The complexity of Rational Synthesis

- Full version -

Rodica Condurache!?, Emmanuel Filiot!, Raffaella Gentilini?, and Jean-Francois
Raskin'

! Université Libre de Bruxellse, Computer Science Department, Brussels
2 University of Perugia, Dept. of Mathematics and Computer Science, Perugia
3 Université Paris Est, LACL(EA 4219), UPEC, 94010 Créteil Cedex

- 17 Feb. 2016 -

Abstract. In this paper, we study the computational complexity of the cooperative and
non-cooperative rational synthesis problems, as introduced by Kupferman, Vardi and co-
authors in recent papers for general LTL objectives. We investigate these problems on mul-
tiplayer turn-based games played on graphs, and provide complexity results for the classical
omega-regular objectives. Most of these complexity results are tight and shed light on how
to solve those problems optimally.

1 Introduction

In this paper, we study the computational complexity of the rational synthesis problem
as introduced in [15,19]. Rational synthesis uses k + 1 player non-zero sum games to
formalize the problem of synthesising a system (modeled by Player 0) that is executed in
an environment made of several components (modeled by Players 1, ..., k). The behaviour of
the components composing the environment is assumed to be rational, and not necessarily
fully antagonistic as in the classical two player zero-sum setting, see e.g. [23]. Rationality
of the environment is modelled by assuming that the components behave according to
a Nash equilibrium. Rational synthesis has been introduced in [15,19] in two different
settings.

In the first setting, called cooperative rational synthesis [15], the environment cooper-
ates with the system in the sense that its components agree to play a Nash equilibrium
that is winning for Player 0 (if it exists). In other words, in the cooperative setting, one
assumes that once a Nash equilibrium winning for Player 0 is proposed, all the players
will adhere to the suggested strategies.

In the second setting, called non-cooperative rational synthesis [19], the components
of the environment may follow any strategy, providing it is a Nash equilibrium. In this
setting, one has to output (if it exists) a strategy oy for the system which has to be winning
against all the possible strategy profiles that include ¢ for Player 0 and which are Nash
equilibria.

The main contribution of the original papers is to propose and to motivate the def-
initions above. The only computational complexity results given in those papers are as

follows: the cooperative and non-cooperative rational synthesis problems are 2EXPTIME-
¢ for specifications expressed in linear temporal logic (LTL), thus matching exactly the
complexity of classical zero-sum two-player LTL synthesis [21]. The upper bound is ob-
tained by reductions to the satisfiability problem of formulas in Strategy Logic [20] (SL).
The reduction to SL and the use of LTL specifications does not allow one to understand
finely the computational complexity aspects of solving the underlying n player non-zero
sum games.

Contributions To better understand the computational complexity of the rational syn-
thesis problems and how to manipulate their underlying games algorithmically, we consider
variants of those problems for games played on turn-based graph structures for reacha-
bility, safety, Biichi, coBiichi, parity, Rabin, Streett and Muller objectives. We also study
the computational complexity of solving those games when the number of players is fixed.
This parameterised analysis makes sense as the number of components forming the envi-
ronment may be limited in practical applications. The results we obtain are summarized
in Table 1.

Cooperative Non-Cooperative

Unfixed k \ Fixed k Unfixed k Fixed k

Safety NP-c PTIME-c PspPACE-c PTIME-c

Reachability NP-c PTIME-c PSPACE-c PTIME-c

Biichi PTIME-c[25] PTIME-c[25] PSPACE-c PTIME-c

co-Biichi NP-c[25] PTIME-c PSPACE-c PTIME-c
Parity NP-c[25] UP n co— UP, parity-h|EXPTIME, PSPACE-h|PSPACE, NP-h, coNP-h

Streett NP-c [25] NP [25], NP-hard EXPTIME,PSPACE-h PSPACE-c

Rabin|PVF, NP-h, coNP-h PNP coNP-h EXPTIME, PSPACE-h PSPACE-c

Muller PSPACE-c PspACE-c EXPTIME, PSPACE-h PspACE-c

LTL| 2EXPTIME-C[15] 2EXPTIME-C[15] 2EXPTIME-C[19] 2EXPTIME-C[19]

Table 1: Complexity of rational synthesis for k players.

On the positive side, our results show that for a fired number of players, for objectives
that admit a polynomial time solution in the two-player zero-sum case (reachability, safety,
Biichi and coBiichi), cooperative and non-cooperative rational synthesis can be solved in
PTIME. On the negative side, for rich omega regular objectives defined by parity, Rabin,
or Streett objective, the complexity increases. First, games with parity objectives cannot
be solved in polynomial time unless PTIME equals NP while it is conjectured that this
result does not hold for two-player zero sum parity games. Second, games with Rabin or
Streett objectives are PSPACE-C for the non-cooperative setting while they have solution
in nondeterministic polynomial time for their zero-sum two player versions. When the
number of players is not fixed, the complexity is usually substantially higher than for the
two-player zero-sum case. For example, non-cooperative rational synthesis is PSpPACE-H
for all objectives, so even for safety objectives.

Cooperative rational synthesis is a particular case of the more general problem of
checking the existence of a constrained Nash equilibrium in a multiplayer game, where
the strategy of Player 0 is required to be winning. The complexity of constrained Nash
equilibria has been studied by Ummels in [25] for some classes of objectives, based on a
characterisation of Nash equilibria by means of LTL formulas to be checked on the game
arena. This directly gives us upper-bounds for cooperative synthesis and Biichi, coBiichi,
parity and Streett objectives. For the other objectives, we extend this characterization.
Solutions to the non-cooperative case are much more involved and are based on a fine tuned
application of tree automata techniques. This is a central contribution of our paper. In
particular, our tree automata have exponential size but we show how to test their emptiness
in PSPACE to obtain optimal algorithms for Streett, Rabin and Muller objectives and fixed
number of players.

The tree automata that we construct not only allow us to test the existence of solution
to the non-cooperative rational synthesis problem but also to symbolically represent all
the strategies for the system that are solutions. This set is thus regular and can be ma-
nipulated with automata-based techniques. Also, it should be clear that those techniques
are amenable to symbolic implementations when the game structure is given with binary
decision diagrams. This is important as it shows that our techniques pave the way to
implementations that have proven useful and efficient by the computer aided verification
community, and implemented in tools like nuSMV [13] for example. To obtain lower-
bounds, we had to design several original and intricate reductions that explain cleanly
why some of those problems are intractable.

Related works Non-zero games for synthesis are gaining attention recently, see e.g. [5] for
a survey of recent results. Secure equilibria were introduced for two players in [10] and
their potential for synthesis was demonstrated in [9]. Secure equilibria are refinement of
Nash equilibria [24]. Doomsday equilibria extend secure equilibria to the n player case, and
their complexity complexity is studied in [8]. Subgame perfect equilibria, that also refines
Nash equilibra, were first studied in [24,25]. To model rationality of players, the notion
of admissible strategy is used in [4,14] instead of the notion of Nash equilibria, and the
computational complexity of related decision problems is studied in [7]. Synthesis rules
for reactive systems based on admissibility are studied in [6]. All those works consider
games played on a game structure with classical omega-regular objectives and provide
tight complexity results for almost all the relevant synthesis problems. This is not the
case for cooperative and non-cooperative rational synthesis for which only the complexity
for specifications given in LTL was known [15,19]. This paper provides algorithms and
computational complexity results for cooperative and non-cooperative rational synthesis
that allows us to better understand the complexity picture of non-zero sum games played
on graphs with omega-regular objectives.

Structure of the paper In Sect. 2, we recall the definition of the cooperative and non-
cooperative synthesis problem as introduced in [15,19], together with the game structure

variant and objectives that we study here. Sect. 3 provides lower and upper complexity
bounds for the cooperative rational synthesis problem. Sect. 4 provides results for the non-
cooperative variant. Sect. 5 summarizes complexity results when the number of players is

fixed.

2 Preliminaries

2.1 Trees and Tree Automata

Let A be a set of directions and X be an alphabet. A X-labeled A-tree is a mapping
t: A* — Y. Its set of nodes is A* and the empty word € is the root. For every z € A* and
c € A, the node xc € A* is called the successor of x. A branch is an infinite sequence of
directions m € A“. Given a tree t and a node x, the subtree of t at node x is a mapping
t* . A* — X such that t*(y) = t(xy) for all y € A*.

Tree automata A finite nondeterministic tree automaton over X-labeled A-trees is a
tuple T = (Q, Qo, 0,) where @ is the set of states, Qg is the set of initial states, « € Q%
is the accepting condition and § is the transition relation of the form § : Q x ¥ — 247Q,
i.e., it maps any pair of states and labels to a set of mappings from directions to states
(states sent the children of the current node). A run of 7 on a tree ¢ is Q-labeled D-
tree r : D* — @ such that r(e) € Qo and for all h € D* all d € D, the mapping
de D w— r(hd) € Q is in §(r(h),t(h)). The image of a branch 7 = A\Ag--- € A% by r is
the word in Q“ defined by 7(e)r(A1)r(A1A2) With respect to the accepting condition
a C© Q¥, ris accepting if all its branches are in «, and the language of T is the set L4 (T)
of trees for which there exists an accepting run.

We say that a tree automaton 7T is deterministic if the transition relation is of the
formd: Q x X — D — @, i.e., it maps any pair of states and labels to one mappings
from directions to states. In this case, we equivalently say that the transition relation is
of the form 6 : Q x X x D — . Also, a tree automaton is a safety automaton if the
winning condition consists on all the sequences in Q* that avoid a certain set S of states,

ie., a=Q\Q*SQ

2.2 Multiplayer Games and Rational Synthesis

Multiplayer Games Let k£ € N. A multiplayer arena (k + 1-players arena) is a tuple
A =2V, (Vi)ieq, E,v0), where 2 ={0,1, ..., k} is a finite set of players, (V| F) is a finite
directed graph whose vertices are called states, vo € V' is the initial state and (V;)en is a
partition of V' where V; is the set of states controlled by Player i € £2. A play in A starts
in the initial state vy and proceeds in rounds. At each round, the player controlling the
current state chooses the next position according to F. Wlog we assume that each vertex
has a successor by E and that player’s rounds are ordered according to their index?, i.e.

4 Otherwise we just add a polynomial number of extra intermediate states and the winning objectives
considered in this paper can be modified accordingly.

E < e Vi X Vit1 mod k- Formally, a play m = ugu; ... is an infinite path in V* such that
ug = vg and (v;,v;41) € E for each ¢ > 0. The prefix (or history) of 7 up to v, is written
7[:n] and its last state w(n). We denote by = the prefix relation. We let Plays(.A) stand for
the set of plays, and Prefs(.A) for its closure under =. Finally, for 7 € V¥ we write inf(r)
for the set of states occurring infinitely many times in 7 and 7 [y; for the restriction of a
play only to the states of Player 1.

A strategy of Player i € {2 in A is a total function o; : V*V,; — V s.t. for all x € V'*, for
allv e V;, (v,0;(xv)) € E. Note that as rounds are ordered, o; has type V*V; — V11 mod k-
A play 7 is consistent with o; if m(n + 1) = oy(w[:n]) for all n > 0 s.t. w(n) € V;. The
outcome of o; is the set of plays out(o;) S Plays(.A) that are consistent with ;. Given
h e V*, we define o;|p, as o;|p(h') = o;(hh) for all K’ € V*V;. A winning objective (or just
objective) is a set O € V¥. A Player i’s strategy o; is winning for O if out(o;) € O. In

this paper, we consider the following classical w-regular objectives [?]:

— Safety: Given the set S € V called the set of safe states, Safe(S) = {me V¥ |Vn >0:
m(n) e S}.

— Reachability: Given the set T € V called the set of target states, Reach(T) = {7 €
V¢ |3n = 0:7m(n) e T} = Safe(T).

— Biichi: Buchi(F') is the set of sequences in which some state in F' € V occurs infinitely
many times, i.e. Buchi(F) = {m € V¥ | inf(m) n F' # &}.

— co-Buéhi: coBuchi(F) is the set of sequences in which all states of F' € V occurs finitely
many times, i.e. coBuchi(F) = {r € V¥ | inf(r) n F = @} = Buchi(F).

— Streett: Given a set ¥ € 2V x 2V the Streett condition for ¥ is the set of infinite
sequences m € V¥ such that for all pairs (L, R) € ¥ such that n(k) € L for infinitely
many k € w, it is the case that w(k) € R for infinitely many k € w, i.e. Streett(¥) =
{me V¥ |V(L,R) eV, (inf(r) n L # &) = (inf(7) n R # @)}.

— Rabin: Given a set ¥ < 2V x 2V, the Rabin condition for ¥ is the set of infinite
sequences 7 € V¥ such that there is a pair (L, R) € ¥ such that (k) € L for infinitely
many k € w and 7w(k) € R for finitely many k € w, i.e. Rabin(¥) = {w € V¥ |V(L,R) €
@, (inf(7) n L # @) and (inf() n R = @)} = Streett(z)).

— Parity: Given a function p : V + w, called a priority function, Parity(p) is the set of
infinite plays m € V¥ such that the least number occurring infinitely often in p(r) is
even, i.e. Parity(p) = {m € V¥ | min{p(w(n)) | n = 0} is even}.

— Muller: Given a Boolean formula p over the set of states V', the Muller condition for
1 is the set of infinite sequences m € V¥ such that the set of states appearing infinitely
often in 7 satisfies p, i.e., Muller(u) = {m € V¥ | inf(7) = p}

Note that the Biichi and co-Biichi conditions are Parity conditions with two priorities
and a Biichi (resp. co-Biichi) condition F' is also a Streett condition (V, F') (resp. (F, &))
or a Parity condition p : V' — {0,1} with p(v) = 0 if v € F' and p(v) = 1 otherwise (resp.
p:V — {1,2} with p(v) = 1if v € F and p(v) = 2 otherwise).

A multiplayer game is a pair G = (A, (O;)ien), where (O;);eq is the tuple of objectives
for each Player ¢ € (2. The notations Plays and Prefs carries over naturally to G by consider-
ing its underlying arena. For X € {Reach, Safe, Buchi, coBuchi, Street, Rabin, Parity, Muller},
a multiplayer X-game is a multiplayer game where each player has an X-objective. For
a strategy oy, i € {2, we denote by G|o;] the (possible infinite) game obtained from G in
which Player 7 plays the strategy o;.

Nash equilibria A (pure) strategy profile ¢ in G = (A, (O;)ie is a tuple ¢ = (0})ien,
where o; is a strategy for player i € (2. The outcome of a strategy profile &, written
out(d) is the play consistent with each o;,7 € §2 (it always exists and is unique). Given
a strategy profile & and a strategy 7 for i € §2, we write (g_;,7) for the strategy profile
obtained by replacing o; with 7 in . Given winning objectives (O;);eq» for each player,
the payoff of a strategy profile & is the vector pay(a) € {0,1}" defined by pay(a)[i] = 1
if and only if out(d) € O;. We write pay;(d) for Player i’s payoff pay(c). Payoffs are

compared by the pairwise natural order on their bits, denoted by <, i.e., pay(d) < pay(5)
if pay;(5) < pay;(B) for all i € £2.

A strategy profile & = (0;);eq is called a Nash equilibrium of the multiplayer game G
if pay(c_;,7) < pay(c) for all players i € {2 and all strategies 7 of i. Thus, intuitively,
in a Nash equilibrium no player can improve his payoff by (unilaterally) switching to a
different strategy. We say that a strategy profile & = (0;);e is a 0-fized Nash equilibrium
if pay(c_;, 7) < pay(a) for all players i € $2\{0} and all strategies 7 of 7. In other words,
it is a Nash equilibrium in which player 0 cannot change his strategy. Observe that any
Nash equilibrium (0;);eq; is a 0-fixed equilibrium, but the converse may not hold.

Let X; be the set of all the possible strategies of i and O a winning objective for Player
i. We denote by W; the set of winning states (also called winning set) for Player i and
objective O, i.e. the set of states v such that if the game initially starts in state v, then

Player ¢ has a strategy to win his objective.

2.3 Rational Synthesis

Rational synthesis aims at finding a winning strategy for the system (Player 0) against
an environment composed by several other systems (Players 1, ..., k) that have a rational
behavior. Here rationality is modeled by assuming that the players behave according to
a Nash equilibrium. Rational synthesis has been introduced in [15,19] in two different
settings. In the first setting, called cooperative rational synthesis [15], the environment
cooperates with the system in the sense that its components agree to play a Nash equilib-
rium that is winning for Player 0 (if it exists). In other words, in the cooperative setting,
one assumes that once a Nash equilibrium winning for Player 0 is proposed, all the agents
will adhere to the suggested strategies.

In the second setting, called non-cooperative rational synthesis [19], the components
of the environment may follow any strategy profile, providing it is a Nash equilibrium. In
this setting, one has to output (if it exists) a strategy op for the system which has to be

winning against any possible strategy profile that includes o for Player 0 and which is a

Nash equilibrium. Formally,

Definition 1 (Rational Synthesis Problems). The cooperative and non-cooperative
rational synthesis problems ask, given as input an (n + 1)-player game G with winning

objectives (O;)ieq, the following questions according to the two settings:

cooperative: Is there a 0-fired Nash equilibrium & such that payo(c) =1 ¢
non-cooperative: Is there a strateqy og for Player 0 such that for any O-fixved Nash
equilibrium & = {0y, ..., 0y, we have payy(a) =1 ¢

Ezxample 1. As an example, consider the two-player game arena of Figure 1 in which Player
0 owns round states and Player 1 square states, with the reachability objectives given by
the set Ry = {2} and Ry = {3}. Consider the Player 0’s strategies oo which consists in
looping forever in state 2, and o, which eventually goes to state 3.

Let Player 1 cooperate by playing the strategy o1 that goes to state 2 (making Player
0 win). Both strategy profiles {0y, o1) and {o{,, 01) are solutions to the cooperative setting:
for the first strategy profile Player 1 loses but cannot get better payoff by deviating, and for
the second one Player 1 wins. Strategy og is not a solution to the non-cooperative setting,
because Player 1 could stay forever in state 1 (according to a strategy of): The profile
{00, 0"y is a 0-fixed NE because even by deviating and going to state 2 Player 1 would still
lose, and it is losing for Player 0. However, o, is a solution to the non-cooperative setting:
The only 0-fixed NE in that case are when Player 1 eventually move to state 2, making

him and Player 0 win.

