
SoSyM manuscript No.
(will be inserted by the editor)

Exploring Inconsistencies between Modal Transition Systems

Mathieu Sassolas1, Marsha Chechik2, Sebastian Uchitel3

1 Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606, Paris, France
2 University of Toronto, Toronto, ON, Canada
3 U. of Buenos Aires, Argentina and Imperial College, UK

February 23, 2011

Abstract It is commonplace to have multiple behaviour models that describe the same system but have been pro-

duced by different stakeholders or synthesized from different sources. Although in practice such models frequently

exhibit inconsistencies, there is a lack of tool support for analyzing them. There are two key difficulties in explaining

why two behavioural models are inconsistent: (1) explanations often require branching structures rather than linear

traces, or scenarios; and (2) there can be multiple sources of inconsistency and many different ways of explaining

each one. In this paper, we present an approach that supports exploration of inconsistencies between Modal Transi-

tion Systems, an extension to Labelled Transition Systems. We show how to produce sound graphical explanations

for inconsistencies, how to compactly represent all possible explanations in a composition of the models being

compared, and how modelers can use this composition to explore the explanations encoded therein.

Keywords: Labelled Transition Systems, inconsistency identification and resolution, µ-calculus, distinguishing

property, graphical feedback.

1 Introduction

Modelling system behaviour is a common task in requirements engineering and software systems design. Modeling

and analyzing behaviour models helps gain confidence in the understanding of the requirements of the system-to-be

and the adequacy of the design with respect to these requirements.

It is commonplace to have multiple behavioural models describing the very same system, but produced by dif-

ferent stakeholders, hence providing different views [NKF94] on the system’s behavior. Analysis of the similarities

and differences of these views supports behaviour model elaboration: confidence is gained on behaviours that are

2 Mathieu Sassolas et al.

common to the multiple views; comprehensiveness is furthered by merging behaviours known to some stakeholders

but not to others; common understanding is augmented by analyzing and possibly resolving inconsistencies.

Comparison and composition of behaviour models has been studied extensively. Various notions of equiva-

lence [Hoa85,Mil80] provide a framework for comparison that abstracts away syntactic differences in behaviour

descriptions. Refinement notions such as those based on simulation [Mil99] support checking whether one model

has been further elaborated than another. Also, merge [UC04] allows combining two partial yet mutually consistent

descriptions into a comprehensive description that is a refinement of the models being merged.

Although, notions of equivalence, refinement and (inter-model) consistency are crucial for behaviour model

elaboration, and tools that support behaviour modelling (e.g., [DFCU08,CPS93,CCGR99,PB00,Hol97]) little sup-

port is provided by existing approaches and tools to understand why two models are mutually inconsistent and hence

cannot be merged, or why one model is not a refinement of another.

For instance, model-checkers [DFCU08,CCGR99,Hol97] are capable of performing a variety of automated

analyses on behaviour models such as property, refinement, equivalence and consistency checking. Such analyses

typically either yield a positive result (the property holds in the model, one model is a refinement of another,

a model is equivalent to or consistent with another) or provide feedback in the form of a trace representing a

counter-example. While this is an effective feedback for deadlock-freedom and reachability properties, the causes

for non-equivalence, non-refinement or inconsistency in behavioural models, especially non-deterministic ones, are

defined in terms of simulation relations which are not easily visualized. Such explanations can be given in terms of

branching structures [CLJV02], which are hard to understand.

Our aim is to automatically provide graphical feedback explaining causes for non-equivalence, non-refinement

or inconsistency. Recognizing that there may be many different explanations for these negative results, we also aim

to provide support for the user to select among alternative explanations, choosing the one to explore in more detail.

This paper is set in the context of partial behaviour models, specifically, in that of Modal Transition Systems

(MTSs). Partial behaviour models support operational descriptions of system behaviour which distinguish between

three types of behaviour: required, proscribed and unknown. This distinction extends the expressiveness of tradi-

tional behaviour modelling techniques such as Labelled Transition Systems (LTSs) [Kel76] and StateCharts [Har87],

and allows describing, in the same operational model, both an upper and a lower bound to the intended system

behaviour. The lower bound represents the behaviour that the system must provide, typically identified through sce-

nario and use-case based description techniques. The upper bound represents the behaviour the system may provide

without violating known properties and requirements [UBC09].

