

Along a path of a run of U , there are monotonicity properties for the W and D-

components of the states. Indeed, by construction, U never removes a player from D. For

W , a player i can be removed (case 3) but then it is added to D and, once a player

belongs to D, it can never be added to W again. It is correct since for a history h, if one

guesses that Player i has a winning strategy from history hv, then i is added to D for

all successors hv1 (v1 � v) and there is no need to guess again later on a good deviation

for Player i in the subtrees rooted at the nodes hv1, and therefore no need to add i in W

again. Therefore along a path η of a run, there is only a polynomial number of different

components D and W , and they necessarily stabilize eventually, to a set that we denote

by limDpηq and limW pηq. This monotonic behavior is crucial for complexity.

Finally, the winning condition for reachability and tail objectives asks that on each

path of the accepting run, either Player 0 wins, or there is a player that looses but he

belongs to the set D eventually (therefore in the past he could have deviate and win). In

the same time, the automaton checks that the players that belong to W after it stabilizes
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(that pretend to win along the path), indeed win by checking that the projection on

the directions belong to Oi. As for the safety condition, the winning condition asks for a

winning state before the unsafe state of Player i. Formally,if we denote by IRunspUq the set

of images of branches of runs of U , and by η|V the V -projection of any η P p2Ω�2Ω�V qω,

we have:

αU � Q�tJuω Y ptη P IRunspUq X pQztJuqω | η|V P O0 _
kª
i�1

�
η|V R Oi ^ ϕDdevpi, ηq

�
uX

X tη P TRunspUq X pQztJuqω |
©

iPlimW pηq

η|V P Oiuq

where the formula ϕDdevpi, ηq says that there is a good deviation for Player i. That is,

ϕDdevpi, ηq � Dp ¥ 0 s.t. i P η|Drps in the case of tail objectives or ϕDdevpi, ηq � Dp ¥

0 s.t. i P η|Drps and @r ¤ p, η|V P Si for safety condition SafepSiq.

Note that for different particular winning conditions, we may need to add more in-

formation on states of the automaton in order to check the satisfaction of the winning

condition of the players and therefore slightly modify the transition relation. For example,

in the case of Safety conditions, we may need a set of players that already lost and ask

that the deviation is made before losing.

Automaton TG. Then, as mentioned before, the tree automaton TG with the accepting

condition α such that LαpTGq � NCRSPpGq is defined as the product of the two automata

CG and U . Formally, the automaton TG � xQ, tq0u, δ, αy has states in Q � p2Ω�2Ω�V qYtK

, pqU0 , q
C
0 quYptJu�V q, q0 � pq

U
0 , q

C
0 q is the initial state and the transition relation for l P Σ

is defined by

– δppqU0 , q
C
0 q, lq �

$&
%
tρpu with ρppdq �K if δCpq

C
0 , lq � ρp

tρ0u if δCpq
C
0 , l, dq � d and δT pq

T
0 , lq � tρ0u

– δpK, lq � tρpu

– δppJ, vq, lq �

$&
%
tρtu with ρtpv

1q � pJ, v1q if δCpv, v
1q � v1 for v1 P V

tρpu if δCpvq � ρp

– δpW,D, v, lq �

$&
%
δU pW,D, vq if δCpv, v

1q � v1 for all v1 P V

tρpu otherwise

Remark 2. Note that on each branch of a run there are still only a polynomial number in

the size of the initial game G of different states of the automaton since TG is the product

of U with a deterministic safety tree automaton of polynomial size.

Finally, the acceptance condition for the automaton TG is essence the condition αU but

also asks to avoid states K that are reached in CG if the tree to accept is not a proper
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encoding of a strategy σ0. That is,

α � Q�ptJu � V qω Y
!
η P IRunspTGq X tq0up2Ω � 2Ω � V qω |

�
η|V P O0 _

kª
i�1

�
η|V R Oi ^ ϕDdevpi, ηq

�	
^

©
iPlimW pηq

η|V P Oi

)

Lemma 9. Let take a path π P pQXtq0up2
Ω � 2Ω �V qqω of a run in TG. Then, each loop

on π has only one value on states for the sets W and D.

Proof. Let take a path π � xq1yq1z of a run in TG . Because of the definition of δU , π1 �

xq1pyq1qω is also a valid path of a run in TG . Suppose that there are two consecutive states

in y such that a player is removed/added from/to W in the second state compared to the

previous one. Then, there are also two consecutive states in y such that it is added/removed

to/from W . This contradicts the fact that π1 is a valid path of a run in TG since we could

do more than one addition of a player to W . The, there is no change on W on a loop.

Also, because of the monotonicity of D, we prove that the value of D remains unchanged

along a cycle using the same argument. �

From tree automata to two-player games. We now study the complexity of testing

emptiness of the language defined by TG , for the different winning objectives of this paper.

Classically, non-deterministic tree automata emptiness is reduced to solving a two-player

zero sum game between Eve, who constructs a tree and a run on this tree, and Adam,

whose goal is to prove that the run is non-accepting, by choosing directions in the tree

and falsifying the acceptance condition.

Formally, remind that the alphabet is Σ � V Y t�i | 1 ¤ i ¤ ku Y tKu and for a

function f : V Ñ Q, we denote by Rangepfq its range. We construct a zero-sum two-player

game GT � xVE , VA, E
1, q0,Oy where VE � Q, VA � tRangepfq | Dq P Q, l P Σ, f P δpq, lqu.

Then, the transition relations is defined for all q P Q, all P P VA, by pq, P q P E1 if there

exists l P Σ and f P δpq, lq s.t. P � Rangepfq, and pP, qq P E1 if q P P . In other words,

to go from q to P , Eve chooses a symbol α and a function f : V Ñ Q in δpq, αq. Then,

Adam chooses a direction in V , but since he wants to construct a sequence of states not

in α, one only needs to remember Rangepfq. Adam then picks a state in that set. Finally,

Eve’s objective is then the set O � tπ � v1w1v2w2 � � � P pVEVAq
ω | v1v2 � � � P αu.

Proposition 1. Eve has a winning strategy in GT iff LαpTGq � H.

Complexity of solving two-player games. The game GT has linear size in the size

of TG . A precise analysis of the time complexity of solving GT gives upper bounds to

non-cooperative rational synthesis problem.

For safety, reachability, Büchi and co-Büchi winning objectives, we exploit the mono-

tonicity of the sets W and D (the fact that only a polynomial number in k of different

sets W and D can be met along a play), to show that if Eve can win the game GT , then

she can win in a polynomial number of steps (in the size of the original game G), in the
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sense that she wins iff she can enforce, in a polynomial number of steps, to visit a state q

she has already visited and which forms a good cycle (the notion of good cycle depends on

the winning condition of GT ). In other words, GT reduces to a finite duration game with

a polynomial number of steps (this kind of reduction is known as first-cycle game in the

literature [2]). This game is not constructed explicitly, but solved on-the-fly by a PTime

alternating algorithm. This gives a PSpace upper-bound for NCRSP.

For Muller conditions, we the polynomial reduction to first-cycle game doesn’t work.

Therefore, we transform GT into a two-player zero-sum parity game with an exponential

number of states but a polynomial number of priorities, which can be solved in Exptime

(in the size of G). This reduction is based on the Last Appearance Record (LAR) [16, 26],

which allows us to identify states in V appearing infinitely often. More details on the exact

complexity for each type of winning condition are given in the following.

5.1 Safety

In the case of safety objectives pSafepSiqqiPΩ the winning condition in the game GT can

be checked by keeping an extra set of players I � Ω with the following semantics: if the

play is in a state pq, Iq and some history h � q1w1q2w2...ql and i P I, then Player i lost

the play, i.e., there is a position s ¤ l s.t. qs|V R Si.

Initially, I � H and it is updated as follows. If a player i belongs to I, then i P I also

in the successor nodes. Otherwise, whenever the game goes in a state q � pW,D, vq such

that v R Si for some i P Ω, then i P I. Then, if eventually there is a player i PW X I, the

only next state of the game is K(losing state for Eve). The last situation appears when it

is made a wrong guess for a good deviation for some player. Then, if the play never go to

the node K we are sure that all the players from the set W win. We don’t need to keep

the information about the players in I if a state in tKu Y ptJu � V q is reached.

Formally, the game GT is as follows: VE � pQzptKuYptJu�V qqq�2ΩYtKuYptJu�V q

and VA � tRangepfq | Dq P Q, l P Σ, f P δpq, lqu � 2Ω and the transition relation as in the

general construction of the game(since I is deterministically updated). Then, because of

the monotonicity of the sets W,D and I, Eve’s winning condition simplifies to a Büchi

condition. O � BuchipFSq where

FS � ptJu � V q Y tpW,D, I, vq P Q | 0 R Iu Y tpW,D, I, vq P Q | D X I � Hu

Intuitively, the first set corresponds to the branches of the tree tσ0 that don’t correspond

to plays in G compatible with the strategy σ0. For the plays compatible to σ0, the Büchi

condition asks that Player 0 never belongs to the set I(therefore wins) or there is a player

i for which was guessed a good deviation but loses in the current play (i P D X I).

Definition 2. Given the two-players zero-sum game GT , we define the first cycle two-

player zero-sum game GfT over the same game arena as GT where each play ends after

the first cycle on Eve’s states. Then, a play π � xqyq in GfT is winning for Eve if either

q P tJu � V or q � pW,D, I, vq such that either 0 R I or D X I � H.
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Note that because of the monotonicity of I and D, this means that either all the Eve’s

states are such that 0 R I or there is some player i that lost but he had a profitable

deviation.

Lemma 10. All the plays of the game GfT are of polynomial length in the size of the initial

game G.

Proof. Since D and I are monotone, there are at most |Ω| � 1 different values that they

can take on a path of GT . Also, in the set W we can have at most one addition and one

removal for each player i P Ω and hence 2|Ω| � 1 different values for W . Therefore, along

a play π there are at most r � 1�p2|Ω|� 1q � p|Ω|� 1q2 � |V | different states. The, since all

the plays in GfT stop after the first cycle, the length of each play is of at most r� 1 states

since there is only one state that appears twice. Therefore, all plays in GfT have polynomial

length in Ω and V of the initial play G. �

Proposition 2. Eve has a winning strategy in the game GT iff she has a winning strategy

in the first cycle game GfT .

Proof. From right to left, if Eve has a winning strategy σfE in GfT , for all σfA a strategy for

Adam, outpσfE , σ
f
Aq � xqyq either is such that q P tJu � V or q � pW,D, I, vq s.t. (0 R I

or I XD � H).