We may refer to Player 0 as the sys-
tem and to the other players as the enwvi- %
ronment. It is shown in [15] and [19] that start H’%} @

both cooperative and non-cooperative ra-

tional synthesis problems are 2EXPTIME- Fig. 1: Example for rational synthesis
COMPLETE when the winning objectives

are defined by LTL formulas. In general, the synthesis problem also asks to synthesise
(i.e.construct) such solution if it exists. The existence problem is sometimes referred to as
the realisability problem. All our algorithms also solve the synthesis problem.

3 General characterization of 0-fixed Nash Equilibria

In this section, we give a general method to solve the rational cooperative and non-
cooperative synthesis problems. It is based on effective characterizations of the existence
of 0-fixed Nash equilibria in multiplayer games with safety, reachability, or tail objectives,
through the existence of a path of the arena satisfying certain properties. These properties
will be expressed by LTL formulas.

Linear-Time Temporal Logic on Game Arenas We do not recall here the semantics
of LTL (we refer the reader to [3] for instance, for an overview of LTL and its semantics),
but we rather make explicit in which context we will use it. In particular, we will use
LTL to express properties of infinite paths in a game arena A = {(£2,V,(V;)ien, E, vo).
In addition to Boolean connectives, we write U, [], ¢ to denote the until, always and
eventually temporal operators. Given a state s € V, we view s has an atomic proposition,
true in s, and false otherwise. Given S € V', we may freely use .S in an LTL formula, where
it stands for the formula \/, ¢ s. Therefore, we may write, for instance, [J—.5, to denote
the set of infinite paths in (V\S)“. We denote by LTL(.A) the set of LTL formulas over
the set of atomic propositions V', and for a game G whose underlying arena is A, LTL(G)
stands for LTL(A). A set O € V¥ is definable in LTL(.A) if there exists an LTL(.A) formula
¢ such that for all m € V¥ 7 = ¢ iff mw € O. In [?] similar formulas were given for similar
tale objectives (see Corollary[26]).

LTL characterization of 0-fixed Nash equilibria For all the winning objectives con-
sidered in this paper, we characterize the existence of a 0-fixed Nash equilibria in a game
by the existence of a path satisfying some LTL formula, that depends on the winning
objectives. For tail objectives, we give a generic way of constructing such an LTL formula.
An objective O € V¥ is tail if for all 73 € V* and 7o € V¥, mymg € O iff m5 € O. In other
words, a path is winning iff one of its (infinite) suffix is. Biichi, coBiichi, parity, Streett,
Rabin and Muller objectives are all tail.

Let G = (A, (O;)o<i<ky be a k + 1-player game. Let (W;)o<i<k be the winning sets for
the objectives (O;)o<i<k, and V' be the set of states of A. We define an LTL[G]-formula
doNash that characterizes the existence of a 0-fixed Nash equilibrium in G. It is defined as

follows:
f=1((—'W/ig U —S;) vIS;) if O; are safety objectives of the form
¢g _ O; = Safe(S;) for some S; € V
ONash = A if O; are either all reachability or all tail

objectives definable by an LTL[G]| formula ¢;

The formula ¢gnasn characterises 0-fixed Nash equilibria in the following sense:

Lemma 1 (Characterization of 0-fixed Nash Equilibria). Let G be a multiplayer
game with either all safety, all reachability, or all tail objectives, definable in LTL|G].
Then, the following hold:

1. For all we Plays(G), if 7 = (;SgNash, then there exists a 0-fized Nash equilibrium & in G
such that out(c) =,
2. For all 0-fized Nash equilibrium & in G, out(c) = %gNash-

Before proceeding to the proof of Lemma 1, we illustrate this characterization on an
example of safety game.

start *> {So, S1, 82} start H {80, S1, 82}

{—'50,51782}&7 v1 | {so, s1, 82} {—'80781752}& v1 | {so, s1, 82}

| |
es) (e o5

{s0, 751, 752} {s0,51, 52} {s0, 751, 782} {s0,51, 52}

(a) Path consistent with 0-fixed NE (b) 7 not consistent with a 0-fixed NE

Fig. 2: A safety game

Ezample 2. Consider the game in Fig. 2, played by three agents that control round (Player
0), square (Player 1) and diamond (Player 2) states respectively. The objective the players
is to stay in their safe regions, denoted by the labels sg, s1,s2 (e.g. state v; is safe for
Player 0 and 1 and unsafe for Player 2). Then, the winning sets for the three players are
Wo ={1, =}, Wiy = {2 ,v1} and Wy = {"}.

First, consider the path © = vov1()* that satisfies /\?:1((ﬁWi U —S;) v 1S;). We
can build a 0-fixed Nash equilibrium & that is represented in Fig. 2a with bold arrows
which has as outcome the path 7. On the other hand, consider the path 7’ = vgviv2(=)¥,
in bold in Fig.2b. It does not satisfy A?Zl((ﬁWi U —S;) v [1S;). Suppose that 7 is the
outcome of a strategy profile &, then & is not a 0O-fixed Nash equilibrium. Indeed, Player
1 reaches for the first time an unsafe state (=), after visiting v;, which is in his winning

region. Therefore, Player 1 would better deviate and go to state r.

Proof (Proof of Lemma 1). Statement 1, safety objectives The strategy profile & is intu-
itively defined as follows: as long as the current history is a prefix of w, then the players
play according to 7. If at some point, some player, say Player ¢, decides to deviate from 7,
ending up in a state s, then if s ¢ W;, all the players but Player ¢ punish him by playing
a strategy that will make him lose, otherwise, they play any strategy. Let us give some
arguments to justify that it is a O-fixed equilibrium. The outcome of & is 7, and if a player
wins along 7, then he has no incentive to deviate. If some player, say Player ¢, loses along
7, then suppose that he decides eventually to deviate from 7: either he has already lost
before deviating and therefore his deviation is useless, or he deviates to a state v before
visiting an unsafe state for the first time, but in that case, since 7 = —W; U —S;, we
have v ¢ W, (otherwise the previous state would be winning), and all the other players
retaliate, making his deviation useless, again.

Let us define & formally. For a state s ¢ W;, we let (retj’i) j»i a retaliating profile, i.e.,
a profile a strategies for the players j # ¢ that make Player i lose. We also pick a profile

of strategies (fo, ..., k). Then, we define o; as follows, for x € V*V}:
[l + 1] if x = vovy...v; is a prefix of 7
0j(z) = { retj’(sz2) if condition (1) is satisfied
Bj(x) otherwise

where condition (1) requires that x can be decomposed into x = x1sxy such that 1 € V*V;,
x1 is a prefix of 7, s ¢ W, x1s is not a prefix of 7 (meaning that Player ¢ has deviated to
a losing state).

Clearly, we have out(c) = w. We claim that ¢ is a O-fixed Nash equilibrium. Towards
a contradiction, we suppose that some player ¢ (1 < i < k) loses, and can win by playing
another strategy o} (when the other players stick to their strategies ;). Then necessarily,
out(c_;,ol) deviates from 7 after some prefix x; of 7 such that z; € V¥V;. Let s € V and
y € V¥ such that out(6_;,0,) = z1sy. Then, if s ¢ W, the other players retaliate making
out(o_;, o}) losing for Player ¢, which is a contradiction. Therefore s € W;. Let s’ be the last
state of z1. Then s’ € W since s’ € V; and it has a successor in W; (s). Now, we consider
two cases: (i) suppose that some state of x1 is unsafe for Player 4, then it contradicts the
fact that out(d_;, o)) is winning for Player 4; (i) if 21 € (S;)*, then since 7 is losing for
Player i, there is an unsafe state for Player ¢ that occurs after the prefix x1, contradicting
the fact that 7 = —W; U —S;, since the last state of z1 is in W;. In all cases, we have
found a contradiction, showing that such a strategy o, cannot exist.

Statement (2), safety objectives Assume that some player, say i for 1 < i < k does not
win, i.e. out(d) = ¢—.S;. Towards a contradiction, assume that out(a) # —W;U—S;. Con-
sider the first occurrence j of state satisfying —.5; in out(d), i.e. j = argmin{j | out(d)[j] ¢
S;} (it exists since out(d) = 0—S5;). Clearly, there exists a position 0 < ¢ < j such that
out(o)[t] € W; (otherwise out(c) would satisfy —W;i{—S;). At that position, Player i
could have deviated and apply a winning strategy, thus getting a strictly better payoff,
contradicting the fact that & is a 0-fixed Nash equilibrium.

Statements (1) and (2), reachability and tail objectives The proofs of these two state-
ments are very similar to that of safety objectives. The only difference here is that the
objectives are either all reachability or all tail, and therefore one has to make sure that
on 7, the players that lose never visit their winning region, because if it is so, they would
have an incentive to deviate: indeed, the satisfaction of their winning objective would be
independent from the prefix up to a visit to their winning region. For statement (1), the
profile of strategies & is: follow the path m as long as the play stays in 7, and the first
time the play deviates (say Player i deviates from 7), then if 7 is losing for Player 4, then
apply from that point on a retaliating strategy (as a coalition of all the players j # i),
otherwise apply any strategy. If 7 is not winning for Player 4, the retaliating strategy exists
by definition of ¢gNash, since the first position after the deviation would not be in W;.

10

Conversely, any 0-fixed NE & satisfies ¢gnasn. Indeed, if it is not the case, then there
exists some player that satisfies —¢; and OW;. When reaching its winning region, this
player would better apply a winning strategy and strictly increase his payoff. |

As a consequence of Lemma 1, we also get a characterization of Nash equilibria in
multiplayer games, for safety, reachability and tail objectives. The case of tail objectives
was already covered in [25]. We give this result since it might be of independent interest
for the reader.

Let G = (A, (O;)o<i<k) be a k + 1-player game. Let (W;)o<i<x be the winning sets for
the objectives (O;)o<i<k, and V' be the set of states of A. We define an LTL[G]-formula
ONash as follows:

fzo((ﬁWi U —S;) v [3S;) if O; are safety objectives of the form

s _ O; = Safe(S;) for some S; € V
Nash f:o —p; = W if O; are either all reachability or all tail
objectives definable by an LTL[G] formula ¢;

The following characterization of Nash equilibria was given in [25] for tail objectives
only. We extend it to safety and reachability objectives.

Corollary 1 (Characterization of Nash Equilibria ([25] for tail objectives)). Let

G be a multiplayer game with either all safety, all reachability, or all tail objectives, defin-
able in LTL[G]. Then, the following hold:

1. For all m € Plays(G), if m = ¢Nash, then there exists a Nash equilibrium ¢ in G such
that out(a) = 7,
2. For all Nash equilibrium & in G, out(d) = ¢ nash-

Proof. Let G = (A, (O;)o<i<k) where the set of states V' is partitioned into Vp, Vi, ..., Vi.
We define the k + 2-player game G’ = (A’, (0})o<i<k+1) where A’ is the k + 2-game arena
obtained from A by increasing the index of each player by one (Player ¢ becomes Player
i+ 1), and by adding a new Player 0, who owns no states, i.e. V! =V, VJ = & and
V! =V;_1 for all 1 <i <k + 1. The structure (transition relation) of A is kept. Player 0
in G’ has the trivial objective V¥, and O} = O,_ for all 1 < i < k + 1. Then, there exists
a 0-fixed Nash equilibria in G’ iff there exists a Nash equilibria in G. Then, it suffices to
apply Lemma 1 to get the result. Note that the trivial objective is a tail objective, but can
be seen as a reachability objective where all states are target states, as well as a safety
objective where all states are safe. |

4 Cooperative Rational Synthesis Problem(CRSP)

General solution to cooperative rational synthesis Lemma 1 allows us to give a
generic procedure to solve the cooperative rational synthesis problem, which is based on
the following direct consequence of Lemma 1:

11

Lemma 2. Let G be a k + 1-player game with either all safety, all reachability, or all tail
objectives, definable in LTL|G] by formulas (p;)o<i<k- There is a solution to the cooperative
synthesis problem iff there exists a path w € Plays(G) such that 7 = ¢oNash A ©0-

Then, in order to solve the cooperative synthesis problem, it suffices to compute the
winning sets W;, for i = 1,..., k, and to model-check the formula ¢gnash A o against the
game arena underlying G. Depending on the winning objectives, the formula ¢onash A @0
may have different forms, which may impact the complexity of model-checking it. One
objective of this paper is to give tight complexity bounds for the model-checking of this
formula and, thus, to the cooperative rational synthesis problem.

4.1 Safety games

In the case of safety condition, the characterization of a 0-fixed Nash equilibrium intuitively
expresses the fact that either Player ¢ always stays in its safe set of states, or it is the case
that he loses by eventually reaching a unsafe state, but he couldn’t play better, i.e., the
play didn’t pass through a state from which he has a winning strategy.
Based on Lemma 2, we can provide an algorithm to solve the cooperative rational
synthesis problem for safety games. It suffices to model-check the LTL formula [15g A
,’le((—'WiU —Si) v [1S;) against the game arena. We show it can be done in NP, based
on the following property: if a path satisfies of the game arena satisfies the formula, then
there is a lasso path xy® satisfying it, such that x and y have polynomial length. Then,
the nondeterministic algorithm solving the synthesis problem simply guesses such a path
and verifies, in polynomial time, that it satisfies the desired property.

Lemma 3. The cooperative rational synthesis problem for multiplayer safety games is in
NP.

Proof. To solve the NP membership of this problem, it suffices to check the existence of a
path in the game arena that satisfies the LTL formula ¢ =]Sy A /\f:1 ((=Wid—S;) vS;).

First, it is well-known that two-player safety games can be solved in polynomial time,
and therefore the winning sets W; can be computed in polynomial time.

Then, given a lasso path m = xy“, it can be checked in polynomial time (in |z| and
ly| and the size of the game arena) whether m = ¢. Indeed, viewing the sets W; and S;
as atomic propositions, one can easily construct a 5-state automaton equivalent to each
of the subformula ((—=W,U—S;) v [1S;), for which checking the acceptance of xy* can be
done in polynomial time.

It remains to show that we can bound the length of x and y polynomially.

Let m € V¥ be a path satisfying . For each i € {1,...,k}, we consider the first
occurrence of an unsafe state of Player ¢ in 7, and decompose 7 according to these positions
as follows. Formally, m is decomposed as m = x1vp, Z2Vp,...z;vp,T+1 such that for all
jef{l,...,l}, P, < {1,...,k} and vp, is the first occurrence of a state which is unsafe for
all the players in P; (P, is maximal for that property).

12

e RO o

Fig. 3: Cooperative Safety: Reduction from 3-SAT

First, we remove the cycles in all z;, j € {1,...,1}, leading to a new path of the form
zhvp, xhvp,...xjup 141 where the :c; are loop-free. This preserves the satisfaction of @, i.e.
7' = . Indeed, by doing so, the subformula []S is still satisfied, and for all i € {1, ..., k},
if [1S; was satisfied by 7, then it is still satisfied in 7’. If =W;U/—S; was satisfied in 7, then
by the choice of our decomposition, removing the cycles still preserve the existence of an
unsafe state for Player 4 in 7/, and all the states before its first occurrence in 7’ satisfies
-W;.

Second, we modify x;1; into a short lasso path xj,(z")“, where 2" is a simple loop,
and x, is loop-free. This can be done by taking xj ; to be shortest prefix of ;.1 to a
state v that repeats in the future, and to take z” has any loop from v to v, shortened into
a simple loop by removing all inner-cycles. All these operations preserve the properties of
satisfying [19; for all i € {0, ..., k}.

Then, we set © = zjvp x5vp,...5vp 2 and y = 2”. Then, 2y* = ¢, and |zy| <
n(k + 2), concluding the proof. [

Lemma 4. The cooperative rational synthesis problem for multiplayer safety games is
NP-hard.

Proof. The proof for the NP-hardness of this problem is done by reduction from 3SAT.
Given a Boolean formula ¢ = C; A ... A C in conjunctive normal form where each clause
has at most three literals, we construct a (k + 1)-player safety game G, as follows (its
arena is depicted in Fig.3): Let X = {z1,...,2,n} be the set of variables that appear in
¢. The game G, has three states z, 1, and 0, controlled by the system (Player 0) for all
variables x € X. The two latter states correspond to the two possible truth values of x.
For all i € {1,...,m — 1}, there are edges from each z; to both 1., and 0,, and from 1,
and 0Oz, to ;1. There is a state C; controlled by Player j for each clause in ¢ and two
states Us and U, (which will be unsafe for the system and the environment respectively).
We add edges from 1., and 0., to C1, from C; to Cjy1 for all 1 < j < k, and from
every Cj to Us and from C}, to U.. In Fig. 3 the system plays the round states and each
environment Player ¢ plays the diamond state C;.

We let V' be the set of states (vertexes) of G,, x1 being the initial one. All states
but Us are safe for Player 0, i.e. So = V\{Us}. The unsafe states for Player j # 0 are
Ue, as well as the state 0, if =z appears in C}, and the state 1, if x appears in Cj, i.e.

S; =V\({0; | ~z € C;} u{ly | x e Cj} v {Ue}).

13

Let us now prove the correctness of this reduction, i.e. ¢ is satisfiable iff there is a
O-fixed strategy Nash equilibrium winning for Player 0 in G,. Suppose first that ¢ is
satisfiable by a valuation v = X — {0, 1} of its variables. The strategy oo of the system
is then to choose the truth values of the literals according to this valuation: choose 1, if
v(z) = 1, and 0, otherwise. By doing so, all the players of the environment visit at least
one unsafe state before reaching C;. Indeed, let j € {1,...,k}. Since C; is satisfied by v,
there is a litteral ¢ in C; such that v(¢) = 1. If £/ = x for some = € X, then 1, is unsafe
for Player j, but that is exactly the choice of Player 0 to go to 1, (and similarly when
¢ = —x). After reaching C1, the choices of the players j # 0 are to go down to Cj and then
to Ue. This profile is winning for Player 0, and losing for all the other players. They have
no incentive to deviate since they have already lost before making any choice. Therefore,
it is a 0-fixed Nash equilibrium.