The semantics of a partial behaviour model can be thought of as a set of traditional behaviour models. For

instance, MTS semantics can be given in terms of sets of LTSs that provide all of the behaviour required by the

MTS, do not provide any of the behaviour proscribed by the MTS, and make arbitrary decisions on the MTS’s

Exploring Inconsistencies between Modal Transition Systems 3

unknown behaviour. In other words, the semantics is the set of LTSs that are between the upper and the lower

bounds on system behaviour described by an MTS.

Intuitively, as more information becomes available, unknown or unclassified behaviour gets changed into ei-

ther required or proscribed behaviour. The notion of refinement between MTSs captures this intuition formally and

provides an elegant way of describing the process of behaviour model elaboration as one in which behaviour in-

formation is acquired and introduced into the behaviour model incrementally, gradually refining an MTS until it

characterizes a single LTS.

MTSs naturally support conjunction of partial knowledge of system behaviour through the notion of minimal

common refinement [UC04]: an MTS which composes the information of two mutually consistent partial models

can be constructed through a merge operation that attempts to build “the least refined” common refinement of the

models being composed. However, if the MTSs to be merged are mutually inconsistent (there are no LTSs which

preserve the required and the proscribed behaviour of both MTSs), it is important for modelers to understand sources

of such inconsistencies and eventually to fix them.

In this paper, we present an approach that provides feedback explaining why two MTSs with identical alphabets

are mutually inconsistent. The soundness of the feedback is based on computing a propositional modal µ-calculus

formula which captures a property that distinguishes between the two MTSs: it evaluates to true in one and to false

in the other. We then use proofs of why this property holds in one model or fails in the other to provide graphical

feedback as branching structures overlayed on top of the original models. Recognizing that multiple explanations for

inconsistency can be given, we propose an extension to MTSs which can encode all such distinguishing properties,

allowing the user to guide the generation of inconsistency feedback. We call this extension pseudo-merge.

While our results are presented in the general setting of partial behaviour modeling, they can be applied to

explore inconsistencies in traditional modelling formalisms such as LTSs. Specifically, given that bisimulation of

LTSs is a special case of refinement of MTSs, the approach can be used to describe causes of non-equivalence of

two LTS models.

The rest of this paper is organized as follows: We give an example motivating our work in Section 2. In Sec-

tion 3, we provide background on LTSs, MTSs, and the merge process in general. In Section 4, we describe how to

graphically give the feedback to the user to facilitate comprehension of a human modeller. In Section 5, we show

how to produce a pseudo-merge of mutually inconsistent MTSs and use it to compute feedback on the cause of

inconsistency in the form of propositional µ-calculus formulas. In Section 6, we present a method for the user to

guide the generation of this feedback. We discuss case studies in Section 7. We conclude the paper with a survey of

related work (Section 8) as well as conclusions and future work (Section 9).

4 Mathieu Sassolas et al.

2 Motivation

To motivate our work, we discuss feedback that can be provided to explain the differences between two behavioural

models that describe the process for passing laws in a fictitious assembly. In this section, we omit formalizing the

various aspects of our work in order to provide a short and intuitive account of our approach. We do include forward

references to where formal definitions of the concepts mentioned in this section are introduced.

Consider state-machine models A and B in Figure 1(a)-(b) (for the purpose of this section, ignore the “?”

symbols that appear on some labels). They describe a process in which, starting from the initial state 0 or 0′, texts

are produced and, after some debate, either rejected or accepted as laws or acts. The decision of whether a text

should pass as an act or a law depends on complex technical aspects that have been abstracted away using non-

determinism (e.g., see transitions from states 0 and 0′ on propose). Since laws and acts are to be applied differently,

the protocol for passing them differs as well, which is reflected in the models in Figure 1 in the kinds of texts can

be amended and consequently re-proposed.

We now discuss the feedback that would be appropriate to explain the difference between these models and thus

might be automatically computed by a tool.

A common approach to providing feedback on behaviour models is to show traces, or executions of the model,

that highlight the problem at hand [CGP99]. To show the user a cause of inconsistency, one could follow the same

approach producing a trace that is possible in one of the models but is forbidden in the other. However, it is not

always the case that inconsistent models have different traces. For example, models A and B have the same traces,

yet they are inconsistent as they disagree on whether amendments can be made on laws-to-be or acts-to-be: In model

A, amendments can occur only in state 4, and in this state, the proposal, if accepted, becomes law (state 5). In model

B, amendments can only occur in state 4′ as well, but an accepted proposal becomes an act instead (state 5′).

Traces such as

propose, amend, propose, accept, applyLaw, . . .

do not reveal the different criteria for applying amendments. Although both models can exhibit the trace, they do so

by traversing states (4 and 4′) that have different potential behaviour: from state 4, the behaviour accept, applyLaw

can be exhibited; while from state 4′, accept, applyAct can occur.