We define now the strategy σE of Eve in GT as σEphqq � σfEph
1qq s.t. h1 is h from

which are removed all cycles and prove that σE is winning for Eve in GT . Let π be a play

compatible with σE . Then, by the definition of σE , we can decompose π in π � π1π2π3...

such that each πj is a suffix of a play π1j compatible with σfE in GfT . If all πj on π satisfy 0 R I

on the last state (resp. if it belongs to tJu� V ), then also π will satisfy lp0 R Iq(because

I is monotone)(resp. π|VE P Q
�ptJu � V qω) and then Eve wins. Otherwise, if there is j

such that πj ends in a state q � pW,D, I, vq s.t. I XD � H, because of the monotonicity

of I and D(Lemma 9), all the states of Eve in the continuations of the game will satisfy

I XD � H and then Eve wins.

Now, from left to right, if there is no winning strategy for Eve in GfT , by determinacy,

there is a winning strategy σfA for Adam such that @σfE of Eve, either outpσfE , σ
f
Aq contains

K (has a suffix in ptKuq�) or it doesn’t contain K, but outpσfE , σ
f
Aq � xqyq such that

q � pW,D, I, vq with 0 P I and I XD � H.

Let σA be the strategy of Adam in GT defined as σAphqq � σfAph
1qq where h1 is h from

which are removed all cycles. We prove that σA is winning for Adam in the game GT .

Let π be a play compatible with σA. By definition of σA, we can decompose π in

π � π1π2π3... such that each πj is a suffix of a play π1j compatible with σfA in GfT . If all πj

are such that they don’t contain K but they end in a state q � pW,D, I, vq such that 0 P I

and I XD � H, because of the monotonicity of I and D(Lemma 9), 0 P I in all states of

Eve in πj1¡j on π and since I X D � H, it means that all the states of π will satisfy it

and therefore I XD � H appears a finite number of times which means that Adam wins.

Otherwise, if there is a πj that ends in K, then by definition of the game arena(induced by
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the transition relation in TL) all πj1¡j have Eve’s states equal to K which is again winning

for Adam since they visit a finite number of times states in FS . �

Theorem 6. Deciding the existence of a solution for the non-cooperative synthesis in

multiplayer Safety games is in Pspace.

Proof. Thanks to Lemma 10 and Proposition 2, to decide the existence of a solution for

the non-cooperative synthesis in multiplayer Safety games G is equivalent to solve the

two-player zero-sum finite game GfT that has all the plays of polynomial size in the size of

the game G. This can be done in Pspace using an alternating Turing machine running in

Ptime. �

5.2 Reachability

For the reachability objectives pReachpRiqqiPΩ, we have the same approach as in the case

of safety objectives but with a new meaning for the newly introduced set. In this case,

we keep a set J � Ω with the following semantics: if the play is in a state pq, Jq at some

history h � q1w1q2w2...ql and i P J , then Player i won in the current play, i.e., there is a

position s ¤ l s.t. qs|V P Ri.

Initially, J � H and it is updated as follows. Whenever a player belongs to the set J ,

this remains true for the successor nodes. Otherwise, whenever the game goes in a state

q � pW,D, vq such that v P Ri for some i P Ω, then i is added to the set J . Note that

along a play, the set J is monotone since there are only additions of new players.

The formal definition of the game is the same as in the case of Safety objectives,

but with the later semantics for the introduced set of players. Then, the Eve’s winning

condition translates to the Büchi objective O � BuchipFRq where

FR � ptJu � V q Y tpW,D, J, vq P Q |W � J and p0 P J or DzJ � Hqu

Since the sets J and D are monotone and also W is establishing after at most 2k

changes, a play π satisfies the winning condition O iff π |ù ♦lpW � J ^ p0 P J _DzJ �

Hqq. Then, we define the first cycle game as follows:

Definition 3. Given a two-player zero-sum game GT , we define the first cycle two-player

zero-sum game GfT over the same game arena as GT where each play ends after the first

cycle. Then, a play π � xqyq in GfT is winning for Eve if either q P tJu � V or q �

pW,D, J, vq such that W � J and either 0 P J or DzJ � H.

Lemma 11. All the plays of GfT are of polynomial length in the size of the initial game

G.

Proof. The argument is the same as in the case of Safety games since the set L is replaced

by the set J in the Reachability case having the same monotonic property. �

Proposition 3. Eve has a winning strategy in the game GT iff she has a winning strategy

in the first cycle game GfT .
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Proof. From right to left, let take a winning strategy σfE of Eve in the game GfT . We define

Eve’s the strategy σE in GT as σEphqq � σfEph
1qq where h1 is obtained from h by removing

all the loops. We prove that σE is winning for Eve in GT .

Let π be a play compatible with σE . By the definition of σE , we can decompose π

in π � π1π2π3... s.t. πj is a suffix of a play π1j in GfT (π1j is obtained from π1π2...πj by

removing all the cycles from π1π2...πj�1). Since σfE is winning for Eve, the last state of all

πj are either in tJu � V or are s.t. W � J and (0 P J or DzJ � H). Therefore we see

infinitely often states from FR and Eve wins in GT .

In the other direction, if Eve doesn’t have a winning strategy in GfT , by determinacy,

there is a winning strategy σfA for Adam in GfT such that @σfE of Eve, outpσfE , σ
f
Aq � π1

such that either π1 contains K (there is a suffix in ptKuqω) or π1 � aqyq s.t. q � pW,D, J, vq

with W � J or (0 R J and DzJ � H).

Now we define the strategy σA for Adam in GT as σAphqq � σfAph
1qq where h1 is

obtained from h by removing all the cycles and prove that it is winning for Adam in GT .

Let π be a play in GT compatible with σA. From the definition of σA, we can decompose

it as π � π1π2π3... where each πj is the suffix of a play π1j in GfT .

If there is one πj that contains a K in one position, then all the following states equal

K by the definition of δT and then Adam wins. Now, if there is no state equal to K on π,

then since σfA is winning in GfT , all πj end in a state that either satisfy W � J or (0 R J

and DzJ � H). Suppose by contradiction that there are two πj1 and πj2 such that appear

infinitely often in π and πj1 ends in a state q1 with W � J and πj2 ends in a state q2

that satisfies W � J and 0 R J and DzJ � H. Also, if we take the plays π1j1 � x1q1y1q1

and π1j2 � x2q2y2q2 whose suffixes πj1 and πj2 are, then x1q1 is a prefix of x2q2 or vice

versa(otherwise they don’t both appear infinitely often on π). Then, between q1 and q2 all

the players that belong to W zJ have to be added(if x1q1 is a prefix of x2q2) or remover

(otherwise) from W . But in Lemma 9 we saw that this is not possible. Therefore, on π

either all but a finite number of πj are ending on a state satisfying W � J , or all but a

finite number of πj satisfy 0 R J and DzJ � H on the last state. In addition, from the

definition of δT , from one position on, the values of W ,D and J are unchanged. Therefore,

From one position on, all states on π satisfy either W R J or (0 R J and DzJ � H) and

in both cases Adam wins. �

Theorem 7. Deciding the existence of a solution for the non-cooperative synthesis prob-

lem in multiplayer Reachability games is in Pspace.

Proof. The result is thanks to Lemma 11 and Proposition 3 and the fact that the finite

duration game can be solved in Pspace using an alternating Turing machine running in

Ptime. �

5.3 Büchi

Consider that the objective of Player i are given as Büchi sets Fi � V , 0 ¤ i ¤ k. Therefore,

a sequence v0v1v2... P V
ω belongs to Oi iff it satisfies the LTLrGs formula l♦Fi where Fi
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is an atomic proposition true in a state v iff v P Fi. Then, the winning condition for Eve

in the game GT is O � tπ � q1w1q2w2 � � � P pVEVAq
ω | πæVE � q1q2 � � � P αu where

α � Q�ptJu � V qω Y
!
η P IRunspTGq X tq0up2Ω � 2Ω � V qω |

�
η|V |ù l♦F0 _

kª
i�1

�
η|V * l♦Fi ^ i P limDpηq

�	
^

©
iPlimW pηq

η|V |ù l♦Fi
)

In order to check the satisfaction of α along the plays of the game GT , we introduce

two counters cW P ΩYt�1u and cD P ΩYt�1u in the states of the states of the game help

to monitor the appearance of states in Fi that make the formula ϕW �
�
iPlimW pηq η|V |ù

l♦Fi and ϕD �
�k
i�1

�
η|V * l♦Fi^i P limDpηq

�
true. The goal in using this counters is to

write the formulas ϕW and ϕD as Büchi and respectively co-Büchi conditions. Intuitively,

whenever cW or cD equal to i means that it is expected a state belonging to Fi.

In order to correctly update the counters, we need to keep in the states of Adam also

the last previous state belonging to Eve. Note that by doing this, the size of the game

remains exponential in the size of the initial game and the number of different states along

a play remains polynomial in the size of initial game.

Formally, given the game GT � pVE , VA, E
1, q0,Oq, we define the new game G̃T �

pṼE , ṼA, Ẽ, q̃0, Õq with q̃0 � pq0,�1,�1q, ṼE � VE � pΩ Y t�1uq � pΩ Y t�1uq, ṼA �

VA� VE � pΩ Y t�1uq � pΩ Y t�1uq and the transition relation is the smallest set Ẽ such

that

– ppqE , cW , cDq, pqA, qE , cW , cDqq P Ẽ iff pqE , qAq P E
1 for qE P VE and qA P VA

– ppqA, qE , cW , cDq, pq
1
E , c

1
W , c

1
Dqq P Ẽ iff pqA, q

1
Eq P E

1 where

c1W �

$''''''''&
''''''''%

�1 if qE �K or qE P tJu � V

or q1E � pW
1, D1, v1q s.t. W 1 � H

mintpcW � lq mod k PW 1 | l ¡ 0u if qE � pW,D, vq, q
1
E � pW

1, D1, v1q

s.t. W 1 � H^ pv P FcW _ cD PW
1zW _W � Hq

cW otherwise

and

c1D �

$''''''''&
''''''''%

�1 if qE �K or qE P tJu � V

or q1E � pW
1, D1, v1q s.t. D1 � H

mintpcD � lq mod k P D1 | l ¡ 0u if qE � pW,D, vq, q
1
E � pW

1, D1, v1q

s.t. D1 � H and pv P FcD or D � Hq

cD otherwise

Note that a play π P pṼE , ṼAq
ω is in PlayspG̃T q iff π1 obtained from π by projecting

away cW and cD (and qE from Adam’s nodes) is in PlayspGT q. Intuitively, the role of the

counters cW and cD wait for the first occurrence of a state such that v P FcW and v P FcD
respectively. If qE �K or W � H (or D � H), then cW � �1 (cD � �1 resp.).
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Lemma 12. For a play π in G̃T , if π|VE P tq0utq0up2
Ω�2Ω�V qω and Wp � limW pπ|VE q,

then

π |ù
©
iPWp

l♦Fi iff π |ù l♦Hw

where Hw � tpW,D, v, cW , cDq P ṼE |W � H_ pv P FcW ^ cW � minti PW uqu

Proof. Note that since we considered π|VE P tq0utq0up2
Ω � 2Ω � V qω, states in tJu � V

are not reached by π. Let first treat the case Wp � H, then π |ù true and also π |ù l♦Hw

since the only set W visited infinitely often is H.