Conversely, if there is a solution for the cooperative synthesis problem, the only way to
obtain a Nash equilibrium ¢ winning for the system is to make all the players j 1 < j < k
lose before reaching €. Indeed, if o is winning for the system, then out(c) eventually
reaches U,, which is losing for the environment. In order to prevent the deviation of the
environment to Us (which is safe for the environment), it is necessary that all the players
but Player 0 has lost before reaching C;. By definition of their sets of unsafe states, the
only way to make them lose before reaching C'j is a to chose a valuation that satisfies the
formula, if it exists. |

As a consequence of Lemma 3 and 4, one gets:

Theorem 1. The cooperative rational synthesis problem for multiplayer safety games is
NP-complete.

4.2 Reachability games

In this section, we prove the NP-completness of the cooperative rational synthesis prob-
lem with reachability objectives. We provide a similar algorithm as in the case of safety
objectives. However, observe that unlike the case of two-player zero-sum games, there is
no duality between reachability and safety, and no natural reduction from reachability to
safety.

Based on Lemma 2, in order to solve the rational cooperative synthesis problem in
reachability games, it suffices to have a procedure that test the existence of the path in
the game that satisfies O Ry A (/\f:1 O—R; — DﬁWi). We prove that such a formula has
short (polynomial length) lasso witnesses, and therefore we obtain an NP procedure for
the synthesis problem.

Lemma 5. The cooperative rational synthesis problem for multiplayer reachability games
is in NP.

14

Proof. We start by showing that each path 7 such that 7 }= ¢ where:

k
= ORo n (\O-Ri — O-W;)
i=1
can be shortened into a lasso path 7* such that 7* |= ¢ and 7* can be decomposed into a
prefix of length at most nk followed by a simple loop. In fact, let L be the maximal set of
players such that 7 = A;c; OR;. Then, it is sufficient to enucleate the first occurrences of
states in R; for all ¢ € L along 7w, and eliminate all the cycles between these occurrences.
This leads to a new path 7’ where each player ¢ € L accomplishes its reachability objective
in at most n|L| steps and such that 7’ = /\;o; CJ=W;. Let j be the smallest position in 7/
such that each player i € L has accomplished its reachability objective, i.e. j = min{¢ = 0 |
7' [: {] E Nieg OR:i}. Then, 7* is obtained from 7’ by considering the first cycle (reduced
to a simple cycle) appearing from the vertex 7'(j) on.

Therefore, the NP algorithm works as follows: guess a lasso-path of length at most
n(k + 1), check whether it fulfils ¢, and use it to build a winning strategy that uses as
much memory as the length of the path. This is correct by the small lasso property proved
before, and Lemma 2. [|

We finally show that the cooperative rational synthesis problem for reachability games
is NP-hard. The proof is by reduction from 3-SAT, and is a slight modification of the
reduction for the safety objectives (Lemma 4).

In this latter reduction, remind that given a 3-SAT formula ¢ = C7 A --- A Ck in
conjunctive normal form, we build a k + 1-reachability game G, over the arena of Figure
3. For safety, one actually shows that ¢ is satisfiable if and only if G, admits a 0-fixed NE
where all the players composing the environment lose, i.e. reach the complement of their
safety sets St,...S;. As for the system, avoiding his only forbidden state Uy amounts to
reach Ue (since in G,, Us and U, are the only two states that are eventually reached).
Therefore, there is a solution for the safety sets {V\{Us}, (S;)i=1..x} iff there is a solution

for the reachability sets {{U}, (S;)i=1..k}, which shows the following lemma.
Lemma 6. The cooperative rational synthesis problem for reachability games is NP-hard.
As a consequence of Lemma 5 and Lemma 6, we obtain the following theorem:

Theorem 2. The cooperative rational synthesis problem for reachability games is NP-

complete.

4.3 Biichi and w-regular winning conditions

In the following, we treat the cooperative rational synthesis problem in the case of w-
regular objectives, in particular for Biichi, co-Biichi, Streett and Parity objectives. For
these objectives, we can rely on results shown by Ummels in [25], following the next
remark.

15

Remark 1. In [25] is studied the complexity of finding a Nash equilibrium & in a k-player
game with Biichi, co-Biichi, Streett and Parity objectives, such that z < pay(d) < v,
for two given threshold z,y € {0,1}*. The cooperative synthesis problem reduces to this
setting, by taking = = (1,0,...,0) and y = (1,1,...,1). Note that in [25], the threshold
Nash equilibria problem was not studied for safety and reachability and Muller conditions.

PNP

For Rabin conditions, there is a remark in the conclusions of [25] that a complexity

can be obtained.

Based on Remark 1 and the results of [25], one obtains the upper-bound of following

theorem:

Theorem 3. The cooperative rational synthesis problem for multiplayer games is:

— in PTime for Bichi objectives,
— NP-complete for co-Biichi, Streett and parity objectives.

Proof. As we have said, the upper bounds are direct consequences of the results of [25]
and remark 1. Let us show the NP lower bound for co-Biichi, Streett and parity objectives.

Co-Biichi objectives. It is shown in [25][Theorem 15] that the problem of finding a Nash
equilibrium co-Biichi multiplayer games with a payoff between the thresholds (1, 0,0, ...,0)
and (1,1,1,...,1) is NP-hard. The result follows from Remark 1.

Parity. Tt follows directly from these two facts: (i) the problem is NP-hard for co-
Biichi objectives, (ii) a co-Biichi objective given by a set of states F' can be equivalently
expressed by the priority function pg such that pp(v) =1 if v € F, and 2 otherwise.

Streett. As for parity, a Streett condition can easily express a co-Biichi condition F,
by taking the set of pairs {(F, J)}. The result follows from the NP-hardness of co-Biichi
objectives. |

Rabin games Let consider the k + 1-player Rabin game G = (A, (Rabin(v;))o<i<k) where
each Player i has the objective ¢; = {(L1, R1), ..., (Lm;, Rm,)}. Then, based on Lemma 2
and the fact that the Rabin condition v; can be equivalently expressed by the LTL[G]
formula ¢; = \/;“Z1 (OO Lsj A O R;;), solving the cooperative rational synthesis in Rabin
games is equivalent to find a path satisfying the formula

no n;

k
Binasn A 20 = \/ ([0Lo; A OT0—Ro;) A /\ (O-Wi v \/(O0Lij A O0—Ry;))
=1

j=1 i j=1

Theorem 4. The cooperative rational synthesis problem for multiplayer Rabin games is
in PNP.

Proof. We first show that given the sets W; for 1 < i < k, each path m = xy* such that
T ¢0gNash A g can be shortened into a lasso path 7’ = a/(y')* such that ' = (Z)OQNaSh A Q0
and |7'y'| < n? + nk.

16

First, we mark as red node the first occurrence along xy of a state in W; for every
player not satisfying ¢;. We also mark as red node the first occurrence along y of states
in L;; and R;;(if any) for every player and every pair in the Rabin condition. Note that
along z at most k red nodes are marked and along y we have at most n states since we
marked the first occurrence of a state and the game arena has n states.

Then, by removing all the loops in x and y that don’t contain red nodes we obtain z’
and 7' such that |2/| < nk and |y'| < n?. Note that the property 7’ |= d)%NaSh A g also
holds since we didn’t remove key nodes(red nodes on y) from 7.

Then the PV algorithm will run as follows. First, it guesses a path © = zy* of
polynomial length (as we saw |zy| < n? + nk is enough) and mark the states in 2y by W;
or =W; by checking in NP time if s € W; for each state. This can be done in PN? time.
Then, in polynomial time check if 7 |= ¢gNash A g by checking if for each player is a pair
(Lij, Rij) such that L;; appears in y but not R;;. If not, W; should not be a label of a
state in xy. If it is, the algorithm rejects. |

Theorem 5. The cooperative rational synthesis problem for multiplayer Rabin games is

NP-hard and co-NP-hard.

Proof. As in the case of Parity and Streett games, the NP-hardness comes directly from the
fact that we can easily express a co-Biichi condition F into a Rabin condition ¢ = {(V, F))}
where V' is the set of states of the game arena.

To show the co-NP-hardness, we reduce from the two-players zero-sum Rabin games
which are NP-hard. Let G = (V, V4, Vg, E,v9,1) be such a game where the protagonist
(Player A) has the Rabin objective 1. We construct the game G’ by considering a copy of
G together with two extra states v and v’ and transitions from v to both v’ and the initial
state of G and a self loop on v’. Then, Player 0 controls the states belonging to Player B
in G and Player 1 controls the states belonging to Player A in G together with the newly
introduced states v and v’.

Formally, ' = V', Vo, Vi, E',v(, %0, %1y where V! = V u {v,0'}, Vj = Vg, Vi =
Vau{v,v'}, E' = Eu{(v,v9), (v,v), (v/,v")}, v, = v and the objectives of the two players
are defined as ¥ = {({v'}, &)} and 1 = 9. That is, Player 0 wins if the game goes in the
state v’ and Player 1 wins if it is satisfied the winning condition of the protagonist in the
game G.

We claim that there is a solution to the rational synthesis problem in G’ iff there is no
winning strategy for Player A in G. Indeed, if there is a solution to the rational synthesis,
there is a 0-fixed Nash equilibrium (o, 01) winning for Player 0. The only possibility that
this happens is if o1(v) = v/ in which case Player 1 looses. But since (0g,01) is a 0-fixed
Nash equilibrium, for any other strategy o} s.t. o}(v) = vy, out(cp,o}) doesn’t satisfy
Rabin(¢1). That is, there is a strategy op for Player B in G such that Yo 4 a strategy pf
Player A, out(o4,0p) = Rabin(y) which means that Player A has no winning strategy in

G.

17

Suppose now that there is no solution to the rational synthesis. It means that there
is no O-fixed Nash equilibrium (og, 1) such that out(cg,o1) satisfies Rabin(1g). That is,
whatever strategy og chooses Player 0, Player 1 prefers to go in the copy of G where he has
a strategy to win. That is, Player A has a winning strategy o4 in G to ensure Rabin(v)).

Muller games Let G = (A, Muller(u;)ie2) be a multiplayer Muller game with winning
condition for Player i given as the boolean formula p; = I3 Op; la Ops ... I, where
Opj € {n, v} for all 1 < j < m; and each literal [; is either a state v; € V or its negation
—v;.

Let define the LTL formula ¢; from p; by replacing each v; by the subformula [JOwv;.
Then, we claim that for any path 7, we have that = satisfies Muller(y;) iff 7 = ;.
Intuitively, it holds since whenever a v € inf(n), it satisfies both the Muller condition
v and the LTL formula [J0v. And if v ¢ inf(m), both Muller condition —v and LTL
formula Q[]—v = —[JQv are satisfied by 7.

Then, in the cooperative setting, using the characterization of 0-fixed Nash equilibria
for w-regular objectives, the problem is to decide the existence of a path satisfying the
LTL formula ¢ = ¢g v /\f=1(<pi v [-W;) where ¢;, 0 < i < k is defined as above. The
formula ¢ us an LTL formula in the fragment B (L, (P) u L A (P)) where P corresponds
to the atomic propositions associated to the states of G and to each W;. For this fragment
of LTL, it is shown in [1] that the solving a two-player game with the protagonist having
the LTL objective is in PSPACE and therefore also the cooperative rational synthesis for
Muller objectives is.

For the PsPACE-hardness, we reduce from the problem of solving two-players zero-sum
Muller games with Muller objective p that is well known to be PSPACE-hard. In the newly
constructed game keep the game arena and set the objective of Player 0 to be p and the
objective of Player 1 to be —u. Then, it is obvious that there is a 0-fixed Nash equilibrium
(00,01) winning for Player 0 iff there is a winning strategy o for the Player 0 in the

zero-sum two-player game.

5 Non-Cooperative Rational Synthesis Problem(NCRSP)

In this section, we study the complexity of non-cooperative rational synthesis problem
(when the number of players is not fixed). In this setting the environment may not co-
operate with the system, and may play (rationally) any strategy profile providing it is a
0-fixed Nash equilibrium.

In the cooperative setting, in the cases where we could not rely on existing results
[25], namely reachability and safety objectives, we get our upper bounds via a reduction
to a model-checking problem. In the non-cooperative setting, we cannot rely on existing
results.

In Lemma 1, we have characterised 0-fixed NE by means of an LTL formula d)OgNash' This
allowed us to solve cooperative rational synthesis problem by model-checking against the

18

game G, the formula ¢0gNash A g, Where g is Player 0’s objective. It is tempting to think
that non-cooperative rational synthesis reduces to a two-player zero-sum game between
Player 0, whose objective is gngaSh — g, and the coalition of the other players. However,
the three state game arena from Example 1 shows that this is not true in general. Indeed,
in this example there is a solution to non-cooperative rational synthesis problem, but no
solution to the two-player game with objective ((JR; — [OW1) — ORg. Since Wy = {3},
whatever the strategy of Player 0 is, if Player 1 stays in state 1 forever, the path 7 = (1)“
satisfies (DRl — DWl) but not ORy and therefore Player 0 loses. The intrinsic reason
why the reduction to two-player games is incorrect lies in the definition of non-cooperative
rational synthesis problem: once a Player 0’s strategy og is fixed, only O-fixed NE with
respect to og are considered, while the formula ¢gnash can be satisfied by paths which are
outcomes of some 0-fixed NE, fixed for a different strategy of Player 0.

Intuitive solution Let fix a strategy o that we represent as a tree t,, and use tree automata
to define the set of strategies that are solutions to the non-cooperative rational synthesis.
The emptiness of tree automata is then checked by solving a two-player zero-sum game,
whose complexity is carefully analyzed for all the winning conditions considered in the
paper.

Strategy trees and good deviations Let A be a k + 1-players arena with set of states
V and let o¢ : V*Vy — V be a strategy of Player 0 in A. We explain how oy is encoded as
a tree. The labels are in the set ¥ =V u {#; | 1 <i < k} u {#} and the set of directions
is V. Therefore, any node of the tree is an history h in the game arena A. Then, if h = ¢
(root node), we set its label to #. Otherwise, it is of the form h = h'v, then there are two

cases:

(i) if v € Vp, then ty,(h) = og(h),
(i) if v € V; for i # 0, then t5,(h) = #; (only the turn i is encoded)

Intuitively, the ”letter” =; in the strategy tree encodes the fact that Player i could do any
choice in the turn-based (k+1)-player game G. We denote by T the set of strategy trees
ts,. Note that not all X-labeled V-tree is a strategy tree.

We now want to characterize the strategy trees t,, s.t. oo is a solution to non-
cooperative rational synthesis problem in a game G = (A, (O;);en) with either all safety,
all reachability, or all tail objectives. The strategy tree t,, is a solution of the problem if
for all branches m, either it is winning for Player 0, or m doesn’t correspond to a 0-fixed
Bash equilibrium and there is a player that could deviate and win considering the system
plays the strategy og. That is,

o o

The branch 7 is not the outcome of a 0-fixed NE iff some player loses (7 ¢ O; for some
i # 0) and there is a prefix h from which Player i has a winning strategy against all other
players (and the strategy og). We call the history h a good deviation point. Formally, A is
a good deviation point if there exists i € {1,...,k} s.t. m ¢ O; and there is a strategy o; for

19

Player i s.t. for all strategies (0)ieq1,....kp\(i}> P-0ut(00|ns s Tiv1ln, Tilns Ti1lns o, ok|n) €
O;. A branch m € V¥ has a good deviation if some of its prefix h is a good deviation point.
Let us denote by NCRSP(G) the set of strategy trees ¢,, such that og is a solution to the
NCRSP in G. Then:

Lemma 7. For all strategies oo of Player 0, t,, € NCRSP(G) iff for all branches 7 of t,
compatible with og, either m € Oy or ™ has a good deviation.

Proof. First, let prove the implication from left to right and consider ¢,, € NCRSP(G) and
a branch 7 such that m ¢ Op. Then, since ¢4, is a solution to NCRSP(G), for all oy, ..., 0%
such that out(og, 01, ...,0) = 7, {00, 01, ..., 0 is not a 0-fixed Nash equilibrium.

Let o1, ..., 0 such that all the players follow the path 7 and punish the Player ¢ that
deviates from it by playing the worst strategy profile for him (they play the retaliating
strategies retj’i against Player i from the state s to which he deviates). That is, each Player
j plays o; defined as

m[l + 1] if x = vovy...v; is a prefix of 7
0j(z) = { retj’(sz2) if condition (1) is satisfied
Bj(x) otherwise

where f; is an arbitrary strategy of Player j and condition (1) requires that = can be

]

decomposed into x = x1sx9 such that x1 € V*V;, s ¢ I/Vl-g[aO , 11 1s a prefix of 7, x15 is not
a prefix of 7 (meaning that Player i has deviated to a losing state when the strategy oy is
fixed, i.e., Players 1,...,5 — 1,7 + 1, ...,k have a strategy to make him lose under oy).

Clearly, out(og,01,...,0,) = m and therefore by hypothesis, {oq, 01, ...,0%) is not a 0-
fixed Nash equilibrium. Hence, there is a player ¢ that prefers to deviate from 7 and has a
strategy o) such that out({og,01,...,0i-1,0},0i4+1,...,0%)) € O;. From the construction of
the strategy profile, Player ¢ chooses to deviate to a state in which he has a winning strategy
when Player 0 plays o¢. Let h € V*V; be the prefix of 7 after which Player i deviates. Then,
for all strategies &1, ...0;—1,0+1, ..., 0 for the players 1,....,e — 1,4 + 1, ..., k, we have that
h.out(oo|hys -y Giz1lhs O by Titilhs -os Ok|n) € O; which means that there is a good deviation
for Player ¢ and then 7 has a good deviation h.