The natural language explanation given above of why A and B are mutually inconsistent refers to the potential

behaviour of states 4 and 4′ which essentially refers to the branching structure of the models. Indeed, as claimed

in [CLJV02], a more appropriate form of feedback to use is branching structures instead of traces. For instance,

consider the structure in Figure 1(c). It conveys that the potential behaviour after propose is to amend, or to accept

and applyLaw. Such behaviour can be exhibited by modelA – a witness is in Figure 1(d), where transitions providing

the behaviour are dashed. However, it cannot be exhibited by model B. The counterexample in Figure 1(e) indicates

that the negation of this behaviour holds: for every propose transition, either accept, applyLaw or amend is not

Exploring Inconsistencies between Modal Transition Systems 5

A: 0

1

2

3

4

5

propose?

propose

debate

accept

reject

applyAct

reject

reject?

debate

amend

accept

applyLaw

(a)

B: 0′

1′

2′

3′

4′

5′

propose?

propose

debate

reject?

accept

reject

applyLaw

reject

debate

amend

accept

applyAct

(b)

propose

accept amend

applyLaw

(c)

A: 0

1

2

3

4

5

propose?

propose

debate

accept

reject

applyAct

reject

reject?

debate

amend

accept

applyLaw

(d)

B: 0′

1′

2′

3′

4′

5′

propose?

propose

debate

reject?

accept

reject

applyLaw

reject

debate

amend

accept

applyAct

amend

X

applyLaw
X

(e)

Fig. 1 (a)-(b) Two models of the law-making process; (c) Example showing their inconsistency; (d)-(e) Graphical explanations

of inconsistency.

possible. In other words, branching structures can exemplify why two models are inconsistent in general, whereas

traces cannot. Furthermore, branching structures can be overlayed over the inconsistent models to better exemplify

how one of them can and the other cannot provide the behaviour.

The structure in Figure 1(c) actually corresponds to a proof that a specific property holds in the first model but

not in the second. The property states that, in the law-making example, there is a propose transition leading to a

state that allows the accept, applyLaw, and amend; and can be formalized in propositional µ-calculus as

Φ = 〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t)

In the next sections, we present propositional µ-calculus (see Section 3) and formally define a structure shown in

Figure 1(c) as a proof tree (see Definition 11 in Section 4).

An important observation is that the formal proof that model A satisfies property Φ (depicted in Figure 5(a))

can be used to automatically generate the feedback shown in Figures 1(c), 1(d), and 1(e). Figure 1(c) is constructed

6 Mathieu Sassolas et al.

by simply ignoring the contents of the states in Figure 5(a)). The other figures can be constructed by overlaying

Figure 1(c) onto the original models. Note that proof structures are defined formally in Section 4, and soundness of

the graphical feedback produced by our approach is shown in Section 5.

Two models can be inconsistent for several reasons, and even one reason can be explained in a variety of ways.

For instance, the disagreement between the law-making models on whether texts with the potential to be passed as

laws can be amended, could equally be explained based on the potential to amend acts. Such an explanation also

can take the form of a branching structure induced by proof trees of a (different) distinguishing property. Thus,

while individual tree structures suffice to explain the difference between two models, there are a number of them

that can be proposed, each potentially prompting a different reaction from the modellers. In our trivial example, the

first explanation may prompt a discussion on whether laws-to-be can be amended or not, leading to the removal of

the transition 4 to 0 or the addition of an amend transition from 1′ to 0′, while another explanation can prompt a

discussion on whether acts-to-be may be amended leading to the removal of a transition from 4′ to 0′ or the addition

of an amend transition from 1 to 0.

Although an explanation of inconsistency can be generated fully automatically, we support user-guided genera-

tion of explanations by encoding all sources of inconsistency compactly and allowing exploration of this encoding.

Figure 6 depicts a composition of the two law-passing models,A and B, where states containing ∗ are the disagree-

ment states. This composition, which can be constructed automatically (see Section 5), encodes all of the shortest

explanations of why two models are inconsistent. A modeller can generate an explanation of inconsistency by click-

ing on any transition that leads to a disagreement state (see Section 6). Such explanations are then translated into

distinguishing µ-calculus properties, and proofs that they hold in one model and fail in the other get visualized. For

example, selecting a transition from (5, 5′) to (5, ∗) generates the feedback we have discussed previously in this

section: the distinguishing property Φ is identified and visualized as shown in Figure 1(d)–(e).