Now, consider Wp � H. If π |ù
�
iPWp

l♦Fi, then infpπ|cW q �Wp by the construction

of the game G̃T (whenever a final state is reached, the counter cW is increased to the next

player in W ). Then, we see an infinite number of times final states of the ”smallest” player

in W, i.e., states in which v P FcW and cW � minti PW u and then π |ù l♦Hw.

In the other direction, if we see an infinite number of times states with v P FcW and

cW � minti P W u, because of the construction of the game, once we reach a final state

with v P FcW the counter cW is increased to the next player in W and so on. Therefore,

between tho states having v P FcW and cW � minti PW u, the projection on the direction

visits all the states Fi where i P W . Then, since W is stabilizes to Wp and since we

visit an infinite number of times final states with v P FcW where cW � minti P Wpu, it

means that we visit infinitely often the final states of all players in limW pπq and therefore

π |ù
�
iPWp

l♦F1. �

Lemma 13. For a play π in G̃T , if π|VE P tq0utq0up2
Ω � 2Ω �V qω and Dp � limDpπ|VE q,

then

π |ù
ª
iPDp

♦l Fi iff π |ù ♦l Hd

where Hd � tpW,D, v, cW , cDq P VE | D � H_ pv P FcD ^ cD � minti P Duqu

Proof. The proof is similar to the proof of the previous Lemma. Indeed, if Dp � H, then

by the monotonicity of D, all the states along the play are such that D � H and then

both π |ù
�
iPDp�1

♦l Fi and π |ù ♦l Hd are false.

If Dp � H, and π |ù
�
iPDp

♦l Fi, then there is a player that sees finitely often Fi.

Therefore, from the construction of the game G̃T , there is a player that blocks the cycling

through all the values in D for the counter cD and for that player, there are eventually seen

only non-final states. That is, there are not seen infinitely often states in which v P FcD
and cD � minti P Du and therefore π |ù ♦l Hd.

In the other direction, if π visits finitely often states in which v P FcD and cD � minti P

Du, from the definition of the game G̃T , either FcD is seen a finite number of times along

π, or there is a i P D that blocks the cycling of cD through all the values in D. Therefore,

there is a player i P D such that π |ù ♦l Fi. �
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Using Lemmas 12 and 13, if we note HJ � tq P ṼE | q|VE P tJu � V u and H0 �

tpW,D, v, cW , cDq P VE | v P F0u we can rewrite Eve’s winning condition in the game G̃T

as

Õ � tπ P pṼEṼAq
ω | π |ù ♦lHJ _

�
pl♦H0 _ ♦l Hdq ^l♦Hw

�
u

Note that by asking to see infinitely often Hw, there are also avoided the states having

q �K.

The above formula ♦lHJ _
�
pl♦H0 _ ♦l Hdq ^ l♦Hw

�
is equivalent to ♦lHJ _

pl♦H0^l♦Hwq_p♦lHd^l♦Hwq. Then, to be able to check if a path satisfies l♦H0^

l♦Hw, we need to introduce a counter b P t0, 1u in the states of the game G̃T as follows.

Definition 4. We define a game ĜT � pV̂E � ṼE � t0, 1u, V̂A � ṼA � t0, 1u, pq̃0, 0q, Ê, Ôq
where

– ppq, bq, pq1, b1qq P Ê iff pq, q1q P Ẽ and b1 �

$''&
''%

0 if b � 1 and q P Hw

1 if b � 0 and q P H0

b else

– Ô � tπ P pV̂EV̂Aq
ω | π |ù ♦lH 1

J_l♦H
1
0_p♦lH

1
d^l♦H

1
wqu where H 1

J � HJ�t0, 1u,

H 1
0 � H0 � t0u, H

1
d � Hd � t0, 1u and H 1

w � Hw � t0, 1u.

Note that form the way of defining the transition relation in ĜT , the updates of the

counter b are deterministic. Therefore, for each path π in G̃T , there is a unique corre-

sponding path π1 in ĜT s.t. by projecting away the counter b from π1 we obtain the path

π.

Lemma 14. Let π1 P PlayspĜT q and π P PlayspG̃T q obtained from π1 by projecting away

the counter b. Then

π |ù ♦lHJ_
�
pl♦H0_♦l Hdq^l♦Hw

�
iff π1 |ù ♦lH 1

J_l♦H
1
0_p♦l H

1
d^l♦H

1
wq

Proof. If π |ù l♦H0 ^ l♦Hw, then from the definition of ĜT , the path π1 will contain

infinitely many changes of the value of the counter b by reaching alternatively states in

H0 � t0u and Hw � t1u. Therefore, π1 |ù H 1
0.

If π * l♦H0 ^ l♦Hw but π |ù ♦l Hd ^ l♦Hw, it means that there is a position

from which the counter b remains unchanged along π1 and π1 |ù ♦l H 1
d ^ l♦H

1
w. Also,

if π |ù ♦lHJ, it means that eventually a state containing J is reached and the game

remains in HJ. Then, from the construction of ĜT , the same property holds along π1 and

therefore π1 |ù ♦lH 1
J.

In the other direction, if π1 |ù l♦H 1
0, from the definition of the transition relation in

the game ĜT , π1 has to visit infinitely often both H0 � t0u and Hw � t1u and therefore

π |ù l♦H0 ^l♦Hw.

If π1 |ù ♦l H 1
d ^ l♦H

1
w, by projecting away the counter b, the play π |ù ♦l Hd ^

l♦Hw since H 1
d � Hd � t0, 1u and H 1

w � Hw � t0, 1u. The same argument works if

π |ù ♦lH 1
J. �
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Parity game Further, we express Eve’s winning condition Ô � tπ P PlayspĜT q | π |ù

♦lH 1
J_l♦H

1
0_p♦l H

1
d^l♦H

1
wqu using a parity condition where the priority function

pr defined as follows:

prpq P V̂Eq �

$''''''''&
''''''''%

0 if q R H 1
J ^ q P H

1
0

1 if q R H 1
J ^ q R H

1
0 ^ q P H

1
d

2 if q R H 1
J ^ q R H

1
0 ^ q R H

1
d ^ q P H

1
w

3 if q R H 1
J ^ q R H

1
0 ^ q R H

1
d ^ q R H

1
w

4 if q P H 1
J

For states belonging to Adam, we just put priority prpq P V̂Aq � 6, so that they have no

influence.

Lemma 15. Let π P PlayspĜT q. Then

π |ù ♦lH 1
J _l♦H

1
0 _ p♦l H

1
d ^l♦H

1
wq iff mintprpqqq | q P infpπqu is even

Proof. If π |ù ♦lH 1
J, then eventually the game remains in the set H 1

J and the only priority

appearing infinitely often along π is 4 which is even. Otherwise, If π |ù l♦H 1
0, then H 1

0 is

visited infinitely often mintprpqq | q P infpπqu � 0 which is even.

If π * ♦lH 1
J_l♦H

1
0 but π |ù ♦l H 1

d^l♦H
1
w, then from a position on H 1

d is never

visited and we see infinitely oftenH 1
w along π. This means thatmintprpqq | q P infpπqu � 2

which is even.

In the other direction, if mintprpqq | q P infpπqu � 0, then π |ù l♦H 1
0. Otherwise,

if mintprpqq | q P infpπqu � 2, it means that π visits an infinite number of times H 1
w

and only a finite number of times H 1
d (otherwise mintprpqq | q P infpπqu � 1). That is,

π |ù ♦l H 1
d ^ l♦H

1
w. Finally, if mintprpqq | q P infpπqu � 4, it means that eventually

only states in H 1
J are visited (otherwise the smallest priority appearing infinitely often is

not 4) and therefore π |ù ♦lH 1
J. �

Definition 5. Given a two-player zero-sum parity game ĜT with the priority function pr,

we define the first cycle two-player zero-sum game GfT over the same game arena as ĜT

where each play ends after the first cycle. Then, a play π � xqyq in GfT is winning for Eve

iff mintprpyqrjsq | 0 ¤ j   |yq|u is even.

Lemma 16. All the plays in GfT are of polynomial length in the size of the initial game

G.

Proof. It follows from the monotonicity of D and quasi-monotonicity of W and the fact

that 1 ¤ cW , cD ¤ k and b P t0, 1u. �

Proposition 4. Eve has a winning strategy in the game ĜT iff she has a winning strategy

in the first cycle game GfT .
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Proof. From right to left, if Eve has a winning strategy σfE in GfT , then for all strategies σfA
of Adam, outpσfE , σ

f
Aq � xqyq is such that mintprpyqrjsq | 0 ¤ j   |yq|u is even. We define

Eve’s strategy σE in ĜT as σEphqq � σf ph1qq where h1 is obtained from h by removing all

the loops. We prove that σE is winning for Eve in ĜT .

Let π be a play compatible with σE . By the definition of σE , we can decompose π in

π � π1π2π3... s.t. πj is a suffix of a play π1j in GfT compatible with σfE . Moreover, there is

a decomposition of the suffixes πj such that by reordering the resulting fragments of all

suffixes appearing infinitely often, we obtain an infinite sequence of loops being suffixes

of plays in GfT compatible with σfE preceded by a finite prefix. Then, since σfE is winning

in GfT , all the loops have the minimum priority even and therefore the minimum priority

appearing infinitely often in π is even and π is winning for Eve.

On the other direction, if there is no winning strategy for Eve in GfT , by determinacy,

there is a winning strategy σfA for Adam such that @σfE , outpσfE , σ
f
Aq � xqyq is such that

mintprpyqrjsq | 0 ¤ j   |yq|u is odd. Let σA be the strategy of Adam in ĜT defined as

σAphqq � σfAph
1qq where h1 is obtained from h by removing all cycles. We prove that σA

is winning for Adam in ĜT .

Let π be a play compatible with σA. Doing the same reasoning as before, we can

decompose π and rearrange the components such that we obtain an infinite sequence of

loops being suffixes of plays in GfT compatible with σfA preceded by a finite prefix. Then,

since σfA is winning in GfT for Adam, all the loops have the minimum priority odd and then

the priority that appears infinitely often in π is odd. Therefore, π is winning for Adam in

ĜT . �

Theorem 8. Deciding the existence of a solution for the non-cooperative synthesis prob-

lem in multiplayer Büchi games is in Pspace.