In the other direction, let take the strategy treet,, and m a branch of ¢,, compat-
ible with og s.t. m ¢ Og. Then, there is a good deviation from 7 for a Player i that
loses in 7. That is, Player i has a strategy o) such that he wins by deviating from 7
at a position j against any strategy profile that follows 7. That is, for all oy, ..., 0% s.t.
out({og, 01, ..., 0 y) = 7, {00, 01, ..., 0y is not a O-fixed NE since Player i can deviate and
win. Therefore, t,, € NCRSP(G).

The equivalence is straightforward for the branches m € Oy. |

Lemma 8. Let G = (A, 0 = (O;)icn) be a k + 1-player game with n vertices. One can
construct a non-deterministic tree automaton Tg (with an exponential number of states in
k, and polynomial in n) with an accepting condition o such that L,(Tg) = NCRSP(G).

20

Moreover, for all runs r of Tg, for all branches ® of v, the number of states appearing in

7 18 polynomial in n and k.

The nondeterministic tree automaton Tg is obtained as a product of two automata.
First, we construct a deterministic safety automaton Cg that checks that an accepting
tree ts, is a proper encoding of a strategy op in the turn-based game G = (2,V =
Vow...w Vy,, E vg, (O;)ieq). Then, we construct a nondeterministic tree automaton U that
is assumed to run on proper encodings of strategies and checks that it corresponds to a
solution to the NCRSP. Details on the construction of the two automata are given in the
following.

Automaton Cg. The deterministic safety automaton Cg accepts trees ¢ that are proper
strategy trees encoding a strategy o of Player 0. This automaton is polynomial in the
size of the game and keeps the information about the last direction taken in the tree ¢ and
depending on the player that controls it, checks if the tree is correctly labeled.

Formally, the automaton Cg is formally defined as Cg = (Qc, 5, dc, ac) where Q¢ =
V U {L,q5} and the transition relation defined as d¢(qS,#,v0) = vo, dc(qS,1,d) =L for
any direction d € V if | # #, dc(q # ¢S, #,d) =1, dc(L,1,d) =1 and

d if (ve Vp and (v,l) € E)
6C(Ual7d) = or (’U € Vizo and [= *Z)
L otherwise

Then, the acceptance condition on Cg is a¢ = {n € (Qc\{L})*“}. Note that by the
construction of the automaton, this is a safety condition that asks to avoid 1 which
appears when being the turn of Player O(state v € Vp), the letter | we read is not a valid
choice of him((v,[) ¢ E). Also, the automaton Cg is deterministic.

Having the definition if the automaton Cg in following we construct the automaton U

assuming it only runs on proper tree encodings of strategies.

Automaton U. The construction of U is based on Lemma 7. For each branch, it will
check that it belongs to Oy or it will guess a prefix and check it is a good deviation. To
guess good deviations, the automaton U has to guess subtrees in which at least one player
has a winning strategy. This information is stored in a set W < (2, with the following
semantics: if U is in some state with set W at some node h € V* and ¢ € W, then Player
¢ has a winning strategy in the subtree rooted at h. The set of players for which a good
deviation has been guessed is stored in a set D € (2, with the following semantics: if I/ is
in some state with set D and i € D, at some node h € V*, then some prefix of h is a good
deviation.

The information in D is monotonic. Whenever ¢ € D in a state, then ¢ € D in all
the successor states. In addition, it is updated by adding players in D depending on the
updates of W. The information on W is maintained as follows: at some node hv € V*,
if i € W and v € V;, then U non-deterministically chooses a strategy move for the Player

21

i and send W to one of the successor of v (and W\{i} in the other ones). If i ¢ W and
v € V;, there are two possibilities. First, if ¢ € D means that a deviation was guessed before
and then W is sent to all successors. Otherwise, if ¢ ¢ D, there was not guessed a good
deviation point before. Then either the current node h (owned by Player 7) is not guessed
to be a good deviation point and D is sent to all successors, or it is guessed to be a good
deviation for Player ¢ and then D u {i} (and W) are sent to all successors but one in which
is sent D and W v {i}. If v ¢ V;, U keeps i € W in all successors of v.

Formally, U = (Qu, ¢4, du, azs) where the set of states is Qy S {g4, T} u2? x 29 x V
Intuitively, a state ¢ = (W, D, v) stores information about the set W of agents that need a
winning strategy from the current node, the set D of agents that may deviate to win and
the last direction taken.

To define the transition relation, we will define functions mapping directions to states.
If we do not define them for some directions d, it means that d is mapped to T. Then,
considering a state ¢ = (W, D, v), the transition relation dy; is defined as:

— Su(gdt, #) = {po} where po(vo) = (&, &, vo)
— 0u(q,v1) = {p1} where p1(v1)((W, D,v1),v1), v1 € V1,
u(T,1) = {p2} where pa(d) = T, for all de V and | # #

{p} ifieD
where p(v') = (W, D,v") for all (v,v') € E
{pv | (v,0") € E}} ifieWw

where p,(v') = (W, D, v’)

and p, (V") = (W\{i}, D v {i},v") for all v" # v'.
{p} U {\| (v,v') € E} ifi¢g Wandi¢D

where Ay (V') = (W v {i}, D,v')

and Ay (v") = (W, D v {i},v")Vv" # o

— Su(q, *iz0) = <

Along a path of a run of U, there are monotonicity properties for the W and D-
components of the states. Indeed, by construction, i never removes a player from D. For
W, a player i can be removed (case 3) but then it is added to D and, once a player
belongs to D, it can never be added to W again. It is correct since for a history h, if one
guesses that Player ¢ has a winning strategy from history hv, then ¢ is added to D for
all successors hv' (v # v) and there is no need to guess again later on a good deviation
for Player 7 in the subtrees rooted at the nodes hv', and therefore no need to add i in W
again. Therefore along a path 7 of a run, there is only a polynomial number of different
components D and W, and they necessarily stabilize eventually, to a set that we denote
by limp(n) and limy (n). This monotonic behavior is crucial for complexity.

Finally, the winning condition for reachability and tail objectives asks that on each
path of the accepting run, either Player 0 wins, or there is a player that looses but he
belongs to the set D eventually (therefore in the past he could have deviate and win). In
the same time, the automaton checks that the players that belong to W after it stabilizes

22

(that pretend to win along the path), indeed win by checking that the projection on
the directions belong to O;. As for the safety condition, the winning condition asks for a
winning state before the unsafe state of Player i. Formally,if we denote by IRuns(i/) the set
of images of branches of runs of &, and by 7]y the V-projection of any n € (22 x 22 x V)¥,

we have:
k
au = QT U ({n e Runs@U) n (Q\{TH” | nlv € Oo v \/ (nlv ¢ Oi A @aden (i)}
i=1
N {ne TRuns@) n (Q\(TH | /\ nlveOi})

i€limyy ()

where the formula ¢34e,(7,7) says that there is a good deviation for Player i. That is,
©adev(i,m) = Ip = 0s.t. 7 € n|p[p] in the case of tail objectives or vage,(i,n) = Ip =
0 s.t. i € n|p[p] and Vr < p,n|y € S; for safety condition Safe(.S;).

Note that for different particular winning conditions, we may need to add more in-
formation on states of the automaton in order to check the satisfaction of the winning
condition of the players and therefore slightly modify the transition relation. For example,
in the case of Safety conditions, we may need a set of players that already lost and ask
that the deviation is made before losing.

Automaton Tg. Then, as mentioned before, the tree automaton 7g with the accepting
condition a such that £,(7g) = NCRSP(G) is defined as the product of the two automata
Cg and U. Formally, the automaton 7g = {Q, {qo}, J, @) has states in Q < (2“x27? xV)u{L
A g U (T V), g0 = (¢, q5) is the initial state and the transition relation for [€ ¥
is defined by

{pp} with pp(d) =L if éc(qf,1) = pp
{po} if 5c(q§,l.d) = d and 67(qf 1) = {po}

= 0(L,1) = {pp}

- 5((T7U)7 l) = {pt} Wlth pt(v/) - (T,’U/) if 56(1]7 U/) =v forv' eV
{pp} if 5@(1}) = pPp

— 8(W,D,v,l) = ou(W,D,v) if oc(v,v") = for all o' € V

{pp} otherwise

Remark 2. Note that on each branch of a run there are still only a polynomial number in
the size of the initial game G of different states of the automaton since 7g is the product

of U with a deterministic safety tree automaton of polynomial size.

Finally, the acceptance condition for the automaton 7g is essence the condition ay but
also asks to avoid states | that are reached in Cg if the tree to accept is not a proper

23

encoding of a strategy og. That is,

o= Q (T} x V)* U {ne Runs(Tg) n {go}(27 x 22 x V)* |

k
(77|V €Oy v \/ (nlv ¢ O; A @Hdev(iun))> A /\ nlv € Oi}
i—1

i€limyy (n)

Lemma 9. Let take a path w € (Q N {qo} (27 x 22 x V) of a run in Tg. Then, each loop
on w has only one value on states for the sets W and D.

Proof. Let take a path m = z¢'yq’z of a run in Tg. Because of the definition of &y, 7’ =
xq' (yq')¥ is also a valid path of a run in 7g. Suppose that there are two consecutive states
in y such that a player is removed/added from/to W in the second state compared to the
previous one. Then, there are also two consecutive states in y such that it is added /removed
to/from W. This contradicts the fact that 7’ is a valid path of a run in 7g since we could
do more than one addition of a player to W. The, there is no change on W on a loop.
Also, because of the monotonicity of D, we prove that the value of D remains unchanged

along a cycle using the same argument. |

From tree automata to two-player games. We now study the complexity of testing
emptiness of the language defined by 7g, for the different winning objectives of this paper.
Classically, non-deterministic tree automata emptiness is reduced to solving a two-player
zero sum game between Eve, who constructs a tree and a run on this tree, and Adam,
whose goal is to prove that the run is non-accepting, by choosing directions in the tree
and falsifying the acceptance condition.

Formally, remind that the alphabet is X = V u {#; | 1 < i < k} u {L} and for a
function f : V' — @, we denote by Range(f) its range. We construct a zero-sum two-player
game Gr = (Vg,Va, E', qo, O) where Vi = Q, V4 = {Range(f) | 3ge Q,l € X, f € (q,1)}.
Then, the transition relations is defined for all ¢ € Q, all P € Vy, by (q, P) € E’ if there
exists [€ X and f € §(q,l) s.t. P = Range(f), and (P,q) € E' if ¢ € P. In other words,
to go from ¢ to P, Eve chooses a symbol a and a function f : V — @ in 6(q, «). Then,
Adam chooses a direction in V', but since he wants to construct a sequence of states not
in «, one only needs to remember Range(f). Adam then picks a state in that set. Finally,
Eve’s objective is then the set O = {7 = vjwivowy -+ € (VEVA)¥ | vivg--- € a}.

Proposition 1. Eve has a winning strategy in Gr iff Lo(Tg) # &.

Complexity of solving two-player games. The game G7 has linear size in the size
of Tg. A precise analysis of the time complexity of solving G gives upper bounds to
non-cooperative rational synthesis problem.

For safety, reachability, Biichi and co-Biichi winning objectives, we exploit the mono-
tonicity of the sets W and D (the fact that only a polynomial number in k of different
sets W and D can be met along a play), to show that if Eve can win the game G, then
she can win in a polynomial number of steps (in the size of the original game G), in the

24

sense that she wins iff she can enforce, in a polynomial number of steps, to visit a state g
she has already visited and which forms a good cycle (the notion of good cycle depends on
the winning condition of Gr). In other words, G7 reduces to a finite duration game with
a polynomial number of steps (this kind of reduction is known as first-cycle game in the
literature [2]). This game is not constructed explicitly, but solved on-the-fly by a PTime
alternating algorithm. This gives a PSpace upper-bound for NCRSP.

For Muller conditions, we the polynomial reduction to first-cycle game doesn’t work.
Therefore, we transform Gy into a two-player zero-sum parity game with an exponential
number of states but a polynomial number of priorities, which can be solved in Exptime
(in the size of G). This reduction is based on the Last Appearance Record (LAR) [16,26],
which allows us to identify states in V' appearing infinitely often. More details on the exact

complexity for each type of winning condition are given in the following.

5.1 Safety

In the case of safety objectives (Safe(S;));eq; the winning condition in the game Gy can
be checked by keeping an extra set of players I < (2 with the following semantics: if the
play is in a state (¢,) and some history h = quwiqaws...q; and i € I, then Player i lost
the play, i.e., there is a position s < [s.t. gs|y ¢ S;.

Initially, I = ¢ and it is updated as follows. If a player i belongs to I, then i € I also
in the successor nodes. Otherwise, whenever the game goes in a state ¢ = (W, D, v) such
that v ¢ S; for some ¢ € (2, then i € I. Then, if eventually there is a player i € W n I, the
only next state of the game is 1 (losing state for Eve). The last situation appears when it
is made a wrong guess for a good deviation for some player. Then, if the play never go to
the node 1 we are sure that all the players from the set W win. We don’t need to keep
the information about the players in [if a state in {L} u ({T} x V) is reached.

Formally, the game G is as follows: Vi = (Q\({ L} u ({T} x V) x22 U {L}u({T} xV)
and V4 = {Range(f) | 3ge Q,le X, f € 5(q,1)} x 2 and the transition relation as in the
general construction of the game(since I is deterministically updated). Then, because of
the monotonicity of the sets W, D and I, Eve’s winning condition simplifies to a Biichi
condition. © = Buchi(F®) where

FS=({T}xV)u{W,D,[,v)eQ|0¢ I} u{(W,D,[,v)eQ|DnI#

Intuitively, the first set corresponds to the branches of the tree ¢, that don’t correspond
to plays in G compatible with the strategy og. For the plays compatible to oy, the Biichi
condition asks that Player 0 never belongs to the set I(therefore wins) or there is a player
i for which was guessed a good deviation but loses in the current play (i€ D n I).

Definition 2. Given the two-players zero-sum game Gy, we define the first cycle two-
player zero-sum game gé over the same game arena as Gy where each play ends after
the first cycle on Eve’s states. Then, a play m = xqyq in gé 1s winning for Bve if either
qe{T} xV orq=(W,D,I,v) such that either 0¢ I or D n I # .

25

Note that because of the monotonicity of I and D, this means that either all the Eve’s
states are such that 0 ¢ I or there is some player ¢ that lost but he had a profitable

deviation.

Lemma 10. All the plays of the game g; are of polynomial length in the size of the initial
game G.

Proof. Since D and I are monotone, there are at most |2| + 1 different values that they
can take on a path of Gy. Also, in the set W we can have at most one addition and one
removal for each player i € {2 and hence 2|§2| + 1 different values for W. Therefore, along
a play 7 there are at most 7 = 1+ (2[£2] +1) - (]§2| +1)? - |V different states. The, since all
the plays in gé stop after the first cycle, the length of each play is of at most r + 1 states
since there is only one state that appears twice. Therefore, all plays in gfr have polynomial
length in {2 and V of the initial play G. |

Proposition 2. Eve has a winning strategy in the game Gy iff she has a winning strategy
in the first cycle game g;.

Proof. From right to left, if Eve has a winning strategy O'é in g;-, for all o*f; a strategy for
Adam, out(aé,af) = xqyq either is such that g € {T} x V or ¢ = (W, D, I,v) s.t. (0¢ I
or I nD #).

We define now the strategy op of Eve in Gy as og(hq) = ag(h’q) s.t. b’ is h from
which are removed all cycles and prove that o is winning for Eve in Gy. Let 7 be a play
compatible with og. Then, by the definition of o, we can decompose 7 in m = wywoms...
such that each ; is a suffix of a play 7T§~ compatible with Uf; in g;c_. If all ; on 7 satisfy 0 ¢ I
on the last state (resp. if it belongs to {T} x V'), then also = will satisfy [1(0 ¢ I')(because
I is monotone)(resp. 7|y, € Q*({T} x V)¥) and then Eve wins. Otherwise, if there is j
such that 7; ends in a state ¢ = (W, D, I,v) s.t. I n D # (&, because of the monotonicity
of I and D(Lemma 9), all the states of Eve in the continuations of the game will satisfy
I nD # ¢ and then Eve wins.

Now, from left to right, if there is no winning strategy for Eve in gé, by determinacy,
there is a winning strategy a£ for Adam such that Vafé of Eve, either out(aé, 01};) contains
1 (has a suffix in ({L})*) or it doesn’t contain L, but out(ag,afl) = zqyq such that
q=(W,D,1,v) withOeland I nD = .

Let 04 be the strategy of Adam in Gy defined as 04(hq) = aﬁ(h’q) where ' is h from
which are removed all cycles. We prove that o4 is winning for Adam in the game G7.

Let m be a play compatible with o4. By definition of o4, we can decompose 7 in
7T = mmams... such that each 7; is a suffix of a play 7r;- compatible with Uf; in gf,. If all 7,
are such that they don’t contain L but they end in a state ¢ = (W, D, I, v) such that 0 € I
and I n D = J, because of the monotonicity of I and D(Lemma 9), 0 € I in all states of
Eve in 7y~ ; on 7 and since I n D = (J, it means that all the states of m will satisfy it
and therefore I N D = (J appears a finite number of times which means that Adam wins.
Otherwise, if there is a 7; that ends in 1, then by definition of the game arena(induced by

26

the transition relation in 77) all 7~ ; have Eve’s states equal to L which is again winning
for Adam since they visit a finite number of times states in F¥. |

Theorem 6. Deciding the existence of a solution for the mon-cooperative synthesis in

multiplayer Safety games is in PSPACE.

Proof. Thanks to Lemma 10 and Proposition 2, to decide the existence of a solution for
the non-cooperative synthesis in multiplayer Safety games G is equivalent to solve the
two-player zero-sum finite game gf, that has all the plays of polynomial size in the size of
the game G. This can be done in PSPACE using an alternating Turing machine running in
PTIME. |

5.2 Reachability

For the reachability objectives (Reach(R;))icr2, we have the same approach as in the case
of safety objectives but with a new meaning for the newly introduced set. In this case,
we keep a set J € {2 with the following semantics: if the play is in a state (¢, J) at some
history h = qrwiqaws...q; and ¢ € J, then Player ¢ won in the current play, i.e., there is a
position s < I s.t. gs|v € R;.