3 Background

In this section, we review definitions used in the rest of this paper.

Transition systems. We express models as Modal Transition Systems [LT88] which are generalizations of Labelled

Transition Systems [Kel76].

Definition 1 (Labelled Transition System) A Labelled Transition System (LTS) is a tuple 〈S,Act,∆, s0〉, where

S the set of states, Act is the set of actions (or alphabet), ∆ ⊆ S × Act× S is the set of transitions, and s0 ∈ S is

the initial state.

Exploring Inconsistencies between Modal Transition Systems 7

Definition 2 (Modal Transition System) A Modal Transition System (MTS) is a tuple 〈S,Act,∆r, ∆p,m0〉, where

S is the set of states, Act is the set of actions (or alphabet), ∆p ⊆ S × Act × S is the set of possible transitions,

∆r ⊆ ∆p is the set of required transitions, and m0 ∈ S is the initial state.

We write m `−→p m′ when (m, `,m′) ∈ ∆p (i.e., there is a possible transition between m and m′ on `),

m
`−→r m

′ when (m, `,m′) ∈ ∆r (required transition), m `−→m m′ when (m, `,m′) ∈ ∆p \∆r (a transition which

is possible but not required, referred to as a maybe transition), and m
`

6−→ when ∀m′ ∈ S, (m, `,m′) /∈ ∆p (there

is no transition on ` from m). Note that MTSs where ∆r = ∆p are LTSs.

For example, Figure 1(a) depicts an MTS. Pictorially, a transition between state 4 and state 3 on reject? means

that there is a possible transition between these states on action reject but there isn’t a required transition between

these states on this action.

An MTS can be obtained from another one by removing some states and all transitions to and from the removed

states, leaving all other transitions untouched. We call the resulting MTS a subMTS of the original one:

Definition 3 (SubMTS) For an MTS M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉, a subMTS w.r.t. a set of states SN ⊆ SM is

an MTS N = 〈SN , Act,∆r
N , ∆

p
N , n0〉, where n0 = m0, ∆p

N = ∆p
M ∩ (SN ×Act× SN), and ∆r

N = ∆p
N ∩∆r

M .

For example, an MTS consisting of states 0 and 4 and transitions on propose, amend and a self-loop on debate is a

subMTS of model A in Figure 1(a).

Propositional µ-calculus. In order to reason over finite behaviors of MTSs, we use a propositional subset of the

modal 3-valued µ-calculus of [HJS01] that does not include fixpoint operators. We refer to it as Lpµ.

Definition 4 (Propositional µ-calculus) A formula of the propositional µ-calculus (Lpµ) has the grammar

ϕ = t | f | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈`〉ϕ | [`]ϕ,

where ` is an action.

〈`〉ϕmeans that there exists a required transition on ` to a state in which ϕ is satisfied. [`]ϕmeans that every possible

transition on ` leads to a state in which ϕ is satisfied.

For example, a formula

Φ = 〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t),

introduced in Section 2, means that after a propose, two choices must be available: to do an accept followed by

applyLaw and to do an amend.

In the remainder of the paper, when we discuss µ-calculus, we mean the propositional subset defined above.

Furthermore, we shall refer to a formula expressed in this logic as a property.

8 Mathieu Sassolas et al.

[[t]]M , SM

[[f]]M , ∅

[[ϕ ∧ ψ]]M , [[ϕ]]M ∩ [[ψ]]M

[[ϕ ∨ ψ]]M , [[ϕ]]M ∪ [[ψ]]M

[[¬ϕ]]M , SM − [[ϕ]]M

[[〈`〉ϕ]]M , {s ∈ SM | ∃s′ ∈ SM · (s
`−→r s

′ ∧ s′ ∈ [[ϕ]]M)}

[[[`]ϕ]]M , {s ∈ SM | ∀s′ ∈ SM · (s
`−→p s

′ ⇒ s′ ∈ [[ϕ]]M)}

Fig. 2 2-valued semantics of Lpµ in an MTS M = 〈SM , Act,∆r
M ,∆

p
M ,m0〉.

Given an MTS M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉, we write [[ϕ]]M to mean a set of states in SM where formula ϕ

holds; thus, ϕ holds in state m ∈ SM iff m ∈ [[ϕ]]M . An often-used notation for this is M,m � ϕ. If m0 ∈ [[ϕ]]M ,

we often write M � ϕ. Finally, when a transition system in question is clear from the context, it is often dropped

from the notation, so we simply write [[ϕ]].