Proof. It follows directly from Lemma 16 and Proposition 4 and the fact that the finite

duration game GfT can be solved in Pspace using an alternating Turing machine running

in Ptime. �

5.4 Co-Büchi

Let consider now the case when the winning conditions for each player i is given as a

Co-Büchi set Fi � V . Then, the winning condition for Eve in the game GT is O � tπ �

q1w1q2w2 � � � P pVEVAq
ω | πæVE � q1q2 � � � P αu where

α � Q�ptJu � V qω Y
!
η P IRunspTGq X tq0up2Ω � 2Ω � V qω |

�
η|V |ù ♦l F0 _

kª
i�1

�
η|v * ♦l Fi ^ i P limDpηq

�	
^

©
iPlimW pηq

η|V |ù ♦l Fi
�)

Lemma 17. For a play π in GT , if πæVE P tq0utq0up2
Ω�2Ω�V qω and Wp � limW pπæVE q,

then
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πæVE |ù
�
iPWp

♦l Fi iff πæVE |ù ♦l Hw

where Hw � tpW,D, vq P VE | v P
�
iPW Fiu.

Proof. This holds because all the states that appear an infinite number of times along

π have W � Wp(W stabilizes along a play) and visiting a finite number of sets a finite

number of time is equivalent to visiting their union a finite number of times. �

Lemma 18. For a play π in GT , if πæVE P tq0utq0up2
Ω�2Ω�V qω and Dp � limDpπæVE q,

then

πæVE |ù
�
iPDp

l♦Fi iff πæVE |ù l♦Hd

where Hd � tpW,D, vq P VE | v P
�
iPD Fiu.

Proof. This holds because all the states that appear an infinite number of times along π

have D � Dp(D stabilizes along a play) and visiting one set among F1, ..., Fr an infinite

number of times is equivalent to visiting their union an infinite number of times. �

Let now H0 � tpW,D, vq P VE | v P F0u and HJ � tq P VE | q P tJu � V u. Then,

Using Lemmas 17 and 18, we get that Eve’s winning condition is equivalent to

O � tπ P pVEVAq
ω | πæVE |ù ♦lHJ _

�
p♦l H0 _l♦Hdq ^ ♦l Hw

�
u

Let I � H0 Y Hw. Then the formula ♦lHJ _
�
p♦l H0 _ l♦Hdq ^ ♦l Hw

�
is

equivalent to ♦lHJ_♦l I_pl♦Hd^♦l Hwq. Further, from the construction, a play

cannot alternate states in HJ and I (once in HJ, all the future states are in the same set).

Therefore, we can define the set J � HJ Y pVEzIq and equivalently write ♦lJ instead of

♦lHJ _ ♦l I.

Definition 6. Given the two player game GT , we define Eve’s winning condition as a

parity condition with the priority function pr : pVE Y VAq Ñ t1, .., 6u with

prpq P VEq �

$'''''&
'''''%

1 if q R J ^ q P Hw

2 if q R J ^ q P Hd ^ q R Hw

3 if q R J ^ q R Hd ^ q R Hw

4 if q P J

For states belonging to Adam, we just put priority prpq P VAq � 6, so that they have no

influence.

Lemma 19. Let π P PlayspGT q. Then,

πæVE |ù ♦lHJ _
�
p♦l H0 _l♦Hdq ^ ♦l Hw

�
iff mintprpqq | q P infpπqu is even

Proof. If πæVE |ù ♦lHJ, then πæVE |ù ♦lJ and therefore from a position on we see

only states in J which means that mintprpqq | q P infpπqu � 4 which is even. If π |ù
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♦l H0 ^ ♦l Hw, then π |ù ♦l I and then πæVE |ù ♦lJ which means as before

mintprpqq | q P infpπqu � 4.

Otherwise, if π |ù l♦Hd^♦l Hw, then from a point on Hw doesn’t appear in π and

Hd appears infinitely often which means that mintprpqq | q P infpπqu � 2 which is even.

In the other direction, if mintprpqq | q P infpπqu � 4,because of the construction, it

means that from a position on, either appears only states in HJ or the set I � H0 YHw

doesn’t appear in π(otherwise mintprpqq | q P infpπqu   4) and therefore π |ù ♦lHJ _

♦l H0 ^ ♦l Hw.

If mintprpqq | q P infpπqu � 2, it means that Hd appears infinitely often along π and

Hw appears a finite number of times(otherwise mintprpqq | q P infpπqu � 1). Therefore,

π |ù l♦Hd ^ ♦l Hw. �

Now, having the two player parity game G1T over the same game arena as GT and

objective Paritypprq, we define the first cycle game GfT ans we did in Definition 5 in the

case of Buchi games whose plays have polynomial length in the size of the initial game G
and solve it in alternating Ptime.

Theorem 9. Deciding the existence of a solution for the non-cooperative synthesis prob-

lem in the multiplayer co-Büchi games is in Pspace

5.5 Muller

We now study the complexity of solving GT when the original game G has Muller conditions

Mullerpµiq for the k � 1 players. For Muller conditions, he winning condition for Eve in

the game GT is GT is O � tπ � q1w1q2w2 � � � P pVEVAq
ω | πæVE � q1q2 � � � P αu where

α � Q�ptJu � V qω Y
!
η P IRunspTGq X tq0up2Ω � 2Ω � V qω |

�
η|V P Mullerpµ0q _

kª
i�1

�
η|V R Mullerpµiq ^ i P limDpηq

�	
^

©
iPlimW pηq

η|V P Mullerpµiq
�)

We transform GU into a two-player zero-sum parity game with an exponential number

of states but a polynomial number of priorities, which can be solved in Exptime (in the

size of G). This reduction is based on the Last Appearance Record (LAR) [16, 26], which

allows us to identify states in V appearing infinitely often.

LAR For the given set of states V , we define the deterministic transition system LARV

that records the most recent states in V that appeared along an execution. We let P pV q

the set of permutations of V , which we denote by words of length n over alphabet V such

that each element of V appears exactly once. We define a deterministic finite automaton

LARV � pP pV q � t0, . . . , |V | � 1u, pm0, h0q,Ñq, m0 � v1 . . . vn and h0 � 1, and pm,hq
v
ÝÑ

px1x2v, |x1|q where m � x1vx2 for some x1, x2 P V
�.

Let pm,hq be a state of LARV . Then, h is called the hit, representing the position

from which the last state v is taken and moved to the back, and the states after position
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h on in m are the most recent states v seen along the path, called recent states. Then, let

ξ � v0v1v2... be an infinite sequence of states in V . A path in LARV on ξ is a infinite

sequence τpξq � pm0, h0qpm1, h1qpm2, h2q... such that pm0, h0q PM and @j ¥ 1, pmj , hjq �

δppmj�1, hj�1q, vj�1q. Let hmin be the smallest hit appearing infinitely often along τpξq.

Then, the set of vertexes v in m situated after position hmin is always the same from

some point on and is equal to infpξq, i.e., the sequence of subsets ptmirrs | r ¥ hπminuqi¥0

eventually stabilizes to infpξq.

Parity game Now we can define the parity game G̃T by taking the product of GT and

LARV as follows.

Definition 7. Given the two-players zero-sum game GT � pVE , VA, q0, E
1,Oq with VT �

VE Z VA and the deterministic transition system LARV defined as above, we define the

parity game G̃T � pṼ � ṼE Z ṼA, q̃0, Ẽ, prq where Ṽ � VT �M , q̃0 � pq
1
0, pm0, h0qq and

the set E1 is defined by

– ppqE , pm,hqq, pqA, pm,hqqq P E
1 iff pqE , qAq P E

– ppqA, pm,hqq, pqE , pm
1, h1qqq P E1 iff

$''&
''%

pqA, qEq P E

pm1, h1q � δppm,hq, qE |V q if qE R tKu Y ptJu � V q

pm1, h1q � pm,hq if qE P tKu Y ptJu � V q

Finally, the priority function pr : Ṽ Ñ t0, ..., 2|V | � 2u is defined as follows: prpK

,m, hq � 1, prpqJ,m, hq � 0 for qJ P tJu � V and

prppW,D, vq, pm,hqq �

$''&
''%

2h if @i PW tmrrs | r ¥ hu |ù µi and

ptmrrs | r ¥ hu |ù µ0 or Di P D s.t. tmrrs | r ¥ hu |ù  µiq

2h� 1 else

For states whose first component belongs to Adam, we just put priority 2|V | � 2, so that

they have no influence.

Let π a play in GT . Note that according to the definition above, there is a unique

play π1 in G̃T such that by projecting away the LAR construction along π1, we obtain the

play π. Also, the LAR component changes only on states belonging to Eve which helps

verifying the winning condition O.

Lemma 20. Let π a play in GT and the corresponding play π1 in G̃T . Then,

π P O iff π1 P Paritypprq

Proof. Let hmin be the smallest hit appearing infinitely often along π1. As remarked before,

tmrrs | r ¥ hminu � infpπ1æVE |V q � infpπæVE |V q.

Let π P Mullerpµ0q. This is equivalent to tmrrs | r ¥ hminu |ù µ0. If Dp � limDpπæVE q,

the fact that Di P Dp s.t. infpπæVE |V q R Mullerpµiq, since πæVE |D � π1æṼE |D and tmrrs |

r ¥ hminu � infpπ1æVE |V q � infpπæVE |V q, is equivalent with tmrrs | r ¥ hminu * µi.
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Also, considering Wp � limW pπæVE q, the property that @i P Wp, πæVE |V P Mullerpµiq

translates to infpπæVE |V q � tmrrs | r ¥ hminu |ù µi.

From the above, π P O iff the smallest priority appearing infinitely often when hitting

hmin is 2hmin which is even and therefore π1 P Paritypprq. �

Theorem 10. The non-cooperative multiplayer Muller rational synthesis problem is in

Exptime.

Proof. The complexity comes from the fact that the game G̃T is a two-player Parity game

with exponential number of states, but with polynomial number of priorities which can

be solved in Exptime since parity games can be solved in PTime in the number of states

and exponential in the number of priorities [18, 22], so proving the result. �

5.6 Lower Bounds for the Non-Cooperative Setting

We finally provide some lower bounds to the complexity of the non-cooperative ratio-

nal synthesis problem. Clearly, given an objective O P tReach, Safe, . . . u the correspond-

ing non-cooperative rational synthesis problem is at least as hard as the 0-sum two-

players game with the same objective5. We show that indeed, for each objective O P

tReach,Safe,Buchi, coBuchi, Street,Rabin,Parity,Mulleru, a Pspace lower bound applies to

the corresponding non-cooperative rational synthesis problem. The result is obtained by

reduction from the quantified boolean formula (QBF) problem.

Theorem 11. For each X P tReach, Safe,Buchi, coBuchi,Street,Rabin,Parity,Mulleru, the

non-cooperative rational synthesis problem in multiplayer X -games is Pspace-h.

Proof. By reduction from QBF. Let ψ � Dx1@x2...Dxmγpx1, x2, ..., xmq be a QBF in 3CNF

with k clauses C1, C2, ..., Ck.