Initially, J = ¢J and it is updated as follows. Whenever a player belongs to the set J,
this remains true for the successor nodes. Otherwise, whenever the game goes in a state
q = (W, D,v) such that v € R; for some i € (2, then i is added to the set J. Note that
along a play, the set J is monotone since there are only additions of new players.

The formal definition of the game is the same as in the case of Safety objectives,
but with the later semantics for the introduced set of players. Then, the Eve’s winning
condition translates to the Biichi objective O = Buchi(F %) where

FR = ({T} x V) 0 {(W,D,J,v) e Q | W < J and (0 € J or D\J # &)}

Since the sets J and D are monotone and also W is establishing after at most 2k
changes, a play 7 satisfies the winning condition O iff 7 = 00O(W € J A (0€ J v D\J #
&)). Then, we define the first cycle game as follows:

Definition 3. Given a two-player zero-sum game Gr, we define the first cycle two-player
Zero-sum game g; over the same game arena as G where each play ends after the first
cycle. Then, a play m = xquyq in gé is winning for Fve if either ¢ € {T} x V or q =
(W, D, J,v) such that W € J and either 0 € J or D\J # &.

Lemma 11. All the plays of g§ are of polynomial length in the size of the initial game
g.

Proof. The argument is the same as in the case of Safety games since the set L is replaced
by the set J in the Reachability case having the same monotonic property. |

Proposition 3. FEve has a winning strategy in the game G iff she has a winning strategy
in the first cycle game er.

27

Proof. From right to left, let take a winning strategy Uf; of Eve in the game gf,. We define
Eve’s the strategy og in G1 as og(hq) = Jé(h’q) where A/ is obtained from h by removing
all the loops. We prove that o is winning for Eve in Gr.

Let m be a play compatible with og. By the definition of o, we can decompose
in 7 = mmems... s.t. w; is a suffix of a play 7r§- in g§ (7r§ is obtained from mymy...m; by
removing all the cycles from mymy...mj_1). Since aj; is winning for Eve, the last state of all
7j are either in {T} x V or are s.t. W < J and (0 € J or D\J #). Therefore we see
infinitely often states from F and Eve wins in Gr.

In the other direction, if Eve doesn’t have a winning strategy in er, by determinacy,
there is a winning strategy 03; for Adam in Q’{- such that VU}; of Eve, out(aé, o)
such that either 7’ contains L (there is a suffix in ({L})¥) or ' = aqyq s.t. ¢ = (W, D, J,v)
with W & J or (0¢ J and D\J = &).

Now we define the strategy o4 for Adam in Gy as oa(hq) = aﬁ(h' q) where h' is

:ﬂ'l

obtained from h by removing all the cycles and prove that it is winning for Adam in G7.

Let 7 be a play in Gy compatible with ¢ 4. From the definition of o 4, we can decompose
it as m = mmoms... where each 7; is the suffix of a play 775- in g#.

If there is one 7; that contains a L in one position, then all the following states equal
1 by the definition of 7 and then Adam wins. Now, if there is no state equal to L on ,
then since af; is winning in g;, all 7; end in a state that either satisfy W & J or (0 ¢ J
and D\J = J). Suppose by contradiction that there are two 7;, and 7, such that appear
infinitely often in m and 7 ends in a state ¢; with W & J and 7, ends in a state go
that satisfies W < J and 0 ¢ J and D\J = (. Also, if we take the plays 77}1 = T1q1y1q1
and 7r§-2 = 22q2y2q2 whose suffixes 7; and 7;, are, then x1q; is a prefix of z2go or vice
versa(otherwise they don’t both appear infinitely often on 7). Then, between ¢; and g2 all
the players that belong to W\J have to be added(if z1q; is a prefix of x2g2) or remover
(otherwise) from W. But in Lemma 9 we saw that this is not possible. Therefore, on 7
either all but a finite number of 7; are ending on a state satisfying W & J, or all but a
finite number of 7; satisfy 0 ¢ J and D\J = J on the last state. In addition, from the
definition of d7, from one position on, the values of W,D and J are unchanged. Therefore,
From one position on, all states on 7 satisfy either W ¢ J or (0 ¢ J and D\J # J) and
in both cases Adam wins. |

Theorem 7. Deciding the existence of a solution for the non-cooperative synthesis prob-

lem in multiplayer Reachability games is in PSPACE.

Proof. The result is thanks to Lemma 11 and Proposition 3 and the fact that the finite
duration game can be solved in PSPACE using an alternating Turing machine running in
PTIME. |

5.3 Bichi

Consider that the objective of Player i are given as Biichi sets F; € V', 0 < ¢ < k. Therefore,
a sequence vov1vz... € V¥ belongs to O; iff it satisfies the LT L[G] formula (IO F; where F;

28

is an atomic proposition true in a state v iff v € F;. Then, the winning condition for Eve
in the game G7 is O = {7 = qrwigwz--- € (VEV4)¥ | v, = q1q2 - - - € o} where

@ = Q*({T} x V)* U {n e IRuns(Tg) n {go}(2? x 27 x V)*

k
(nlv FD0Fo v \/ (alv # T0F: i climpm)) A A alv FO0F)
i=1

t€limyy (n)

In order to check the satisfaction of « along the plays of the game G5, we introduce
two counters ¢y € 20U {—1} and ¢p € 22U {—1} in the states of the states of the game help
to monitor the appearance of states in Fj that make the formula gy = /\ielimw(n) nly =
OOF; and pp = \/f:1 (77|V ¥ OO F; At € limp (77)) true. The goal in using this counters is to
write the formulas ¢y and ¢p as Biichi and respectively co-Biichi conditions. Intuitively,
whenever ¢y or cp equal to i means that it is expected a state belonging to Fj.

In order to correctly update the counters, we need to keep in the states of Adam also
the last previous state belonging to Eve. Note that by doing this, the size of the game
remains exponential in the size of the initial game and the number of different states along
a play remains polynomial in the size of initial game.

Formally, given the game Gy = (Vg, Va, E',qo, ©), we define the new game Gy =
Ve, Va, B, Go, O) with Go = (g0, —1,-1), Vg = Vg x (R U {-1}) x (R U {-1}), V4 =
Va x Vi x (20 {=1}) x (2 U {-1}) and the transition relation is the smallest set £ such
that

— ((gm>ew,¢p), (¢4, 48, cw,cp)) € E iff (¢, qa) € E' for qp € Vg and g4 € Va
— ((qa,98,cw,cp), (45, &y, cp)) € E iff (qa,qy) € E' where

-

-1 ifgp =L orqpe{T} xV

or ¢p = (W', D' V)st. W =
¢y = s min{(cw +1) mod ke W' |1 > 0} if gg = (W, D,v), ¢ = (W', D', v)
st. W+ FA(weF,, vcpe W\W v W =)

cw otherwise

and
-1 ifqgp =1 orqpe{T} xV

or ¢p = (W'D v)st. D' =&
cp = min{(cp +1) mod ke D' |1 > 0} if gg = (W, D,v), ¢z = (W', D', ")
st. D' # ¢ and (ve F,, or D = &)

cp otherwise

Note that a play m € (Vg, V4)¥ is in Plays(Gr) iff #’ obtained from 7 by projecting
away cy and ¢p (and ¢ from Adam’s nodes) is in Plays(Gy). Intuitively, the role of the
counters cy and cp wait for the first occurrence of a state such that v € Fr,, and v € F¢,
respectively. If gg =L or W = & (or D = (), then ¢y = —1 (¢p = —1 resp.).

29

Lemma 12. For a play 7 in Gr, if 7|y, € {q0}{q0}(2? x 22 x V)* and W, = limw (x|v,,),
then

m= N\ OOF iff 7 = 00H,,

€Wy
where Hy,, = {(W, D, v, cw,cp) € Vi | W =& v (ve F,, Acw =min{ie W})}

Proof. Note that since we considered 7|y, € {qo}{qo}(27 x 27 x V), states in {T} x V
are not reached by 7. Let first treat the case W), = &, then 7 |= true and also m = OO H,,
since the only set W visited infinitely often is ¢F.

Now, consider W), # . If 7 = /\ieWp L0 Fi, then inf(w|e,,) = W, by the construction
of the game Gy (whenever a final state is reached, the counter cyy is increased to the next
player in). Then, we see an infinite number of times final states of the ”smallest” player
in W, i.e., states in which v € Fi,, and ey = min{i € W} and then 7 |= [J0H,,.

In the other direction, if we see an infinite number of times states with v € F¢,,, and
cw = min{i € W}, because of the construction of the game, once we reach a final state
with v € Fy,, the counter cyy is increased to the next player in W and so on. Therefore,
between tho states having v € Fy., and ey = min{i € W}, the projection on the direction
visits all the states F; where i € W. Then, since W is stabilizes to W), and since we
visit an infinite number of times final states with v € F,,, where cyy = min{i € W)}, it
means that we visit infinitely often the final states of all players in limyy (7) and therefore

T = /\z’ewp OO u

Lemma 13. For a play © in Gr, if 7|y, € {q0}{q0}(2? x 2? x V) and D, = limp(rl|y,),
then

mk \/ OO-F iff 7 = 00—Hg

€Dy

where Hy = {(W,D,v,cw,cp) € Ve | D =@ v (ve F., A cp = min{i € D})}

Proof. The proof is similar to the proof of the previous Lemma. Indeed, if D, = ¢, then
by the monotonicity of D, all the states along the play are such that D = ¢J and then
both 7 = \/ier+1 QU F; and 7 = Q[1—H, are false.

If D, # &, and 7 |= \/ier OO~ F;, then t~here is a player that sees finitely often Fj;.
Therefore, from the construction of the game Gy, there is a player that blocks the cycling
through all the values in D for the counter ¢p and for that player, there are eventually seen
only non-final states. That is, there are not seen infinitely often states in which v € F,,
and cp = min{i € D} and therefore 7 = Q[J—Hy.

In the other direction, if 7 visits finitely often states in which v € F., and ¢cp = min{i €
D}, from the definition of the game G, either F.,, is seen a finite number of times along
m, or there is a i € D that blocks the cycling of c¢p through all the values in D. Therefore,
there is a player ¢ € D such that 7 = O[]~ F;. [|

30

Using Lemmas 12 and 13, if we note Hr = {¢ € Vg | qlv, € {T} x V} and Hy =
{(W,D,v,cw,cp) € Vi | ve Fy} we can rewrite Eve’s winning condition in the game G
as

O = {re(VeVa)¥ | r = OOHT v (O0Hy v O0O—Hy) A OH,)}

Note that by asking to see infinitely often H,,, there are also avoided the states having
q=1.

The above formula OQC1HT v (([]()Ho v OL—Hyg) A D(}Hw) is equivalent to O[JHT v
(OO0Hy ALIOH) v (OT0Hg ALIOHy). Then, to be able to check if a path satisfies [J0Hg A
(00 Hy, we need to introduce a counter b € {0,1} in the states of the game Gr as follows.

Definition 4. We define a game G = (VE = Vg x {0,1}, Vi =Vy x {0,1}, (QO,O),E,@)
where

0 ¢b=1andqe Hy
- ((q,0), (¢, b)) cFE iff (¢,4") eE andb =41 if b=0 and q € Hy
b else

~ O ={re(VgVa)* |7 OOH, vOOH) v (OOH!, ACIOH!,)} where H- = Hr x {0, 1},
H) = Hy x {0}, H), = Hq x {0,1} and H|, = H,, x {0,1}.

Note that form the way of defining the transition relation in G, the updates of the
counter b are deterministic. Therefore, for each path 7 in G7, there is a unique corre-
sponding path 7 in QT s.t. by projecting away the counter b from 7’ we obtain the path

.

Lemma 14. Let 7' € Plays(Gy) and 7 € Plays(Gy) obtained from 7' by projecting away
the counter b. Then

7 = OOHT v (O0Hy v O0—Hy) ALOH,) iff ' = OOHY v O0H v (O0—Hy AOOH,,)

Proof. If m = 00Hy A [O0H,, then from the definition of Gr, the path 7/ will contain
infinitely many changes of the value of the counter b by reaching alternatively states in
Hy x {0} and H,, x {1}. Therefore, ' = H|.

If 7 ¥ 00Hy A OOH,, but m = OCI—Hg A [J0H,,, it means that there is a position
from which the counter b remains unchanged along 7’ and 7’ = O0C0—H); A OOH,,. Also,
if 7 = OJHT, it means that eventually a state containing T is reached and the game
remains in Ht. Then, from the construction of g}, the same property holds along 7" and
therefore n’' = OCJH'-.

In the other direction, if 7’ = [I()H(’), from the definition of the transition relation in
the game Gr, 7’ has to visit infinitely often both Hy x {0} and H,, x {1} and therefore
7 D0 Ho A O Hy.

If 7’ = OO—H), A O0H,,, by projecting away the counter b, the play 7 = 0C0—Hg A
OO0H, since H), = Hgq x {0,1} and H,, = H, x {0,1}. The same argument works if
7 = OOHY. [|

31

Parity game Further, we express Eve’s winning condition @ = {r e PIays(QT) | ™ =
OOHY vOOH|, v (OO—H), ALIOH,,)} using a parity condition where the priority function
pr defined as follows:

(0 if g¢ H: A qe H
1 ifq¢ HrAq¢ HyAqe H)

pr(ge V) =<2 ifq¢ H- Anq¢ Hynq¢ H) A qe H),
3 ifg¢Hrnq¢ Hynq¢ HyAqé¢ Hy,
4 ifge H:

For states belonging to Adam, we just put priority pr(q € VA) = 6, so that they have no

influence.

Lemma 15. Let 7 € Plays(Gy). Then
7 | OOH: v OOH|, v (OT0—H) ATIOH,,) iff min{pr(q)) | q € inf(n)} is even

Proof. If m = QLJHY, then eventually the game remains in the set H: and the only priority
appearing infinitely often along 7 is 4 which is even. Otherwise, If 7 = [J0 H{), then H|) is
visited infinitely often min{pr(q) | ¢ € inf(m)} = 0 which is even.

If 7 # OOHY v OO H(, but 7 = OC—H), AOOH,,, then from a position on H), is never
visited and we see infinitely often H|, along 7. This means that min{pr(q) | ¢ € inf(7)} = 2
which is even.

In the other direction, if min{pr(q) | g € inf(m)} = 0, then 7 = OOH|,. Otherwise,
if min{pr(q) | q € inf(mw)} = 2, it means that 7 visits an infinite number of times H,
and only a finite number of times H); (otherwise min{pr(q) | ¢ € inf(r)} = 1). That is,
7 = OO—H) A O0H,,. Finally, if min{pr(q) | ¢ € inf(n)} = 4, it means that eventually
only states in H’- are visited (otherwise the smallest priority appearing infinitely often is
not 4) and therefore 7 = OC1HY. [|

Definition 5. Given a two-player zero-sum parity game QT with the priority function pr,
we define the first cycle two-player zero-sum game Qéc- over the same game arena as Q}
where each play ends after the first cycle. Then, a play ™ = xqyq in Q;- is winning for Eve

iff min{pr(yq[j]) | 0 < j < |yq|} is even.

Lemma 16. All the plays in g# are of polynomial length in the size of the initial game
g.

Proof. 1t follows from the monotonicity of D and quasi-monotonicity of W and the fact
that 1 < ew,cp < k and be {0,1}. [|

Proposition 4. Eve has a winning strategy in the game QT iff she has a winning strategy
in the first cycle game gf,.

32

Proof. From right to left, if Eve has a winning strategy aé in gf,, then for all strategies Jfl

of Adam, out(aé, O'f) = xqyq is such that min{pr(yq[j]) | 0 < j < |yq|} is even. We define
Eve’s strategy o in G as og(hq) = of (h'q) where ' is obtained from h by removing all
the loops. We prove that o is winning for Eve in QT.

Let m be a play compatible with og. By the definition of o, we can decompose 7 in
T = mMmam3... s.t. m; is a suffix of a play 713- in g;”_ compatible with aé. Moreover, there is
a decomposition of the suffixes 7; such that by reordering the resulting fragments of all
suffixes appearing infinitely often, we obtain an infinite sequence of loops being suffixes
of plays in Q;- compatible with Jf; preceded by a finite prefix. Then, since af; is winning
in g;, all the loops have the minimum priority even and therefore the minimum priority
appearing infinitely often in 7 is even and 7 is winning for Eve.

On the other direction, if there is no winning strategy for Eve in Q;-, by determinacy,
there is a winning strategy af; for Adam such that Va};, out(0£7 o) = xqyq is such that
min{pr(yq|j]) | 0 < j < |yq|} is odd. Let o4 be the strategy of Adam in Gr defined as
oa(hg) = af;(h’q) where h' is obtained from h by removing all cycles. We prove that o4
is winning for Adam in Gr.

Let m be a play compatible with 4. Doing the same reasoning as before, we can
decompose 7 and rearrange the components such that we obtain an infinite sequence of
loops being suffixes of plays in gf, compatible with af; preceded by a finite prefix. Then,
since aﬁ is winning in g§ for Adam, all the loops have the minimum priority odd and then
the priority that appears infinitely often in 7 is odd. Therefore, 7 is winning for Adam in

QT- [|

Theorem 8. Deciding the existence of a solution for the non-cooperative synthesis prob-

lem in multiplayer Biichi games is in PSPACE.