Given X P tReach,Safe,Buchi, coBuchi, Street,Rabin,Parity,Mulleru, we build a mul-

tiplayers X -game Gψ such that ψ is true if and only if Gψ admits a solution to the

non-cooperative rational synthesis problem. The game Gψ involves 2m � 2 players Ω �

tA,B, P10, P11, P20, P21, . . . , Pm0, Pm1u. Intuitively, player A (the system) controls the ex-

istential variables, while player B (first player of the environment) controls the universal

ones. More precisely, Gψ is played on the arena Aψ obtained as follows (cfr. Figure 4,

where the round nodes are owned by Player A, the diamond ones by player B, and the

rectangular ones by players P10, P11 . . . , Pm0, Pm1 as specified below.).

For each existential (resp. universal) variable xi the arena Aψ contains a node xi

controlled by the system (resp. by player B). For each node xi, 1 ¤ i   m, the arena

Aψ contains the edges pxi, 0xiq, pxi, 1xiq, p0xi , xi�1q, p1xi , xi�1q, where the vertex 0xi (resp.

1xi) intuitively represents the value valpxiq � 1 (resp. valpxiq � 0) for the variable xi.

5 In fact, given the zero-sum two-player game G where Player 0 has the objective γ, it is sufficient to

consider a non-zero-sum game on the same arena where Player 0 (the system) has objective γ and

Player 1 (the environment) wins in any case.
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Fig. 4: Non-cooperative Büchi: Reduction from QBF

For each 1 ¤ i ¤ m, the value-node 1xi (resp. 0xi) is controlled by player Pi1 (resp. Pi0)

and has a further edge leading to the self-loop over the node v2i�1 (resp. v2i), owned by

the system. The value nodes 1xm , 0xm (for the last variable xm) are then connected to a

vertex z controlled by player B, where intuitively player B can choose a clause (i.e. an

edge pz, Ciq, 1 ¤ i ¤ k, out from z). Each clause-node Ci, controlled by the system, has

three outgoing edges toward the terminal nodes (with self-loops) li1, li2, li3, one for each

literal in Ci.

Given the arena described above for the X -game Gψ , the objectives of players are

properly designed so that the following conditions are satisfied:

(i) Given vi, where 1 ¤ i ¤ 2m, each lasso-path ending up into vi is winning for each

player in the game.

(ii) Given lij , where 1 ¤ i ¤ k and 1 ¤ i ¤ 3, each lasso-path ending up into lij is winning

for each player in the game but the system (i.e. player A) and the player Phb, where:

plij � xh ^ b � 1q _ plij �  xh ^ b � 0q

Note that condition piq implies that for each 1 ¤ i ¤ m and b P t0, 1u, the vertex bxi
belongs to the winning region WPib

of player Pib (since it is controlled by Pib and leads

the play to a lasso-path ending up either into v2i or into v2i�1, winning for Pib).

We claim that the formula ψ is true iff there is a solution for the non-cooperative

rational synthesis problem in the multiplayer X -game Gψ.

Assume that ψ is true. Then, the existential player has a winning strategy in the QBF

game associated to ψ. Player A (the system) can play in Gψ according to such a strategy up

to the node z, ensuring a configuration of variables such that all the clauses are satisfied.

Then, from each clause node Ci, 1 ¤ i ¤ k, player A can choose one literal lij , 1 ¤ j ¤ 3,

that makes true Ci and go to the corresponding node lij . Each path π on Gψ in the outcome
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of such a strategy for player A is either winnng for player A (since it does not reach z,

i.e. is a lasso-path to some vi, where 1 ¤ i ¤ 2m) or it ends up into a node lij such that:

either lij � xh and π passed trough 1xh or lij �  xh and π passed trough 0xh (i.e. either

player Ph1 respectively player Ph0 doesn’t play in NE since he looses but passed trough

his winning region).

Otherwise, assume that ψ is false. Then, the universal player has a winning strategy

σ in the QBF game associated to ψ. Consider a strategy profile (for the environment)

where player B plays according to σ and each player Pib, for 1 ¤ i ¤ m, b P t0, 1u, plays to

the next variable-node (or to z). Once in z, player B can choose a clause Ci that is false

according to the instantiation of variables along the path followed so far. Therefore, for

any choice of the system from Ci, the play will be loosing for the system and in NE for

each player of the environment. Indeed, let lij be the choice of player A from Ci. Then,

there is an index h such that lij � xh or lij �  xh. In the first case player Ph1 looses

but he could not avoid it (since the play did not pass trough 1xh and he never played)

and each other player in the environment wins. In the second case Ph0 looses but he could

not avoid it (since the play did not pass trough 0xh and he never played) and each other

player in the environment wins.

To conclude the proof, we just need to show that the objectives of the players in the

X -game Gψ can be defined in order to satisfy the conditions piq and piiq above, for each

X P tReach, Safe,Buchi, coBuchi,Street,Rabin,Parity,Mulleru, .

– X � Reach. It is sufficient to define the reachability objective for each player as follows:

RA � tvi | 1 ¤ i ¤ 2mu, RB � V , and for each h P t1, . . . ,mu, the reachability

objective of Ph1 is RPh1
� tvi | 1 ¤ i ¤ 2mu Y tlij | 1 ¤ i ¤ k, 1 ¤ j ¤ 3 and lij � xhu

and the one for Ph0 is RPh0
� tvi | 1 ¤ i ¤ 2mu Y tlij | 1 ¤ i ¤ k, 1 ¤ j ¤ 3 and lij �

 xhu.

– X � Safe. It is sufficient to define the safety objective for each player as follows.

SA � V ztplij | 1 ¤ i ¤ k ^ 1 ¤ j ¤ 3u, SB � V , and for each h P t1, . . . ,mu:

SPh1
� V ztlij | 1 ¤ i ¤ k, 1 ¤ j ¤ 3 and lij � xhu and SPh0

� V ztlij | 1 ¤ i ¤ k, 1 ¤

j ¤ 3 and lij �  xhu

– X � Büchi. It is sufficient define the Büchi objectives of the players as follows: FA �

tvi | 1 ¤ i ¤ 2mu, FB � V , and for each h P t1, . . . ,mu: FPh1
� V ztlij | 1 ¤ i ¤ k, 1 ¤

j ¤ 3 and lij � xhu and FPh0
� V ztlij | 1 ¤ i ¤ k, 1 ¤ j ¤ 3 and lij �  xhu

– X � co-Büchi. It is sufficient define the co-Büchi objectives of the players as follows.

The co-Büchi objective of the system is tlij | 1 ¤ i ¤ k, 1 ¤ j ¤ 3u. The co-Büchi

objective of Player B is H. For each h P t1, . . . ,mu, the co-Büchi objective of Ph1 is

tlij | 1 ¤ i ¤ k, 1 ¤ j ¤ 3 and lij � xhu and the objective of Ph0 is tlij | 1 ¤ i ¤

k, 1 ¤ j ¤ 3 and lij �  xhu

– X P tparity, Street, Rabinu . The Pspace-hardness for the non-cooperative rational

synthesis for parity, Streett and Rabin comes directly from the fact that we can easily

express any Büchi condition as a parity, Streett or Rabin condition.
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– The Pspace-h for the non-cooperative strategy synthesis problem for Muller games

follows from the fact that 0-sum two player Muller games are Pspace-h (we could

clearly also define proper Muller objectives in Gψ is order to satisfy conditions piq,piiq).

�

Theorem 12. The non-cooperative rational synthesis problem is Pspace-c in multiplay-

ers X -games, X P tSafe,Reach,Buchi, coBuchiu. It is Pspace-h in multiplayers X -games,

X P tParity,Street,Rabin,Mulleru)

6 Fixed number of players

Until now, we considered the general case where the number of agents consisting the

environment is not fixed. In the following, we restrict the rational synthesis problem to

the particular case when the number of players is fixed (let say k players) and study

the complexity of solving the rational synthesis problem in both cooperative and non-

cooperative cases.

6.1 k-fixed Cooperative Setting

Upper Bounds The following theorems prove the upper bounds to k-fixed CRSP pro-

vided in the second column of Table 1. In particular, Theorem 13 provides Ptime proce-

dures to solve the k-fixed CRSP w.r.t. safety, reachability, Büchi and coBüchi objectives.

Theorem 14 provides a UPX coUP algorithm for parity k-fixed CRSP.

Theorem 13. The k-fixed CRSP w.r.t. safety, reachability, Büchi and coBüchi objectives

is in Ptime.

Proof. As seen in the proof of Lemma 2, there is a solution for cooperative rational syn-

thesis iff there is a path π such that π |ù ϕ where ϕ � ϕ0 ^ φ
G
0Nash.

Given the above, the Ptime algorithm for the winning conditions pXiqi first labels in

polynomial time each node in the winning region Wi of each Player i, 0 ¤ i ¤ k, by Wi.

Also, for the winning conditions of each player, we label in polynomial time nodes belonging

to Si (resp. Ri and Fi) with the corresponding atomic proposition vSi (resp. vRi and vFi).

Note that since the number of players is fixed, also the number of atomic propositions

introduces is and the formula ϕ � ϕ0 ^ φ
G
0Nash becomes a constant formula(depends only

on the number of players).

Then, to check the existence of a path such that π |ù ϕ, we build a constant size

Büchi word automaton Bϕ(since the LTL formula ϕ is constant for k constant), take the

product with the game arena and check in polynomial time the emptiness of the resulting

automaton.

�

Theorem 14. The k-fixed CRSP w.r.t. parity objectives is in UPX coUP.
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Proof. Given 0 ¤ i ¤ k, let pi : V Ñ t0, ..., 2nu be the priority function for Player

i, where n � |V |. We need to provide a UPXcoUP algorithm to check if G admits

a path π |ù φ, where φ � paritypp0q ^
�

1¤i¤kpparityppiq _ l Wiq and parityppiq ��pki�1q{2
j�0 pl♦C2j ^

�
p 2j ♦l Cpq encodes the winning condition for Player i, where Cj

is an atomic proposition corresponding to color j. First, notice that if G admits a path π

such that π |ù φ, then G admits a path π� � π�1π
�
2 such that π� |ù φ, |π�1 | ¤ n and π�2 is

a loop of size pk � 2q � n. In fact, given π |ù φ we can build π� as follows. If π |ù l Wi

for each 1 ¤ i ¤ k, then π� can be obtained by cutting π as soon as the first node repeats

on it. Otherwise, for each 1 ¤ i ¤ k such that π |ù parityppiq, let mi P t0 . . . nu be the

least priority w.r.t. pi occurring infinitely often on π. For each node v, label v by the

vector ā � pa0 . . . , akq, where for each 0 ¤ i ¤ k , āris � mi if pipvq � mi, and āris � K

otherwise. Given m0, there is a vertex u that appears infinitely often on π and is assigned

infinitely often a label that have m0 (rather than K) at index 0. Pick the first occurrence

of such an u and color it by green. Repeat the above procedure for each 1 ¤ i ¤ k such

that π |ù parityppiq (starting from the last green node) in order to recover a green node

on π for each 0 ¤ i ¤ k such that π |ù parityppiq. Once detected the last green node, cut

the remaining path as soon as you find a further occurrence of u. Therefore, you obtain a

path π1 � π11π
1
2, where π12 is a loop (from u to u) witnessing that π1 |ù φ. Removing each

simple loop on π11 as well as on each subpath of π12 withouth green nodes lead to a path

π� � π�1π
�
2 such that π� |ù φ, |π�1 | ¤ n, and π�2 is a loop of size pk � 2q � n.

Given the above premises, it is sufficient to design UPX coUP algorithm to check if

G admits a path π� |ù φ, where π� � π�1π
�
2 such that |π�1 | ¤ n and and π�2 is a loop of size

pk � 2q � n. The UP algorithm works as follows. For each node v in G, for each 1 ¤ i ¤ k

guess if v P Wi or v R Wi. Verify the guess applying the corresponding UP algorithm. If

the guess was incorrect, then reject immediately. Otherwise check in NLOGSPACE if G
contains a path π� |ù φ, where π� � π�1π

�
2 such that π� |ù φ, |π�1 | ¤ n and π�2 is a loop of

size pk� 2q � n. This is possible by guessing on-the-fly a path π� and a node u on it where

the loop should start, while mantaining (1) for each 0 ¤ i ¤ k, the minimum priority seen

along the loop w.r.t pi (2) for each 0 ¤ i ¤ k, a bit to check if l Wi along π� (2) the

lenghts of π�1 , π
�
2 and (3) the node u witnessin that π�2 is a loop. Infact, since k is a fixed

constant, the priorities are bounded by n, and the length of the path is polynomial w.r.t.

the size of the graph, the amount of space required is logarithmic w.r.t. the size of the

input graph.

A coUP algorithm needs to verify in UP if @π. pπ |ù φq. This can be done as follows.

For each node v in G, for each 1 ¤ i ¤ k guess if v P Wi or v R Wi. Verify the guess

applying the corresponding UP algorithm. If the guess was incorrect, then reject imme-

diately. Otherwise, verify in coNLOGSPACE if @π. pπ |ù φq. This amounts to check in

NLOGSPACE if Dπ.π |ù φ that can be done as above. �
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Lower Bounds The following Theorem 15 provides a reduction from two players zero-

sum games to k-fixed CRSP, that allows to infer the lower bounds on k-fixed CRSP given

in the second column of table 1.

Theorem 15. Let X P tSafety,Reachability,Buchi, coBuchi,Parity,Streett,Rabin,Mulleru.

Given a two-player zero-sum game between player A and B with an objective of type X for

player A, we can construct a multiplayer game with objective of type X with two players

Ω � t0, 1u such that player A does not have a winning strategy in the zero-sum game if

and only if the multiplayer game is a positive instance of the CRSP problem.

Proof. Let G be a two-players zero-sum game where the protagonist (Player A) has the

objective ψ, and so Player B has objective  ψ. We construct the 2-players CRSP game

G1 by considering a copy of G and two fresh states v and w. The state v is the initial state

of G1 and has a transition to the initial state of G and a transition to w, which is equipped

with a self-loop. The environment (Player 1) controls v, w and the states belonging to

Player A in G, while the system (Player 0) controls the states belonging to Player B in

G. For the winning conditions, Player 0 wins only if the play gets into w (and stays that

forever), while the objective of the environment is ψ ( i.e. the objective of Player A in G).

G1 is a positive instance of the CRSP problem iff Player 1 playing edge v Ñ w is a NE.

But clearly Player 1 does not have an incentive to deviate if and only if Player A does not

have a winning strategy in G for forcing ψ. �

Therefore, we obtain:

Corollary 2. For parity objectives, k-fixed CRSP is in UPX coUP and parity-hard. For

Street objectives, k-fixed CRSP is NP-c. For Rabin objectives k-fixed CRSP is PNP and

coNP-h. Finally, for Muller objectives k-fixed CRSP is Pspace-c.

Proof. The result for parity follows directly from Theorem 14 and Theorem 15. For Street

objectives, the upper bound follows from [25], while the lower bound follows from Theorem

15. For Rabin objectives, the upper bound follows from Theorem 4, while the lower bound

follows from Theorem 15. The lower bound for Muller games follows from Theorem 15,

while the upper bound was already true for an unfixed number of players. �

Note that a gap remains open for Rabin k-fixed CRSP. In fact, we do not have a coNP

algorithm for such a problem. Rather, we only have a PNP procedure to solve it and we

do not know whether Rabin k-fixed CRSP is NP-h.

6.2 K-Fixed non-Cooperative setting

We finally prove the upper bounds and the lowe bounds to the complexity of k-fixed

NCRSP, reported in the last column of Table 1.
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Upper Bounds to k-fixed NCRSP For O P tSafety,Reachability,Buchi, coBuchiu, a

polynomial uppe bound applies, as shown in the following Theorem 16.

Theorem 16. The problem of deciding the existence of a solution for the non-cooperative

rational synthesis for a k-fixed number of players in Safety, Reachability, Büchi and co-

Büchi games can be solved in Ptime.

Proof. In the case of a fixed number of players k, we obtain the polynomial size two-player

zero-sum game GT and a fixed objective φ, where φ P tϕs, ϕr, ϕc, ϕbu are the formulas

characterizing the winning objectives in the case of Safety, Reachability, Büchi and co-

Büchi games. That is, ϕs � l♦FS , ϕr � ♦lFR, ϕb � ♦lHJ _
�
pl♦H0 _ ♦l Hdq ^

l♦Hw

�
, and ϕc � ♦lHJ _

�
p♦l H0 _l♦Hdq ^ ♦l Hw

�
.

First, we can label in polynomial time the nodes of the game GT with atomic propo-

sitions atomic propositions FS(for safety), FR(for reachability), HJ, H0, Hd and Hw(for

Buchi and co-Buchi respectively defined according the considered condition). Each node

is labeled with the atomic proposition corresponding to the set it belongs.

Then, since the formula φ is constant over the newly introduced atomic propositions,

we get a constant size automaton Aφ equivalent to the LTL formula φ and by taking the

product Aφ � GT we obtain a Büchi game that can be solved in polynomial time[12]. �

The procedure outlined within the proof of Theorem 16 does not yield a polynomial upper

bound for the remaining objectives considered in this paper. However, we show that Muller

k-fixed NCRSP can be solved in Pspace (cfr. Theorem 17). This entails a Pspace upper

bound also for k-fixed NCRPS w.r.t. O P tParity,Streett,Rabinu.

Theorem 17. The problem of deciding the existence of a solution for the non-cooperative

rational synthesis on k-players Müller games, where k is a fixed constant, is in Pspace.

Proof. For a fixed number of players k, the game GT has size polynomial in the size of the

initial game G. Moreover, the objective of Eve in GT is equivalent to a Muller condition µ

that is polynomial in the size of the game, as we show below. The thesis follows from the

fact that G two-players zero-sum Muller games can be solved in Pspace.

To conclude the proof, we show how to transform Eve’s objective O when each player

has an implicit Muller condition µi into an unique equivalent implicit Muller objective µ.

Note that we can ignore the states belonging to Adam and define the objective µ only on

Eve’s states.

First, for each tuple pW,D, vq, we consider an atomic proposition xW,D,v. Note that

since the number of players is fixed, the state space of the game GT is polynomial and

so is the size of the set of newly introduced atomic propositions. Then, let take η P

IRunspTGqXtq0up2Ω�2Ω�V qω and the condition η|V P Mullerpµ0q. Since the sets W and

D stabilize along η, we can equivalently write it as η P Mullerpµ10q where

µ10 � µ0rv Ð
ª
W,D

xW,D,vs
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is the boolean formula where each state v is replaced by a disjunction for all W and D of

xW,D,v. Further, the condition γi � pη|V R Mullerpµiq ^ i P limDpηqq asks that the Player

i belongs to D from a position on, and the Muller condition µi is not satisfied. Using

again the monotonicity of the sets W and D, we can rewrite the condition γi as a Muller

condition

µDi �
©
D�Ω
iPD

��ª
W,v

xW,D,v
�
Ñ  µirv Ð

ª
W

xW,D,vs
	

Intuitively, the formula says that for the set D that appears infinitely often (after sta-

bilization) that contains i, the formula  µi holds for some W (that is also fixed after

some steps). Similarly, we take the condition
�
iPlimW pηq η|V P Mullerpµiq and write the

equivalent Muller condition

µW �
©
W�Ω

��ª
D,v

xW,D,v
�
Ñ
©
iPW

µirv Ð
ª
D

xW,D,vs
	

The formula says that for the set W that appears infinitely often, for all the players in

this set, the Muller condition µi holds for some D.

Finally, the condition that η P Q�ptJu�V qω can be expressed using an atomic propo-

sition xJ that is true only in the states belonging to tJu�V as µJ � xJ since once η goes

outside tJu�V , it goes to K and all the following states equal K. Therefore, the objective

of Eve in the game GT is equivalent to the Muller condition O � Mullerpµq with

µ � µJ _
�
pµ10 _

kª
i�1

µDi q ^ µ
W
�

�

Corollary 3. The problem of deciding the existence of a solution for the non-cooperative

rational synthesis for a k-fixed number of players in Parity, Street and Rabin games is in

Pspace.

Lower Bounds to k-fixed NCRSP We start to note that the reduction from QBF to

general NCRSP provided in Theorem 11 does not apply to the case of a fixed number of

players, as it requires a number of components for the environment that is linear in the

numebe of variables of the given QBF. Clearly, k-fixed Muller NCRSP is PSpace-h by

reduction from the corresponding two player zero-sum games.

The lower bounds for parity k-fixed NCRSP reported in Table 1 have been obtained

by reduction from the generalized parity games considered in [11], where the objective is a

disjunction (dually, a conjunction) of parity conditions. In particular, we have proven that

NCRSP is NP-h (cfr. Theorem 18) on 3-players parity games, and coNP-h (cfr. Theorem

19) on 4-players parity game.

Finally, as listed in Table 1, we could provide a Pspace lower bound also to Street and

Rabin k-fixed NCRSP. This is done in two steps: First a reduction from QBF to zero-sum
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Pl0

s1A

Pl1
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Pl2
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p0, 0, 0q

copy of G
p1, p1, p2q

Fig. 5: k-fixed Non-cooperative Parity: NP-hardness

two players Muller games is provided (cfr. the proof of Theorem 20), similar to the one

given in [17]. Then, the latter is reduced to a Street (resp. Rabin, cfr. Theorem 21) NCRSP

with two players.

Theorem 18. The problem of deciding the existence of a solution for the non-cooperative

Parity synthesis problem in a 3-player game arena is NP-h.