Proof. 1t follows directly from Lemma 16 and Proposition 4 and the fact that the finite
duration game g; can be solved in PSPACE using an alternating Turing machine running
in PTIME. |

5.4 Co-Biichi

Let consider now the case when the winning conditions for each player ¢ is given as a
Co-Biichi set F; € V. Then, the winning condition for Eve in the game Gr is O = {r =

Q1w -+ € (VEVA)” | Tlvy = quge - -+ € a} where
a=Q"{T} xV)¥u {77 e IRuns(75) m {qo} (29 x 22 x V) |

k
(v 00-Fo v \/ (il 1 00 Fs nielimp(m)) A A\ nly b= 00-F) §

=1 t€limp ()

Lemma 17. For a play m in Gr, if 7 lv € {q0}{q0}(2? x 22 x V)* and W, = limw (7 [v),
then

33

where Hy, = {(W,D,v) € Vi | v € U,en Fi}-

Proof. This holds because all the states that appear an infinite number of times along
7 have W = W,(W stabilizes along a play) and visiting a finite number of sets a finite

number of time is equivalent to visiting their union a finite number of times. |

Lemma 18. For a play 7 in G, if 7 lvy € {q0}{q0} (2 x 22 x V)* and D, = limp(7 |vy),
then

i E Viep, OOF; iff mlv, = OOHq
where Hg = {(W, D,v) € Vg | v e J,ep Fi}-

Proof. This holds because all the states that appear an infinite number of times along
have D = D, (D stabilizes along a play) and visiting one set among F1, ..., F;. an infinite

number of times is equivalent to visiting their union an infinite number of times. |

Let now Hy = {(W,D,v) € Vg | v e Fy} and HT = {¢g € Vg | ¢ € {T} x V}. Then,
Using Lemmas 17 and 18, we get that Eve’s winning condition is equivalent to

O ={re (VEVa) | mlv, EOOHT v (0O0~Ho v O0Hg) A O00—Hy)}

Let I = Hg u Hy. Then the formula OCJHT v ((<>D—|H0 v O0Hg) A <>D—|Hw) is
equivalent to OC1Ht v OUI—1 v (OO Hy A OL1—H,,). Further, from the construction, a play
cannot alternate states in Ht and I (once in H, all the future states are in the same set).
Therefore, we can define the set J = Ht u (Vg\I) and equivalently write O[]/ instead of
OOHT v OO—1.

Definition 6. Given the two player game Gy, we define Fve’s winning condition as a

parity condition with the priority function pr: (Vp u Vy4) — {1,..,6} with

ifqé J Aqe Hy

ifq¢ JAqe Hynqd Hy
ifq¢ JAnq¢ Hinqd Hy
ifge J

pr(ge Vi) =

=W N

For states belonging to Adam, we just put priority pr(q € Va) = 6, so that they have no

influence.

Lemma 19. Let 7 € Plays(Gr). Then,
Tlv, E OOHT v ((0O—Ho v O0H) A OO—Hy) iff min{pr(q) | q € inf(7)} is even

Proof. If 7|y, &= OOHT, then wly, = OOJ and therefore from a position on we see
only states in J which means that min{pr(q) | ¢ € inf(n)} = 4 which is even. If 7 =

34

OO—Hy A OO0—Hy, then 7 = OO0~ and then wly, = OJJ which means as before
min{pr(q) | ¢ € inf(m)} = 4.

Otherwise, if 7 =00 Hg A QL1—Hy, then from a point on H,, doesn’t appear in 7 and
H, appears infinitely often which means that min{pr(q) | g € inf(7)} = 2 which is even.

In the other direction, if min{pr(q) | ¢ € inf(mw)} = 4,because of the construction, it
means that from a position on, either appears only states in Ht or the set I = Hy u Hy,
doesn’t appear in 7(otherwise min{pr(q) | ¢ € inf(m)} < 4) and therefore 7 = OL1HT Vv
OO—Hg A OO—Hy.

If min{pr(q) | ¢ € inf(mw)} = 2, it means that H; appears infinitely often along = and
H,, appears a finite number of times(otherwise min{pr(q) | ¢ € inf(m)} = 1). Therefore,
7 OOHy A OO~ Hy. n

Now, having the two player parity game G% over the same game arena as Gr and
objective Parity(pr), we define the first cycle game g§ ans we did in Definition 5 in the
case of Buchi games whose plays have polynomial length in the size of the initial game G
and solve it in alternating PTIME.

Theorem 9. Deciding the existence of a solution for the non-cooperative synthesis prob-
lem in the multiplayer co-Buchi games is in PSPACE

5.5 Muller

We now study the complexity of solving G5 when the original game G has Muller conditions
Muller(p;) for the k + 1 players. For Muller conditions, he winning condition for Eve in
the game Gr is G7 is O = {7 = qruiqewz--- € (VEVA)Y | 7lvy = q1q2 - - - € a} where

@ = Q*({T} x V)* U {n e IRuns(Tg) n {go}(2? x 27 x V)*

k
(77|V € Muller(uo) v (nlv ¢ Muller(p;) i€ limD(n))) A /\ nlv € Muller(,ui))}
=1

i ielimyy (n)

We transform Gy into a two-player zero-sum parity game with an exponential number
of states but a polynomial number of priorities, which can be solved in Exptime (in the
size of G). This reduction is based on the Last Appearance Record (LAR) [16,26], which
allows us to identify states in V appearing infinitely often.

LAR For the given set of states V', we define the deterministic transition system LARy
that records the most recent states in V' that appeared along an execution. We let P(V)
the set of permutations of V', which we denote by words of length n over alphabet V' such
that each element of V' appears exactly once. We define a deterministic finite automaton
LARy = (P(V) x {0,...,|V| =1}, (mo, ho), =), mo = v1 ...v, and hg = 1, and (m,h) >
(x122v, |x1|) where m = zjvxy for some 1,22 € V*.

Let (m,h) be a state of LARy. Then, h is called the hit, representing the position
from which the last state v is taken and moved to the back, and the states after position

35

h on in m are the most recent states v seen along the path, called recent states. Then, let
& = vgu1vs... be an infinite sequence of states in V. A path in LARy on £ is a infinite
sequence 7(§) = (mo, ho)(m1, h1)(me, ha)... such that (mg, ho) € M and Vj > 1, (m;, h;) =
d((mj—1,hj—1),vj—1). Let hpin be the smallest hit appearing infinitely often along 7(§).
Then, the set of vertexes v in m situated after position h,,;, is always the same from
some point on and is equal to inf(§), i.e., the sequence of subsets ({m;|r] | r = Al . })i=0
eventually stabilizes to inf(&).

Parity game Now we can define the parity game G7 by taking the product of Gy and
LARy as follows.

Definition 7. Given the two-players zero-sum game Gy = (Vg,Va,qo, E', O) with Vo =
Ve w V4 and the deterministic transition system LARy defined as above, we define the
parity game Gr = (V = Vi w Va, Go, B, pr) where V.= Vir x M, o = (qf, (mo, ho)) and
the set E' is defined by

— ((gg, (m, h)), (¢4, (m, h))) € E" iff (qp.qa) € E
(qa,qe) € E

= ((qa, (m, b)), (qe, (m", h))) € E"iff < (m/,1') = 6((m, h),qelv) if gz ¢ {L} 0 {T} x V)
(m/,0') = (m,h) if gg € {L} v ({T} x V)

Finally, the priority function pr : V. — {0,...,2|V| + 2} is defined as follows: pr(L
,m,h)y =1, pr(qgr,m,h) =0 for qr € {T} xV and

2h if Vie W{m|r] | r = h} = u; and
pr((W, D,v),(m,h)) = ({m|r]|r=h} =p ordie D s.t. {m|r] | r = h} = —wu;)
2h+1 else

For states whose first component belongs to Adam, we just put priority 2|V| + 2, so that
they have no influence.

Let 7 a play in Gy. Note that according to the definition above, there is a unique
play 7’ in QT such that by projecting away the LAR construction along 7/, we obtain the
play 7. Also, the LAR component changes only on states belonging to Eve which helps

verifying the winning condition O.
Lemma 20. Let 7 a play in G and the corresponding play 7 in Gr. Then,
7 e O iff '’ € Parity(pr)

Proof. Let hy,;y, be the smallest hit appearing infinitely often along 7’. As remarked before,
{mlr] | r = hinin} = inf (7' v, [v) = inf(7vg|v).

Let 7 € Muller(uo). This is equivalent to {m|r]| | 7 = hmin} = po. If Dy = limp(7lvy,),
the fact that 3i € D) s.t. inf(m vy, |v) ¢ Muller(u;), since 7lv,[p = 7'y_|p and {m[r] |
T = hpin} = Inf(7' My, |v) = inf(7 v, |v), is equivalent with {m[r] | 7 = hmin} ¥ 1.

36

Also, considering W), = limy (7 v,,), the property that Vi € Wy, 7|y, |v € Muller(s;)
translates to inf(w v, |v) = {m[r] | 7 = hmin} = 1.

From the above, 7w € O iff the smallest priority appearing infinitely often when hitting
Rmin 18 2humin which is even and therefore 7’ € Parity(pr). [|

Theorem 10. The non-cooperative multiplayer Muller rational synthesis problem is in
EXPTIME.

Proof. The complexity comes from the fact that the game Grisa two-player Parity game
with exponential number of states, but with polynomial number of priorities which can
be solved in EXPTIME since parity games can be solved in PTime in the number of states

and exponential in the number of priorities [18,22], so proving the result. |

5.6 Lower Bounds for the Non-Cooperative Setting

We finally provide some lower bounds to the complexity of the non-cooperative ratio-
nal synthesis problem. Clearly, given an objective O € {Reach, Safe, ...} the correspond-
ing non-cooperative rational synthesis problem is at least as hard as the O-sum two-
players game with the same objective’. We show that indeed, for each objective O e
{Reach, Safe, Buchi, coBuchi, Street, Rabin, Parity, Muller}, a PSPACE lower bound applies to
the corresponding non-cooperative rational synthesis problem. The result is obtained by
reduction from the quantified boolean formula (QBF) problem.

Theorem 11. For each X € {Reach, Safe, Buchi, coBuchi, Street, Rabin, Parity, Muller}, the
non-cooperative rational synthesis problem in multiplayer X -games is PSPACE-H.

Proof. By reduction from QBF. Let ¢ = 3z1Vxs... 32y (x1, 22, ..., Tm) be a QBF in 3CNF
with k clauses C1, Co, ..., Cy.

Given X € {Reach, Safe, Buchi, coBuchi, Street, Rabin, Parity, Muller}, we build a mul-
tiplayers X-game G, such that 1 is true if and only if G, admits a solution to the
non-cooperative rational synthesis problem. The game G, involves 2m + 2 players 2 =
{A, B, Pio, P11, Py, Po1, ..., Pro, Py} Intuitively, player A (the system) controls the ex-
istential variables, while player B (first player of the environment) controls the universal
ones. More precisely, Gy is played on the arena A, obtained as follows (cfr. Figure 4,
where the round nodes are owned by Player A, the diamond ones by player B, and the
rectangular ones by players Pig, P11 ..., Pmo, Pm1 as specified below.).

For each existential (resp. universal) variable z; the arena Ay contains a node x;
controlled by the system (resp. by player B). For each node z;,1 < i < m, the arena
Ay contains the edges (24, 04;), (%4, 12;), (02, Tiv1), (1z;, Tiy1), where the vertex 0, (resp.

1,) intuitively represents the value val(z;) = 1 (resp. val(z;) = 0) for the variable ;.

5 In fact, given the zero-sum two-player game G where Player 0 has the objective =, it is sufficient to
consider a non-zero-sum game on the same arena where Player 0 (the system) has objective v and
Player 1 (the environment) wins in any case.

37

& Oz

Py € Wpy,

Py 10

¥ '

Fig. 4: Non-cooperative Biichi: Reduction from QBF

start —

For each 1 < i < m, the value-node 1, (resp. 0,) is controlled by player P;; (resp. Pj)
and has a further edge leading to the self-loop over the node vy;—1 (resp. vy;), owned by
the system. The value nodes 1, ,0,, (for the last variable x,,) are then connected to a
vertex z controlled by player B, where intuitively player B can choose a clause (i.e. an
edge (z,C;),1 < i < k, out from z). Each clause-node Cj, controlled by the system, has
three outgoing edges toward the terminal nodes (with self-loops) l;1, 2, li3, one for each
literal in Cj.

Given the arena described above for the X-game G, , the objectives of players are
properly designed so that the following conditions are satisfied:

(i) Given v;, where 1 < i < 2m, each lasso-path ending up into v; is winning for each
player in the game.

(ii) Given l;j, where 1 < i < k and 1 < ¢ < 3, each lasso-path ending up into /;; is winning
for each player in the game but the system (i.e. player A) and the player P, where:

(lijZl’h/\b=1)v(lij=—'$h/\b=0)

Note that condition (7) implies that for each 1 < i < m and b € {0,1}, the vertex by,
belongs to the winning region Wp, of player Py, (since it is controlled by Pj, and leads
the play to a lasso-path ending up either into vy; or into vg;—1, winning for Pj).

We claim that the formula v is true iff there is a solution for the non-cooperative
rational synthesis problem in the multiplayer X-game G,.

Assume that 1 is true. Then, the existential player has a winning strategy in the QBF
game associated to 1. Player A (the system) can play in G, according to such a strategy up
to the node z, ensuring a configuration of variables such that all the clauses are satisfied.
Then, from each clause node C;, 1 < ¢ < k, player A can choose one literal /;;, 1 < j < 3,
that makes true C; and go to the corresponding node /;;. Each path 7 on Gy, in the outcome

38

of such a strategy for player A is either winnng for player A (since it does not reach z,
i.e. is a lasso-path to some v;, where 1 <4 < 2m) or it ends up into a node l;; such that:
either l;; = xj, and 7 passed trough 1,, or l;; = —xj, and 7 passed trough 0, (i.e. either
player Pp; respectively player Ppg doesn’t play in NE since he looses but passed trough
his winning region).

Otherwise, assume that 1 is false. Then, the universal player has a winning strategy
o in the QBF game associated to 1. Consider a strategy profile (for the environment)
where player B plays according to o and each player Py, for 1 <i < m,b e {0, 1}, plays to
the next variable-node (or to z). Once in z, player B can choose a clause C; that is false
according to the instantiation of variables along the path followed so far. Therefore, for
any choice of the system from C;, the play will be loosing for the system and in NE for
each player of the environment. Indeed, let /;; be the choice of player A from Cj. Then,
there is an index h such that l;; = xj, or l;; = —xp,. In the first case player Py looses
but he could not avoid it (since the play did not pass trough 1,, and he never played)
and each other player in the environment wins. In the second case Pjg looses but he could
not avoid it (since the play did not pass trough 0., and he never played) and each other
player in the environment wins.

To conclude the proof, we just need to show that the objectives of the players in the
X-game G, can be defined in order to satisfy the conditions (i) and (i) above, for each
X € {Reach, Safe, Buchi, coBuchi, Street, Rabin, Parity, Muller}, .

— X = Reach. It is sufficient to define the reachability objective for each player as follows:
Ra ={v; | 1 <i<2m}, Rg =V, and for each h € {1,...,m}, the reachability
objective of Py is Rp,, = {v; |1 <i<2m}u{ly; |1 <i<k,1<j<3andl; #xp}
and the one for Py is Rp,, = {vi |1 <i<2m}u{l;; |1 <i<k,1<j<3andl; #
—zp}.

— X = Safe. It is sufficient to define the safety objective for each player as follows.
Sa=V\{li;;j |1 <i<kanl<j<3},Sg=17V,and for each h € {1,...,m}:
SPM :V\{lij|1<i<k,1<j<3andlij=a:h} andSphO ZV\{lij|1§i§]€,1<
Jj <3andl; = -z}

NN

— X = Buchi. It is sufficient define the Biichi objectives of the players as follows: Fy =
{vi|1<i<2m}, Fp=V,and foreach he {1,...,m}: Fp,, = V\{l;; | 1 <i<k, 1<
jéSandlijth} andeh0:V\{lij|1<i<k, 1<j<3andlij:ﬁa:h}

— X = co-Biichi. It is sufficient define the co-Biichi objectives of the players as follows.
The co-Biichi objective of the system is {l;; | 1 < i < k, 1 < j < 3}. The co-Biichi
objective of Player B is J. For each h € {1,...,m}, the co-Biichi objective of Py is
{lij | 1 <i<k 1<j<3andl;; =z} and the objective of Py is {l;; | 1 < i <
k,1<j<3andlj; = —xp}

— X € {parity, Street, Rabin} . The PSpPACE-hardness for the non-cooperative rational
synthesis for parity, Streett and Rabin comes directly from the fact that we can easily

express any Biichi condition as a parity, Streett or Rabin condition.

39

— The PspPACE-h for the non-cooperative strategy synthesis problem for Muller games
follows from the fact that O-sum two player Muller games are PSPACE-h (we could
clearly also define proper Muller objectives in Gy, is order to satisfy conditions (4),(i%)).

Theorem 12. The non-cooperative rational synthesis problem is PSPACE-C in multiplay-
ers X-games, X € {Safe, Reach, Buchi, coBuchi}. It is PSPACE-H in multiplayers X -games,
X € {Parity, Street, Rabin, Muller})

6 Fixed number of players

Until now, we considered the general case where the number of agents consisting the
environment is not fixed. In the following, we restrict the rational synthesis problem to
the particular case when the number of players is fixed (let say k players) and study
the complexity of solving the rational synthesis problem in both cooperative and non-

cooperative cases.

6.1 k-fixed Cooperative Setting

Upper Bounds The following theorems prove the upper bounds to k-fixed CRSP pro-
vided in the second column of Table 1. In particular, Theorem 13 provides PTIME proce-
dures to solve the k-fixed CRSP w.r.t. safety, reachability, Biichi and coBiichi objectives.
Theorem 14 provides a UPn cOUP algorithm for parity k-fixed CRSP.

Theorem 13. The k-fired CRSP w.r.t. safety, reachability, Biichi and coBichi objectives
s in PTIME.

Proof. As seen in the proof of Lemma 2, there is a solution for cooperative rational syn-
thesis iff there is a path 7 such that 7 = ¢ where ¢ = @g A <z50gN ash

Given the above, the PTIME algorithm for the winning conditions (X;); first labels in
polynomial time each node in the winning region W; of each Player i, 0 < i < k, by W;.
Also, for the winning conditions of each player, we label in polynomial time nodes belonging
to S; (resp. R; and F;) with the corresponding atomic proposition vg, (resp. vg, and vg,).
Note that since the number of players is fixed, also the number of atomic propositions
introduces is and the formula ¢ = o A qngaSh becomes a constant formula(depends only
on the number of players).