Proof. We prove the theorem by reduction from the two-player zero-sum game G � pV �
VAZVB, E, v0,OA � paritypp1q^paritypp2qq where player A(protagonist) has as objective

an outcome satisfying a conjunction of two parity objectives p1 and p2. In [11] was proven

that computing the winning region for the antagonist is NP-hard.

W.l.o.g. we consider that the game G is turn-based and that the initial state belongs

to player A. Intuitively, the new 3-player parity game consists in a modified copy of G
by duplicating the states of Player A and adding an extra sink state called

:-) where are

players are happy with priority function equal to 0.

We define formally the 3-player parity game G1 � pV 1 � V0 Z V1 Z V2, E
1, v0, p

1
0, p

1
1, p

1
2q

where V0 � VB Y t

:-) u, V1 � tv1 | v P VAu, V2 � VA and E1 is defined as the smaller

set such that for all pvA, vBq P E, then pvA, vBq P E
1 and for all pvB, vAq P E, we have

pvB, v
1
Aq P E

1 and pv1A, vAq P E
1 and for all v P V1 Y V2, pv,

:-) q P E1. A sketch of the game

arena is depicted in Figure 5.

Then, we define the parity functions as

– p10pvq � 1 for all v �

:-) and p10p

:-) q � 0;

– p11pvq � p1pvq for all v P VB Y VA, p11pv
1q � p1pvq for v P VA and p11p

:-) q � 0;

– p12pvq � p2pvq for all v P VB Y VA, p12pv
1q � p2pvq for v P VA and p12p

:-) q � 0;

We claim that Player A has a winning strategy in G iff there is no solution to the

synthesis problem in the game G1. Indeed, if there is a strategy σA in G such that

paritypp1q ^ paritypp2q holds on all π P outpσAq, in G1 Player 2 can play σ2 defined

as σ2phq � σAph
1q where h1 is the restriction of h on the states in VA Y VB. Then, for all
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Fig. 6: k-fixed Non-cooperative Parity: co-NP-hardness

σ0, there is a NE pσ0, σ1, σ2q such that the game stays in the copy of G. Therefore, the

system(Player 0) loses and there is no solution for the synthesis problem.

Otherwise, if there is no strategy σA to ensure paritypp1q ^ paritypp2q on all the

paths compatible with it, it means that there is a strategy σB s.t. @π P outpσBq, π |ù

paritypp1q _ paritypp2q. That is, there is a strategy σ0 for Player 0 s.t. at least one of

the players 1 and 2 wants to deviate to

:-) . Let take pσ0, σ1, σ2q a strategy profile where

σ1pv
1q � v and σ2pvq �

:-) . If outpσ0, σ1, σ2q |ù paritypp1q, this is not a NE because Player

1 looses and prefers to go to

:-) . Otherwise, if outpσ0, σ1, σ2q |ù paritypp2q, player 2 looses

and prefers
:-) instead of staying in the copy of G. Therefore, all the NE are such that their

outcome reaches

:-) and Player 0 wins. This means that σ0 is a solution to the rational

synthesis problem. �

Theorem 19. The problem of deciding the existence of a solution for the non-cooperative

Parity synthesis problem in a 4-player game arena is co-NP-hard.

Proof. The proof is done by reducing from two-player zero-sum games where the objective

of the protagonist is a conjunction of two parity objectives p1 and p2. For this games, in

[11] is proven that the protagonist has a winning strategy from a given state is co-NP

hard.

The 4-player game is obtained from the game G by making two extra copies of each

node of Player B and adding two extra states

:-(

1 and

:-(

2. We define a 4-player parity

game G1 � pV 1 � V0 Z V1 Z V2 Z V3, E
1, v0, p

1
0, p

1
1, p

1
2, p

1
3q where V0 � VA Y t

:-(

1,

:-(

2u,

V1 � tv2 | v P VBu, V2 � tv1 | v P VBu, V3 � VB and E1 is the smaller set such that

for all pvA, vBq P E, then tpvA, v
2
Bq, pv

2
B, v

1
Bq, pv

1
B, vBqu � E1, for all pvB, vAq P E, also

pvB, vAq P E
1 and for all v P V1, pv,

:-(

1q P E
1 and for all v P V2, pv,

:-(

2q P E
1. A sketch of

the game arena is depicted in Figure 6.

Then, the parity functions are defined as

– p10pvq � 0 for all v R t

:-(

1,

:-(

2u and p10p

:-(

1q � p10p

:-(

2q � 1
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– p11pvq � p1pvq for all v P VA, p11pv
2q � p11pv

1q � p11pvq � p1pvq for all v P VB, p11p
:-(

1q � 1

and p11p

:-(

2q � 0.

– p12pvq � p2pvq for all v P VA, p12pv
2q � p12pv

1q � p12pvq � p2pvq for all v P VB, p12p

:-(

1q � 0

and p12p

:-(

2q � 1.

– p13pvq � 1 for all v P V 1.

We claim that there is a winning strategy σA for player A in G iff there is a solution

for the rational synthesis problem in G1. If there is a strategy σA to satisfy paritypp1q ^

paritypp2q, it means that there is a strategy σ0 for Player 0 defined as σ0phq � σAph
1q

where h1 is the restriction of h on the states in VA Y VE s.t. for any strategy σ3 of Player

3, both Player 1 and Player 2 prefer to play in the copy of G since they win and in

:-(

i

Player i loses. Therefore, all NE have as outputs plays in G and then Player 0 wins and

σ0 is a solution for the rational synthesis problem.

On the other way, if there is a solution for the rational synthesis problem, all the NE

have outputs in the copy of G which means that pσ0, σ1, σ2, σ3q where σ1pv
2q � v1 and

σ2pv
1q � v are the only NE. This means that both paritypp11q and paritypp12q are satisfied

for any strategy σ3. That is, there is a strategy σA defined as σAph
1q � σ0phq where h1 is

the restriction of h on the states in VAYVE(note there is only one such h by the definition

of G1) in G s.t. for all σB, outpσA, σBq |ù paritypp1q ^ paritypp2q. �

Theorem 20. The problem of deciding the existence of a solution for the non-cooperative

Streett synthesis problem in a 2-player game arena is Pspace-h.

Proof. By reduction from QBF. Let φ � Qkxk . . .@x1Dx0γ be a quantified boolean formula

in disjunctive normal form, where the quantifiers are strictly alternating. The proof will

proceed as follows. First, we build a two-players zero-sum Muller game Gφ such that Player

0 has a winning strategy in Gφ if and only if φ is true. Then, we use Gφ to build a non-

cooperative Street strategy synthesis two-players game G�φ , such that the system wins if

and only if φ is false.

Let us first define the two-players zero-sum Muller game Gφ. Let φ � Qkxk . . .@x1Dx0γ

be a QBF formula in disjunctive normal form, where φ is a disjunction of the clauses

C0, . . . , Cm over the literals tx0, x0, . . . , xk, xku. Given φ, the two-players zero-sum

Muller game Gφ � pxV0, V1y, E, v0,O0 � V ωq is defined as follows:

– V0 � tφu Y tx, x | x is a variable appearing in φu

– V1 � tC0, . . . , Cmu, the set of clauses in φ

– v0 � φ

– E is given by:

 for each 0 ¤ i ¤ m, pφ,Ciq P E

 if Ci � `0 ^ `1 ^ `2, then pCi, `0q P E, pCi, `1q P E, pCi, `2q P E

 for each 0 ¤ i ¤ k, pxi, φq P E, p xi, φq P E

– Given a path π P V ω, let ipπq be the index 0 ¤ ipπq ¤ k such that:

 either xipπq or  xipπq is seen infinitely often on π
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 for all ipπq   j ¤ k, both xj and  xj are seen finitely often on π

In other words, if we refer to the set of literals txi, x1u as literals of level i, then ipπq

is the index of the last level of literals (counting the levels from 0 to k) visited infinitely

often in π. Note that ipπq is well defined since, by definition of E, each infinite path

of Gφ contains at least one literal that repeats infinitely often.

The winning condition O0 � V ω states that the set of winning plays for Player 0 is

given by:

O0 � tπ | ipπq is odd^ xipπq, xipπq P infpπquY

tπ | ipπq is even ^ pxipπq R infpπq _  xipπq R infpπqu
(1)

where infpπq is the set of nodes that appear infinitely often on the path π.

In other words, Player 0 wins the play π if and only if:

– either the index of the last level of literals visited infinitely often is odd (i.e. ipπq is

odd) and both xipπq and  xipπq are visited infinitely often, or

– the index of the last level of literals visited infinitely often is even (i.e. ipπq is even),

but only one literal in txipπq, xipπqu appears infinitely often in π.

We show that O0 can be written as a combination of a Street and a Rabin condition, i.e.

O0 � S^R where S (resp. R) is a Street (resp. Rabin) condition. Given 0 ¤ i ¤ k, denote

by Lj¡i the set of literals Lj¡i � txj , xj | j ¡ iu. Then:

S �
©
i odd

ptxiu, t xiu Y Lj¡iq ^ pt xiu, txiu Y Lj¡iq (2)

R �
ª
i odd

ptxi, xiu, Lj¡iq _
ª

i even

ptxiu, t xiu Y Lj¡iq _ pt xiu, txiu Y Lj¡iq (3)

Namely, S states that for each odd level i, if you see xi (resp.  xi) infinitely often in

π, then either ipπq ¡ i (i.e. i is not the last level visited) or ipπq � i (i.e. the last level

visited is odd) and both literals at the odd level ipπq � i are seen infinitely often on π.

The Rabin condition R instead states that either the last level visited is even and only

one between xipπq and  xipπq is seen infinitely often, or otherwise the last level is odd (and

the condition S takes care of its properties).

Given the above definition of the 0-sum Muller game Gφ, we are now ready to prove

that φ � Qkxk . . .@x1Dx0γ is true if and only if Player 0 wins Gφ. In particular, we will

proceed by induction on k. Note that if x0 does not appear in φ, we can add the clause

x0 ^ x0 withouth changing the truth value of φ.

Base Case By the idempotency of _ and ^ and assuming that φ is closed, φ is logically

equivalent to one of the following forms:

1. φ � Dx0px0q or Dx0p x0q. In this case, the arena consists of four vertices tφ,C0, x0, x0u.

If φ � Dx0px0q, then  x0 is isolated, otherwise x0 is isolated. Therefore, Gφ contains

only one cycle winning for Player 0.
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2. φ � Dx0px0 _  x0q. Gφ consists of five vertices tφ,C0, C1, x0, x0u. Player 0 wins by

choosing always C0 from φ.

3. φ � Dx0px0^ x0q. Gφ consists of four vertices tφ,C0, x0, x0u. Player 0 can only play

to C0 � x0 ^  x0 from φ. Player 1 wins by choosing alternatively x0 and  x0 from

C0.