Then, to check the existence of a path such that © = ¢, we build a constant size
Biichi word automaton By (since the LTL formula ¢ is constant for k constant), take the
product with the game arena and check in polynomial time the emptiness of the resulting
automaton.

|

Theorem 14. The k-fired CRSP w.r.t. parity objectives is in UPn coUP.

40

Proof. Given 0 < i < k, let p; : V. — {0,...,2n} be the priority function for Player
i, where n = |V| We need to provide a UPncoOUP algorithm to check if G admits
a path 7 | ¢, where ¢ = parity(pg) /\1<z<k (parity(p;) v O—W;) and parity(p;) =
\/g_fl)/ 2 (O0C25 A \y<2; O00~Cp) encodes the winning condition for Player i, where C}
is an atomic proposition corresponding to color j. First, notice that if G admits a path w
such that 7 = ¢, then G admits a path 7* = 775 such that 7* = ¢, |7]| < n and 73 is
a loop of size (k + 2) - n. In fact, given 7w = ¢ we can build 7* as follows. If 7 |= O—W,
for each 1 < i < k, then 7 can be obtained by cutting 7 as soon as the first node repeats
on it. Otherwise, for each 1 < i < k such that 7 |= parity(p;), let m; € {0...n} be the
least priority w.r.t. p; occurring mﬁmtely often on 7. For each node v, label v by the
vector @ = (ag...,ax), where for each 0 < i < k , a[i] = m; if p;(v) = m;, and afi] = L
otherwise. Given my, there is a vertex u that appears infinitely often on 7 and is assigned
infinitely often a label that have mg (rather than 1) at index 0. Pick the first occurrence
of such an u and color it by green. Repeat the above procedure for each 1 < ¢ < k such
that 7 = parity(p;) (starting from the last green node) in order to recover a green node
on 7 for each 0 < ¢ < k such that 7 = parity(p;). Once detected the last green node, cut
the remaining path as soon as you find a further occurrence of u. Therefore, you obtain a
path 7/ = 77}, where 7} is a loop (from u to u) witnessing that 7’ = ¢. Removing each
simple loop on 7} as well as on each subpath of 7, withouth green nodes lead to a path
m* = wfny such that 7* = ¢, |7f| < n, and 73 is a loop of size (k +2) - n

Given the above premises, it is sufficient to design UPn coOUP algorithm to check if
G admits a path 7* |= ¢, where 7* = 773 such that |7}| < n and and 7} is a loop of size
(k +2) - n. The UP algorithm works as follows. For each node v in G, for each 1 <1i < k
guess if v € W; or v ¢ W;. Verify the guess applying the corresponding UP algorithm. If
the guess was incorrect, then reject immediately. Otherwise check in NLOGSPACE if G
contains a path 7* |= ¢, where 7* = w73 such that 7* = ¢, |7]| < n and 73 is a loop of
size (k + 2) - n. This is possible by guessing on-the-fly a path m* and a node u on it where
the loop should start, while mantaining (1) for each 0 < i < k, the minimum priority seen
along the loop w.r.t p; (2) for each 0 < ¢ < k, a bit to check if [J—=W; along 7* (2) the
lenghts of 7§, 75 and (3) the node u witnessin that 75 is a loop. Infact, since k is a fixed
constant, the priorities are bounded by n, and the length of the path is polynomial w.r.t.
the size of the graph, the amount of space required is logarithmic w.r.t. the size of the
input graph.

A coUP algorithm needs to verify in UP if Vr.—(7 |= ¢). This can be done as follows.
For each node v in G, for each 1 < ¢ < k guess if v € W; or v ¢ W;. Verify the guess
applying the corresponding UP algorithm. If the guess was incorrect, then reject imme-
diately. Otherwise, verify in CONLOGSPACE if Vr.—(m |= ¢). This amounts to check in
NLOGSPACE if 37.7 = ¢ that can be done as above. [

41

Lower Bounds The following Theorem 15 provides a reduction from two players zero-
sum games to k-fixed CRSP, that allows to infer the lower bounds on k-fixed CRSP given
in the second column of table 1.

Theorem 15. Let X € {Safety, Reachability, Buchi, coBuchi, Parity, Streett, Rabin, Muller}.
Given a two-player zero-sum game between player A and B with an objective of type X for
player A, we can construct a multiplayer game with objective of type X with two players
Q2 = {0,1} such that player A does not have a winning strategy in the zero-sum game if
and only if the multiplayer game is a positive instance of the CRSP problem.

Proof. Let G be a two-players zero-sum game where the protagonist (Player A) has the
objective v, and so Player B has objective —1). We construct the 2-players CRSP game
G’ by considering a copy of G and two fresh states v and w. The state v is the initial state
of G’ and has a transition to the initial state of G and a transition to w, which is equipped
with a self-loop. The environment (Player 1) controls v,w and the states belonging to
Player A in G, while the system (Player 0) controls the states belonging to Player B in
G. For the winning conditions, Player 0 wins only if the play gets into w (and stays that
forever), while the objective of the environment is ¢ (i.e. the objective of Player A in G).

G’ is a positive instance of the CRSP problem iff Player 1 playing edge v — w is a NE.
But clearly Player 1 does not have an incentive to deviate if and only if Player A does not
have a winning strategy in G for forcing). |

Therefore, we obtain:

Corollary 2. For parity objectives, k-fired CRSP is in UP~ cOUP and parity-hard. For
Street objectives, k-fized CRSP is NP-c. For Rabin objectives k-fized CRSP is PN and
CONP-H. Finally, for Muller objectives k-fired CRSP is PSPACE-C.

Proof. The result for parity follows directly from Theorem 14 and Theorem 15. For Street
objectives, the upper bound follows from [25], while the lower bound follows from Theorem
15. For Rabin objectives, the upper bound follows from Theorem 4, while the lower bound
follows from Theorem 15. The lower bound for Muller games follows from Theorem 15,
while the upper bound was already true for an unfixed number of players. |

Note that a gap remains open for Rabin k-fixed CRSP. In fact, we do not have a CONP
algorithm for such a problem. Rather, we only have a PN? procedure to solve it and we
do not know whether Rabin k-fixed CRSP is NP-H.

6.2 K-Fixed non-Cooperative setting

We finally prove the upper bounds and the lowe bounds to the complexity of k-fixed
NCRSP, reported in the last column of Table 1.

42

Upper Bounds to k-fixed NCRSP For O € {Safety, Reachability, Buchi, coBuchi}, a
polynomial uppe bound applies, as shown in the following Theorem 16.

Theorem 16. The problem of deciding the existence of a solution for the non-cooperative
rational synthesis for a k-fized number of players in Safety, Reachability, Bichi and co-
Biichi games can be solved in PTIME.

Proof. In the case of a fixed number of players k, we obtain the polynomial size two-player
zero-sum game G7 and a fixed objective ¢, where ¢ € {ps, pr, @c, @b} are the formulas
characterizing the winning objectives in the case of Safety, Reachability, Biichi and co-
Biichi games. That is, @ = D(}FS, O = OOIF R, wp = OOH~T v ((DOHO v O0—Hyg) A
[00H.), and ¢, = O0HT v ((00—Ho v O00Ha) A OT0—Hy).

First, we can label in polynomial time the nodes of the game Gy with atomic propo-
sitions atomic propositions F*(for safety), F®(for reachability), Hr, Hy, Hy and H,(for
Buchi and co-Buchi respectively defined according the considered condition). Each node
is labeled with the atomic proposition corresponding to the set it belongs.

Then, since the formula ¢ is constant over the newly introduced atomic propositions,
we get a constant size automaton 44 equivalent to the LTL formula ¢ and by taking the
product A4 x G we obtain a Biichi game that can be solved in polynomial time[12]. W

The procedure outlined within the proof of Theorem 16 does not yield a polynomial upper
bound for the remaining objectives considered in this paper. However, we show that Muller
k-fixed NCRSP can be solved in PSPACE (cfr. Theorem 17). This entails a PSPACE upper
bound also for k-fixed NCRPS w.r.t. O € {Parity, Streett, Rabin}.

Theorem 17. The problem of deciding the existence of a solution for the non-cooperative
rational synthesis on k-players Muller games, where k is a fixed constant, is in PSPACE.

Proof. For a fixed number of players k, the game G has size polynomial in the size of the
initial game G. Moreover, the objective of Eve in G7 is equivalent to a Muller condition p
that is polynomial in the size of the game, as we show below. The thesis follows from the
fact that G two-players zero-sum Muller games can be solved in PSPACE.

To conclude the proof, we show how to transform Eve’s objective O when each player
has an implicit Muller condition p; into an unique equivalent implicit Muller objective .
Note that we can ignore the states belonging to Adam and define the objective p only on
Eve’s states.

First, for each tuple (W, D, v), we consider an atomic proposition zw,p,. Note that
since the number of players is fixed, the state space of the game G is polynomial and
so is the size of the set of newly introduced atomic propositions. Then, let take n €
TRuns(7g) N {qo}(2 x 22 x V)* and the condition n|y € Muller(ug). Since the sets W and
D stabilize along 7, we can equivalently write it as n € Muller(y,) where

po = polv — \/ 2w,
W.D

43

is the boolean formula where each state v is replaced by a disjunction for all W and D of
xw,p,- Further, the condition v; = (n|v ¢ Muller(u;) A ¢ € limp(n)) asks that the Player
i belongs to D from a position on, and the Muller condition w; is not satisfied. Using
again the monotonicity of the sets W and D, we can rewrite the condition ~; as a Muller

n’ = N\ ((\/»”UW,D,v) = ~pilv < \/fCW,D,v]>
W w

condition

Dc
€D

Intuitively, the formula says that for the set D that appears infinitely often (after sta-
bilization) that contains ¢, the formula —gu; holds for some W (that is also fixed after
some steps). Similarly, we take the condition /\;gjiy,, () 7lv € Muller(y;) and write the
equivalent Muller condition

=N ((\/fL’W,D,u) — N\ wilv < \/HBW,D,U])

WcR © Dwp iew D

The formula says that for the set W that appears infinitely often, for all the players in
this set, the Muller condition u; holds for some D.

Finally, the condition that n € Q*({T} x V)“ can be expressed using an atomic propo-
sition z that is true only in the states belonging to {T} x V as u1 = z1 since once 1 goes
outside {T} x V, it goes to L and all the following states equal L. Therefore, the objective
of Eve in the game G is equivalent to the Muller condition O = Muller(u) with

k
p=prv ((wo v\ w) ~ ™)
=1

7

Corollary 3. The problem of deciding the existence of a solution for the non-cooperative
rational synthesis for a k-fized number of players in Parity, Street and Rabin games is in
PSPACE.

Lower Bounds to k-fixed NCRSP We start to note that the reduction from QBF to
general NCRSP provided in Theorem 11 does not apply to the case of a fixed number of
players, as it requires a number of components for the environment that is linear in the
numebe of variables of the given QBF. Clearly, k-fixed Muller NCRSP is PSPACE-H by
reduction from the corresponding two player zero-sum games.

The lower bounds for parity k-fixed NCRSP reported in Table 1 have been obtained
by reduction from the generalized parity games considered in [11], where the objective is a
disjunction (dually, a conjunction) of parity conditions. In particular, we have proven that
NCRSP is NP-H (cfr. Theorem 18) on 3-players parity games, and CONP-H (cfr. Theorem
19) on 4-players parity game.

Finally, as listed in Table 1, we could provide a PSPACE lower bound also to Street and
Rabin k-fixed NCRSP. This is done in two steps: First a reduction from QBF to zero-sum

44

1
f‘/u

SA
copy of G D
(L, p1,p2) 1)

w
HE

—

(0,0,0)

Fig. 5: k-fixed Non-cooperative Parity: NP-hardness

two players Muller games is provided (cfr. the proof of Theorem 20), similar to the one
given in [17]. Then, the latter is reduced to a Street (resp. Rabin, cfr. Theorem 21) NCRSP
with two players.

Theorem 18. The problem of deciding the existence of a solution for the non-cooperative
Parity synthesis problem in a 3-player game arena is NP-H.

Proof. We prove the theorem by reduction from the two-player zero-sum game G = (V =
Vaw Vg, E vy, O = parity(p1) A parity(pz)) where player A(protagonist) has as objective
an outcome satisfying a conjunction of two parity objectives p; and ps. In [11] was proven
that computing the winning region for the antagonist is NP-hard.

W.l.o.g. we consider that the game G is turn-based and that the initial state belongs
to player A. Intuitively, the new 3-player parity game consists in a modified copy of G
by duplicating the states of Player A and adding an extra sink state called " where are
players are happy with priority function equal to 0.

We define formally the 3-player parity game G’ = (V' = Vy w Vi w Vo, E vo, pjy, P, Ph)
where V) = Vg u {2}, Vi = {v/ | v e Vu}, Vo = V4 and F’ is defined as the smaller
set such that for all (va,vg) € E, then (v4,vp) € E' and for all (vg,v4) € E, we have
(vp,v'y) € E' and (v/y,va) € E' and for all ve V; U Vs, (v,20) € E'. A sketch of the game
arena is depicted in Figure 5.

Then, we define the parity functions as

/

— pp(v) =1 for all v # 7+ and py(2) = 0;
— pi(v) = p1(v) for all v e Vg U Vy, pi(v') = p1(v) for ve V4 and pi (1)

0;
0;

— ph(v) = pa(v) for all v e Vg U Vy, ph(v') = pa(v) for v e V4 and ph(1)

We claim that Player A has a winning strategy in G iff there is no solution to the
synthesis problem in the game G’. Indeed, if there is a strategy o4 in G such that
parity(p1) A parity(pz) holds on all 7 € out(o,), in G’ Player 2 can play o9 defined
as oo(h) = o4(h') where I’ is the restriction of h on the states in V4 U Vp. Then, for all

45

Ply

Pl Pl3
(B —Ci—Cp— i —O
copy of G Q

(0, p1,p2,1))

Fig. 6: k-fixed Non-cooperative Parity: co-NP-hardness

00, there is a NE (09, 01,092) such that the game stays in the copy of G. Therefore, the
system(Player 0) loses and there is no solution for the synthesis problem.

Otherwise, if there is no strategy o4 to ensure parity(pi) A parity(pz) on all the
paths compatible with it, it means that there is a strategy op s.t. Vm € out(op), 7 =

parity(p1) v parity(p2). That is, there is a strategy oo for Player 0 s.t. at least one of
the players 1 and 2 wants to deviate to 1. Let take (0g,01,02) a strategy profile where
01(v") = v and oa(v) # 2. If out(og, 01, 02) = parity(p:), this is not a NE because Player
1 looses and prefers to go to . Otherwise, if out(og, 01, 02) = parity(ps), player 2 looses
and prefers [instead of staying in the copy of G. Therefore, all the NE are such that their
outcome reaches *_ and Player 0 wins. This means that o is a solution to the rational

synthesis problem. [|

Theorem 19. The problem of deciding the existence of a solution for the non-cooperative

Parity synthesis problem in a 4-player game arena is co-NP-hard.

Proof. The proof is done by reducing from two-player zero-sum games where the objective
of the protagonist is a conjunction of two parity objectives p; and po. For this games, in
[11] is proven that the protagonist has a winning strategy from a given state is co-NP
hard.

The 4-player game is obtained from the game G by making two extra copies of each
node of Player B and adding two extra states *; and *,. We define a 4-player parity
game G' = (V' = Vo w Vi w Vo w V3, B, v, pp, Py, Ph, p3) where Vo = Va u {1, 7o},
Vi ={v"|veVg}, Vo ={v]|veVg} V3 =Vgand E' is the smaller set such that
for all (va,vp) € E, then {(va,v}), (v}, vg), (Vg,vB)} S E', for all (vp,va) € E, also
(vB,va) € E' and for all v e Vi, (v, ;) € E and for all v € V3, (v, ') € E’. A sketch of
the game arena is depicted in Figure 6.

Then, the parity functions are defined as
— po(v) =0 forall v ¢ {1, o} and pj(Ly) = py(Ly) =1

46

— pi(v) = p1(v) for all v € Vi, pi (v") = py () = pi(v) = p1(v) for all v € Vg, pi (1) =1
and py () = 0.

— ph(v) = pa(v) for all v € Va, ph(v") = ph(v') = ph(v) = pa(v) for all v e Vg, ph(;) =0
and ph(1L,) =

— ph(v) =1forallve V'

We claim that there is a winning strategy o4 for player A in G iff there is a solution
for the rational synthesis problem in G'. If there is a strategy o4 to satisfy parity(pi) A
parity(pz2), it means that there is a strategy oq for Player 0 defined as o¢(h) = oa(h')
where I’ is the restriction of h on the states in V4 u Vg s.t. for any strategy o3 of Player
3, both Player 1 and Player 2 prefer to play in the copy of G since they win and in ',
Player i loses. Therefore, all NE have as outputs plays in G and then Player 0 wins and
09 is a solution for the rational synthesis problem.

On the other way, if there is a solution for the rational synthesis problem, all the NE
have outputs in the copy of G which means that (o¢,01,09,03) where o1(v”) = v’ and
o2(v") = v are the only NE. This means that both parity(p}) and parity(p,) are satisfied
for any strategy os. That is, there is a strategy o4 defined as o4(h’) = og(h) where I’ is
the restriction of h on the states in V4 U Vg (note there is only one such h by the definition
of G’) in G s.t. for all op, out(oa,0B) = parity(p1) A parity(ps). [

Theorem 20. The problem of deciding the existence of a solution for the non-cooperative
Streett synthesis problem in a 2-player game arena is PSPACE-H.

Proof. By reduction from QBF. Let ¢ = Qrxg . .. Vr1dxgy be a quantified boolean formula
in disjunctive normal form, where the quantifiers are strictly alternating. The proof will
proceed as follows. First, we build a two-players zero-sum Muller game G, such that Player
0 has a winning strategy in Gy if and only if ¢ is true. Then, we use G4 to build a non-
cooperative Street strategy synthesis two-players game g;;;, such that the system wins if
and only if ¢ is false.

Let us first define the two-players zero-sum Muller game Gy. Let ¢ = Qrxy, ... Vo13xoy
be a QBF formula in disjunctive normal form, where ¢ is a disjunction of the clauses
Co,...,Cy, over the literals {zg, —xo,..., Tk, ~x}. Given ¢, the two-players zero-sum
Muller game Gy = ((Vo, Vi), E, v, Og S V) is defined as follows:

— Vo = {¢} u {z, ~x | x is a variable appearing in ¢}

— V1 ={Cy,...,Cp}, the set of clauses in ¢

— v =¢

— F is given by:
o for each 0 <i<m, (¢,C;) € E
o if C; =4y Al Alg, then (C;,) € E, (Ci,) e E, (Ci,ly) € E
o foreach 0 <i <k, (;,0) € E, (—x;,0) € E

— Given a path 7 € V¥, let i(m) be the index 0 < i(m) < k such that:

e either ;) or = is seen infinitely often on 7

47

o for all i(7) < j <k, both z; and —z; are seen finitely often on 7
In other words, if we refer to the set of literals {x;, —z1} as literals of level ¢, then i(r)
is the index of the last level of literals (counting the levels from 0 to k) visited infinitely
often in 7. Note that i(m) is well defined since, by definition of E, each infinite path
of G4 contains at least one literal that repeats infinitely often.
The winning condition Oy € V¥ states that the set of winning plays for Player 0 is
given by:

Op = {7 [i(m) is odd A Ty, =) € inf(m)}U
{m]i(m) is even A (zr) ¢ inf(7) v =2i(x) ¢ inf(m)}

where inf(7) is the set of nodes that appear infinitely often on the path 7.
In other words, Player 0 wins the play = if and only if:

— either the index of the last level of literals visited infinitely often is odd (i.e. i(m) is
odd) and both Ti(ry and =@y are visited infinitely often, or
— the index of the last level of literals visited infinitely often is even (i.e. i(7) is even),

but only one literal in {x(r), =7)} appears infinitely often in .

We show that Oy can be written as a combination of a Street and a Rabin condition, i.e.
Op = S A R where S (resp. R) is a Street (resp. Rabin) condition. Given 0 < ¢ < k, denote
by Lj-; the set of literals Lj~; = {xj, ~z; | j > i}. Then:

S= N {zi}, (=2} U Limi) A ({2}, i U L) (2)
i odd

R=\/ ({zi,~w:}, Li=i) v \/ ({mi}, {—ai} U Liso) v ({—ai}, {wi} U L) (3)
i odd i even

Namely, S states that for each odd level i, if you see x; (resp. —z;) infinitely often in
7, then either i(w) > i (i.e. ¢ is not the last level visited) or i(m) = ¢ (i.e. the last level
visited is odd) and both literals at the odd level i(7w) = i are seen infinitely often on .
The Rabin condition R instead states that either the last level visited is even and only
one between z;(;) and —x;(,) is seen infinitely often, or otherwise the last level is odd (and
the condition S takes care of its properties).

Given the above definition of the 0-sum Muller game G4, we are now ready to prove
that ¢ = Qrxy ... Vo1dxey is true if and only if Player 0 wins G,. In particular, we will
proceed by induction on k. Note that if zg does not appear in ¢, we can add the clause
xg A —xg withouth changing the truth value of ¢.

Base Case By the idempotency of v and A and assuming that ¢ is closed, ¢ is logically
equivalent to one of the following forms:

1. ¢ = Jzo(x) or Ixg(—zp). In this case, the arena consists of four vertices {¢, Cy, xo, ~x0}.
If ¢ = Jxo(xo), then —xg is isolated, otherwise xq is isolated. Therefore, G, contains
only one cycle winning for Player 0.

48

2. ¢ = Jxo(xo v —x0). Gy consists of five vertices {¢, Co, C1, g, 7xo}. Player 0 wins by
choosing always Cy from ¢.

3. ¢ = 3xo(xo A —x0). Gy consists of four vertices {¢, Cp, xo, ~xo}. Player 0 can only play
to Cy = 29 A —xg from ¢. Player 1 wins by choosing alternatively xzg and —zq from
Co.

Inductive Case By inductive hypothesis, we know that if ¢ has k — 1 quantifiers and is
closed, than Player 0 has a winning strategy if and only if ¢ is true. To prove the inductive
step for k quantifiers we use the following lemma that shows how subgames correspond
to restricted subformulae. First, let us introduce some notation. Given v € V,U € V and
i € {0, 1}, we denote by Avoid;(U,v) the subset of U from which Player ¢ has a strategy to
avoid vertex v withoth leaving U.

Lemma 21. If ¢ = Qx.y and [z — true] does not simplify to either true or false, then
Avoid (Avoido(V, =), z) induces a subgame of Gy that is isomorphic to Gy[ytrue] - Dually,
if y[x — false] does not simplify to either true or false, then Avoid;(Avoidy(V,z), —z)

induces a subgame of Gy that is isomorphic 1o Gy, false] -

Proof. v[z — true| consists of the clauses of v that do not contain —z, say ci,...,¢p
with all the occurrences of x removed. The arena of the game G, [,] consists therefore
of an initial vertex, one vertex for each clause ci,...,c, and one vertex for each literal
different from x, —z. The edges are the same of G, restricted to the above set of vertices.
We show that the graph induced by Avoid;(avoidy(V, —z), x) is isomorphic to the arena of
G [z—true]- The set of vertices U = Avoidg(V, =) is given by V minus the set of clauses c
containing —x and the vertex —z. Note that C' is not empty since y[x — true] does not
simplify to false. The set of vertices W = Avoid;(U) is then obtained by removing from
U the only vertex x (note that Player 1 has more than one choice from each clause since
v[z — true] does not evaluate to true). Therefore, W precisely consists of the initial vertex,
one node for each clause not containing —x n v and a node for each literal different from
z, —x. Hence, the graph induced by Avoid;(avoido(V, =), z) is isomorphic t0 G,z true-
The proof of the case y[z — false] is symmetric. |

Given the above lemma, we are now ready to deal with the inductive step. We consider
two cases, depending on wether the variable x in ¢ = Qz.7y is quantified universally or

existentially.

1. ¢ = 3z.y. If ¢ is true, then there is a value v € {0,1} such that y[z — v] is true.
Assume v = 1 is such a value. The, Player 0 plays in Avoidg(V, —z) trying to reach
infinitely often z. If Player 1 at some point prevents him to reach x (from that point
of the game over) then the game gets confined in Avoid;(avoidy(V, —z),z) in which
Player 0 has a strategy to win. The subcase where y[x — 1] is symmetric.

If ¢ is false, then v|z — 0] (resp v|z — 1]) is false and Player 1 can use the following
strategy to win. Indefinitely, alternatively try to reach first « (while avoiding —z), and

49

then try to reach —z (while avoiding z). If at any point the opponent prevents him
to reach his current objective, the game gets confined in Avoid;(avoidy(V, —z),x) or
Avoid; (avoidy(V,), =) in which Player 1 has a winning strategy.

2. ¢ = Vx.y. If ¢ is true, Player 0 can adopt the following strategy to win. He will try
alternatively to reach z (while avoiding —z) and then reach —z while avoiding z. If at
any point of the game Player 1 prevents Player 0 to reach its target then the game gets
confined into Avoid; (avoidy(V, —x), x) or Avoid;(avoidy(V, z), —x) where Player 0 has
a winning strategy. The subcase where ¢ = Vz.v is false is symmetric to the subcase
where ¢ = Jz.7 is true seen above.

Note that, intuitively, Player 1 fixes the value of a variable each time he forbid Player
0 to reach (from that point on of the play) its target literal. Whenever the value of a
variable—say x;—is fixed by Player 1 in this way, the play prooceds into a inner layer of
variables, i.e. into the arena of a subgame that contains only literals of levels less than 1.

Resuming, we have now proven that the QBF formula ¢ = Qrzy . .. Vr13zgy (in DNF)
is true if and only if Player 0 wins the 0-sum Muller game Gy, in which the objective of
Player 0 Wy = S A R is a combination of a Street condition S and a Rabin condition R.

Given Gy, consider now the following non-cooperative 2-players Street game Q(’;:

— the arena of g;; is exactly the same of Gy

— Player 1 is the system

— the environment is composed by the only Player 0

— the objective of the system is the Street condition —R

— the objective of the only component in the environment is the Street condition S

We show that ¢ is false if and only if there is a solution to the non-cooperative strategy
synthesi problem Q;. Before prooceding in such a proof, note that =R — S. In fact:

~R= N (o} {~2i} U Lizi) A ((maih fzi} 0 Lisi) & N (i, —2i} L) (4)
i even i odd
Hence —R states that the last level visited infinitely often is even, that implies S. Given
the above observation, we prooced to prove that ¢ is false if and only if there is a solution
to the non-cooperative strategy synthesis problem g;;. There are two cases to consider. If
¢ is true, then the environment can ensure S A R, i.e. he has a strategy to guarantee that
he accomplishes his objective, while the system does not.

In the other case, suppose that ¢ is false. Then the system has a strategy to ensure
=S v —R. Since =R — S, either the environment looses, or it holds —R and both the
players win. The environment has always the possibility to cooperate to establish =R by
e.g. always choosing the clause® zy A —zo. |

Theorem 21. The problem of deciding the existence of a solution for the non-cooperative
Rabin synthesis problem in a 2-player game arena is PSPACE-H.

% W.l.o.g. we can assume that the only clause containg zo in ¢ is zo A =xo. In fact, if this is not the case
we can lead¢ to such a form by renaming each valriable x; to x;+2 and adding the clause xo A —xo

50

Proof. By reduction from QBF. Let ¢ = Qrxk . .. Vx1dxpy be a quantified boolean formula
in disjunctive normal form, and consider the equivalent QBF:

(f)/ = kak .. .VaflflscOVy1E|y0((y1 A ’}/) \Y (—|y1 A ’y))

Let ¢ be the formula obtained from ¢ by first renaming each variable z;, i = 0...k, to
Tit2, and each variable y;, ¢ € {0,1}, to z;, and then normalizing the resulting formula
in DNF. Let G P be the 2-players 0-sum Muller game such that Player 0 has a winning
strategy in G P if and only if ¢" is true, built according to the procedure shown within the
proof of Theorem 20. Given G e consider the following non-cooperative 2-players Rabin

E N
game G e

— the arena of g;,, is exactly the same of G &

— Player 1 is the system

— the environment is composed by the only Player 0

— the objective of the system is the Rabin condition —S

— the objective of the only component in the environment is the Rabin condition R

We show that gé" is false if and only if there is a solution to the non-cooperative strategy
synthesi problem g;,,. There are two cases to consider:

1. In the first case, assume that ¢ is true. Then, the environment can ensure S A R that
is a NE where he wins while the system looses.

2. In the second case, suppose that ¢ is false. Then, the system has a strategy to ensure
=S v =R. We claim that such a strategy (c.f.r. the proof of Theorem 20) is indeed
a solution to the non-cooperative Rabin strategy synthesis problem on g;,,. In fact,
the environment can win if he cooperates with the system to establish —.5, i.e. if he
cooperate to let the last level of variables visited to be odd. The environment can
effectively force the last level visited to be odd by opposing to the system a strategy
that forbid the system to reach its target literal, leading the play to be confined within
inner and inner layers (of literals), until the objective of the system is to reach (only
one) literal of level 1-—say e.g. x1. At that point, the environment simply let the system
to pursue its objective by choosing only clauses with the literal 27 (that appears in ¢

by construction).

7 Conclusion

In this paper, we have studied the complexity of rational synthesis in both the cooperative

and non-cooperative settings, and depending on whether the number of players is fixed

or not. Our results are summarised in Table 1. Rationality of the environment is modeled

by assuming that the players composing it play a Nash equilibrium. Interesting directions

for future work would be to assume other notions of rationality, e.g. secure equilibria [10],

doomsday equilibria [8], subgame perfect equilibria [24, 25], or admissible strategies [4, 14].
51

References

10.

11.

12.

13.

14.

15.
16.

17.

18.

. R. Alur and S. La Torre. Deterministic generators and games for 1tl fragments. ACM Trans. Comput.

Logic, 5(1):1-25, Jan. 2004.

. B. Aminof and S. Rubin. First cycle games. In Proceedings 2nd International Workshop on Strategic

Reasoning, SR 2014, Grenoble, France, April 5-6, 201/., pages 83-90, 2014.

C. Baier and J.-P. Katoen. Principles of model checking. MIT Press, 2008.

D. Berwanger. Admissibility in infinite games. In STACS 2007, 24th Annual Symposium on Theoretical
Aspects of Computer Science, Aachen, Germany, February 22-24, 2007, Proceedings, volume 4393 of
Lecture Notes in Computer Science, pages 188—-199. Springer, 2007.

R. Brenguier, L. Clemente, P. Hunter, G. A. Pérez, M. Randour, J. Raskin, O. Sankur, and M. Sassolas.
Non-zero sum games for reactive synthesis. CoRR, abs/1512.05568, 2015.

R. Brenguier, J. Raskin, and O. Sankur. Assume-admissible synthesis. In 26th International Conference
on Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, volume 42 of LIPIcs,
pages 100-113. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

R. Brenguier, J. Raskin, and M. Sassolas. The complexity of admissibility in omega-regular games. In
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and
the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), CSL-LICS
14, Vienna, Austria, July 14 - 18, 2014, pages 23:1-23:10. ACM, 2014.

K. Chatterjee, L. Doyen, E. Filiot, and J. Raskin. Doomsday equilibria for omega-regular games.
In Verification, Model Checking, and Abstract Interpretation - 15th International Conference, VM-
CAI 2014, San Diego, CA, USA, January 19-21, 2014, Proceedings, volume 8318 of Lecture Notes in
Computer Science, pages 78-97. Springer, 2014.

K. Chatterjee and T. A. Henzinger. Assume-guarantee synthesis. In Tools and Algorithms for the
Construction and Analysis of Systems, 13th International Conference, TACAS 2007, Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal,
March 24 - April 1, 2007, Proceedings, volume 4424 of Lecture Notes in Computer Science, pages
261-275. Springer, 2007.

K. Chatterjee, T. A. Henzinger, and M. Jurdzinski. Games with secure equilibria. Theor. Comput.
Sci., 365(1-2):67-82, 2006.

K. Chatterjee, T. A. Henzinger, and N. Piterman. Generalized parity games. In Proceedings of
the 10th International Conference on Foundations of Software Science and Computational Structures,
FOSSACS’07, pages 153-167, Berlin, Heidelberg, 2007. Springer-Verlag.

K. Chatterjee, T. A. Henzinger, and N. Piterman. Algorithms for biichi games. CoRR, abs/0805.2620,
2008.

A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. Nusmv 2: An opensource tool for symbolic model checking. In Computer Aided Verifica-
tion, 14th International Conference, CAV 2002, Copenhagen, Denmark, July 27-31, 2002, Proceedings,
volume 2404 of Lecture Notes in Computer Science, pages 359-364. Springer, 2002.

M. Faella. Admissible strategies in infinite games over graphs. In Mathematical Foundations of
Computer Science 2009, 34th International Symposium, MFCS 2009, Novy Smokovec, High Tatras,
Slovakia, August 24-28, 2009. Proceedings, volume 5734 of Lecture Notes in Computer Science, pages
307-318. Springer, 2009.

D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. CoRR, abs/0907.3019, 2009.

Y. Gurevich and L. Harrington. Trees, automata, and games. In Proceedings of the Fourteenth Annual
ACM Symposium on Theory of Computing, STOC ’82, pages 60-65, New York, NY, USA, 1982. ACM.
P. Hunter and A. Dawar. Complexity bounds for regular games. In Proceedings of the 30th International
Symposium on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in Computer
Science, pages 495-506, Berlin, Heidelberg, 2005. Springer-Verlag.

M. Jurdzinski, M. Paterson, and U. Zwick. A deterministic subexponential algorithm for solving parity
games. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 117-123, 2006.

52

19.

20.

21.

22.

23.

24.

25.

26.

O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis with rational environments. In Multi-Agent
Systems - 12th European Conference, EUMAS 2014, Prague, Czech Republic, December 18-19, 2014,
Revised Selected Papers, pages 219-235, 2014.

F. Mogavero, A. Murano, G. Perelli, and M. Y. Vardi. What makes atl* decidable? A decidable
fragment of strategy logic. In CONCUR 2012 - Concurrency Theory - 23rd International Conference,
CONCUR 2012, Newcastle upon Tyne, UK, September 4-7, 2012. Proceedings, volume 7454 of Lecture
Notes in Computer Science, pages 193—-208. Springer, 2012.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages 179-190. ACM
Press, 1989.

S. Schewe. Solving parity games in big steps. In FSTTCS 2007: Foundations of Software Technology
and Theoretical Computer Science, 27th International Conference, New Delhi, India, December 12-14,
2007, Proceedings, volume 4855 of Lecture Notes in Computer Science, pages 449-460. Springer, 2007.
W. Thomas. On the synthesis of strategies in infinite games. In STACS, pages 1-13, 1995.

M. Ummels. Rational behaviour and strategy construction in infinite multiplayer games. In FSTTCS
2006: Foundations of Software Technology and Theoretical Computer Science, 26th International Con-
ference, Kolkata, India, December 13-15, 2006, Proceedings, volume 4337 of Lecture Notes in Computer
Science, pages 212-223. Springer, 2006.

M. Ummels. The complexity of nash equilibria in infinite multiplayer games. In Foundations of
Software Science and Computational Structures, 11th International Conference, FOSSACS 2008, Held
as Part of the Joint Furopean Conferences on Theory and Practice of Software, ETAPS 2008, Budapest,
Hungary, March 29 - April 6, 2008. Proceedings, volume 4962 of Lecture Notes in Computer Science,
pages 20-34. Springer, 2008.

W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on infinite trees.
Theor. Comput. Sci., 200(1-2):135-183, 1998.

93