Inductive Case By inductive hypothesis, we know that if φ has k � 1 quantifiers and is

closed, than Player 0 has a winning strategy if and only if φ is true. To prove the inductive

step for k quantifiers we use the following lemma that shows how subgames correspond

to restricted subformulae. First, let us introduce some notation. Given v P V,U � V and

i P t0, 1u, we denote by AvoidipU, vq the subset of U from which Player i has a strategy to

avoid vertex v withoth leaving U .

Lemma 21. If φ � Qx.γ and γrx Ñ trues does not simplify to either true or false, then

Avoid1pAvoid0pV, xq, xq induces a subgame of Gφ that is isomorphic to GφrxÑtrues . Dually,

if γrx Ñ falses does not simplify to either true or false, then Avoid1pAvoid0pV, xq, xq

induces a subgame of Gφ that is isomorphic to GφrxÑfalses .

Proof. γrx Ñ trues consists of the clauses of γ that do not contain  x, say c1, . . . , cp

with all the occurrences of x removed. The arena of the game GγrxÑtrues consists therefore

of an initial vertex, one vertex for each clause c1, . . . , cp and one vertex for each literal

different from x, x. The edges are the same of Gγ restricted to the above set of vertices.

We show that the graph induced by Avoid1pavoid0pV, xq, xq is isomorphic to the arena of

GγrxÑtrues. The set of vertices U � Avoid0pV, xq is given by V minus the set of clauses c

containing  x and the vertex  x. Note that C is not empty since γrx Ñ trues does not

simplify to false. The set of vertices W � Avoid1pUq is then obtained by removing from

U the only vertex x (note that Player 1 has more than one choice from each clause since

γrxÑ trues does not evaluate to true). Therefore, W precisely consists of the initial vertex,

one node for each clause not containing  x n γ and a node for each literal different from

x, x. Hence, the graph induced by Avoid1pavoid0pV, xq, xq is isomorphic to GγrxÑtrues.

The proof of the case γrxÑ falses is symmetric. �

Given the above lemma, we are now ready to deal with the inductive step. We consider

two cases, depending on wether the variable x in φ � Qx.γ is quantified universally or

existentially.

1. φ � Dx.γ. If φ is true, then there is a value v P t0, 1u such that γrx Ñ vs is true.

Assume v � 1 is such a value. The, Player 0 plays in Avoid0pV, xq trying to reach

infinitely often x. If Player 1 at some point prevents him to reach x (from that point

of the game over) then the game gets confined in Avoid1pavoid0pV, xq, xq in which

Player 0 has a strategy to win. The subcase where γrxÑ 1s is symmetric.

If φ is false, then γrxÑ 0s (resp γrxÑ 1s) is false and Player 1 can use the following

strategy to win. Indefinitely, alternatively try to reach first x (while avoiding  x), and
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then try to reach  x (while avoiding x). If at any point the opponent prevents him

to reach his current objective, the game gets confined in Avoid1pavoid0pV, xq, xq or

Avoid1pavoid0pV, xq, xq in which Player 1 has a winning strategy.

2. φ � @x.γ. If φ is true, Player 0 can adopt the following strategy to win. He will try

alternatively to reach x (while avoiding  x) and then reach  x while avoiding x. If at

any point of the game Player 1 prevents Player 0 to reach its target then the game gets

confined into Avoid1pavoid0pV, xq, xq or Avoid1pavoid0pV, xq, xq where Player 0 has

a winning strategy. The subcase where φ � @x.γ is false is symmetric to the subcase

where φ � Dx.γ is true seen above.

Note that, intuitively, Player 1 fixes the value of a variable each time he forbid Player

0 to reach (from that point on of the play) its target literal. Whenever the value of a

variable—say xi—is fixed by Player 1 in this way, the play prooceds into a inner layer of

variables, i.e. into the arena of a subgame that contains only literals of levels less than i.

Resuming, we have now proven that the QBF formula φ � Qkxk . . .@x1Dx0γ (in DNF)

is true if and only if Player 0 wins the 0-sum Muller game Gφ, in which the objective of

Player 0 W0 � S ^ R is a combination of a Street condition S and a Rabin condition R.

Given Gφ, consider now the following non-cooperative 2-players Street game G�φ :

– the arena of G�φ is exactly the same of Gφ
– Player 1 is the system

– the environment is composed by the only Player 0

– the objective of the system is the Street condition  R

– the objective of the only component in the environment is the Street condition S

We show that φ is false if and only if there is a solution to the non-cooperative strategy

synthesi problem G�φ . Before prooceding in such a proof, note that  RÑ S. In fact:

 R �
©

i even

ptxiu, t xiu Y Lj¡iq ^ pt xiu, txiu Y Lj¡iq ^
©
i odd

ptxi, xiu, Lj¡iq (4)

Hence  R states that the last level visited infinitely often is even, that implies S. Given

the above observation, we prooced to prove that φ is false if and only if there is a solution

to the non-cooperative strategy synthesis problem G�φ . There are two cases to consider. If

φ is true, then the environment can ensure S ^R, i.e. he has a strategy to guarantee that

he accomplishes his objective, while the system does not.

In the other case, suppose that φ is false. Then the system has a strategy to ensure

 S _  R. Since  R Ñ S, either the environment looses, or it holds  R and both the

players win. The environment has always the possibility to cooperate to establish  R by

e.g. always choosing the clause6 x0 ^ x0. �

Theorem 21. The problem of deciding the existence of a solution for the non-cooperative

Rabin synthesis problem in a 2-player game arena is Pspace-h.

6 W.l.o.g. we can assume that the only clause containg x0 in φ is x0 ^ x0. In fact, if this is not the case

we can leadφ to such a form by renaming each valriable xi to xi�2 and adding the clause x0 ^ x0
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Proof. By reduction from QBF. Let φ � Qkxk . . .@x1Dx0γ be a quantified boolean formula

in disjunctive normal form, and consider the equivalent QBF:

φ1 � Qkxk . . .@x1Dx0@y1Dy0ppy1 ^ γq _ p y1 ^ γqq

Let φ
2

be the formula obtained from φ1 by first renaming each variable xi, i � 0 . . . k, to

xi�2, and each variable yi, i P t0, 1u, to xi, and then normalizing the resulting formula

in DNF. Let Gφ2 be the 2-players 0-sum Muller game such that Player 0 has a winning

strategy in Gφ2 if and only if φ
2

is true, built according to the procedure shown within the

proof of Theorem 20. Given Gφ2 , consider the following non-cooperative 2-players Rabin

game G�
φ2

:

– the arena of G�
φ2

is exactly the same of Gφ2
– Player 1 is the system

– the environment is composed by the only Player 0

– the objective of the system is the Rabin condition  S

– the objective of the only component in the environment is the Rabin condition R

We show that φ
2

is false if and only if there is a solution to the non-cooperative strategy

synthesi problem G�
φ2

. There are two cases to consider:

1. In the first case, assume that φ
2

is true. Then, the environment can ensure S^R that

is a NE where he wins while the system looses.

2. In the second case, suppose that φ
2

is false. Then, the system has a strategy to ensure

 S _  R. We claim that such a strategy (c.f.r. the proof of Theorem 20) is indeed

a solution to the non-cooperative Rabin strategy synthesis problem on G�
φ
2 . In fact,

the environment can win if he cooperates with the system to establish  S, i.e. if he

cooperate to let the last level of variables visited to be odd. The environment can

effectively force the last level visited to be odd by opposing to the system a strategy

that forbid the system to reach its target literal, leading the play to be confined within

inner and inner layers (of literals), until the objective of the system is to reach (only

one) literal of level 1—say e.g. x1. At that point, the environment simply let the system

to pursue its objective by choosing only clauses with the literal x1 (that appears in φ
2

by construction).

�

7 Conclusion

In this paper, we have studied the complexity of rational synthesis in both the cooperative

and non-cooperative settings, and depending on whether the number of players is fixed

or not. Our results are summarised in Table 1. Rationality of the environment is modeled

by assuming that the players composing it play a Nash equilibrium. Interesting directions

for future work would be to assume other notions of rationality, e.g. secure equilibria [10],

doomsday equilibria [8], subgame perfect equilibria [24, 25], or admissible strategies [4, 14].
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2008.

13. A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and

A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking. In Computer Aided Verifica-

tion, 14th International Conference, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings,

volume 2404 of Lecture Notes in Computer Science, pages 359–364. Springer, 2002.

14. M. Faella. Admissible strategies in infinite games over graphs. In Mathematical Foundations of

Computer Science 2009, 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras,

Slovakia, August 24-28, 2009. Proceedings, volume 5734 of Lecture Notes in Computer Science, pages

307–318. Springer, 2009.

15. D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. CoRR, abs/0907.3019, 2009.

16. Y. Gurevich and L. Harrington. Trees, automata, and games. In Proceedings of the Fourteenth Annual

ACM Symposium on Theory of Computing, STOC ’82, pages 60–65, New York, NY, USA, 1982. ACM.

17. P. Hunter and A. Dawar. Complexity bounds for regular games. In Proceedings of the 30th International

Symposium on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in Computer

Science, pages 495–506, Berlin, Heidelberg, 2005. Springer-Verlag.

18. M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving parity

games. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 117–123, 2006.

52



19. O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis with rational environments. In Multi-Agent

Systems - 12th European Conference, EUMAS 2014, Prague, Czech Republic, December 18-19, 2014,

Revised Selected Papers, pages 219–235, 2014.

20. F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. What makes atl* decidable? A decidable

fragment of strategy logic. In CONCUR 2012 - Concurrency Theory - 23rd International Conference,

CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings, volume 7454 of Lecture

Notes in Computer Science, pages 193–208. Springer, 2012.

21. A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179–190. ACM

Press, 1989.

22. S. Schewe. Solving parity games in big steps. In FSTTCS 2007: Foundations of Software Technology

and Theoretical Computer Science, 27th International Conference, New Delhi, India, December 12-14,

2007, Proceedings, volume 4855 of Lecture Notes in Computer Science, pages 449–460. Springer, 2007.

23. W. Thomas. On the synthesis of strategies in infinite games. In STACS, pages 1–13, 1995.

24. M. Ummels. Rational behaviour and strategy construction in infinite multiplayer games. In FSTTCS

2006: Foundations of Software Technology and Theoretical Computer Science, 26th International Con-

ference, Kolkata, India, December 13-15, 2006, Proceedings, volume 4337 of Lecture Notes in Computer

Science, pages 212–223. Springer, 2006.

25. M. Ummels. The complexity of nash equilibria in infinite multiplayer games. In Foundations of

Software Science and Computational Structures, 11th International Conference, FOSSACS 2008, Held

as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,

Hungary, March 29 - April 6, 2008. Proceedings, volume 4962 of Lecture Notes in Computer Science,

pages 20–34. Springer, 2008.

26. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees.

Theor. Comput. Sci., 200(1-2):135–183, 1998.

53