The meaning of the other operators is as usual. For example, ϕ ∨ ψ holds in state m if either ϕ or ψ holds in it,

or, formally, m ∈ [[ϕ∨ψ]] iff m ∈ [[ϕ]]∪ [[ψ]]. That is, the set of states where ϕ∨ψ holds is the union of those states

where ϕ holds and those where ψ holds. The complete 2-valued semantics of Lpµ is shown in Figure 2. Under this

semantics, property Φ holds in model A and fails in model B (see Figure 1).

Instead, consider another property

Φ1 = 〈propose〉〈reject〉.

While this property clearly holds in model B (via the path 0’, 4’, 2’), it does not hold in model A. A propose is

either followed by a maybe transition on reject, or a maybe transition on propose is followed by a reject. Thus,

the desired behaviour is possible in A, just not required. In order to allow us to make this distinction, we use the

3-valued semantics of Lpµ, where a property can evaluate to t (true), f (false) and ⊥ (maybe or unknown).

Let an MTS M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and an Lpµ property ϕ be given. Our goal is thus to determine

whether definite behaviours of M (i.e., either required or proscribed) are sufficient to ensure that ϕ holds or fails.

In these circumstances, we want ϕ to evaluate to true or false, respectively. In all other cases we want ϕ to evaluate

to maybe. Let [[ϕ]]tM denote the set of states in M where ϕ is true, and let [[ϕ]]fM denote the set of states where ϕ is

false. The set of states where ϕ is maybe is then SM\([[ϕ]]tM ∪ [[ϕ]]fM) (i.e., ϕ is neither true nor false).

Definition 5 (3-valued Semantics of Lpµ) For an MTS M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and a property ϕ in Lpµ,

[[ϕ]]tM ⊆ SM and [[ϕ]]fM ⊆ SM are defined as shown in Figure 3. We often use abbreviations M � ϕ and M � ¬ϕ

to mean m0 ∈ [[ϕ]]tM and m0 ∈ [[ϕ]]fM , respectively.

Note that if M � ¬ϕ, we say that ϕ is false in M . This is not the same as M 6� ϕ, since when ϕ is not true in M , it

can evaluate to either maybe or false.

Exploring Inconsistencies between Modal Transition Systems 9

[[t]]tM , SM

[[t]]fM , ∅

[[⊥]]tM , ∅

[[ϕ ∧ ψ]]tM , [[ϕ]]tM ∩ [[ψ]]tM

[[ϕ ∧ ψ]]fM , [[ϕ]]fM ∪ [[ψ]]fM

[[¬ϕ]]tM , [[ϕ]]fM

[[〈`〉ϕ]]tM , {s ∈ SM | ∃s′ ∈ SM · (s
`−→r s

′ ∧ s′ ∈ [[ϕ]]tM)}

[[〈`〉ϕ]]fM , {s ∈ SM | ∀s′ ∈ SM · (s
`−→p s

′ ⇒ s′ ∈ [[ϕ]]fM)}

Fig. 3 3-valued semantics of Lpµ in an MTS M = 〈SM , Act,∆r
M ,∆

p
M ,m0〉.

The semantics of Lpµ defined in Figure 3 is straightforward. For instance, property t is true in all states (line

1), never false (line 2) or maybe (line 3); if either property ϕ and property ψ is true, then so is their conjunction

(line 4); and if either property ϕ or property ψ is false, then so is their conjunction (line 5). Property 〈`〉ϕ is false

if every possible transition leads to a state where ϕ has value false (line 8). This semantics explicitly enumerates

states where a formula is true and false. In all other states, it evaluates to maybe.

Under this semantics, property Φ evaluates to true in modelA and to false in model B, as expected. And property

Φ1 evaluates to true in model B and to maybe in model A.

Semantics of the remainder of the operators from Definition 4 is given via negation: ϕ1 ∨ϕ2 = ¬ϕ1 ∧¬ϕ2, and

[`]ϕ = ¬〈`〉¬ϕ.

Every formula in Lpµ can be put in a form where negation is applied only to the level of atomic propositions,

referred to as negation normal form.

Definition 6 (Distinguishing property) Let MTSsM andN be given. An Lpµ formula ϕ is a distinguishing property

iff M � ϕ and N � ¬ϕ, or vice versa.

For example, property Φ is a distinguishing property for models A and B whereas Φ1 is not. Note that if ϕ is

distinguishing, then so is ¬ϕ. In the rest of this paper, we usually pick distinguishing properties that evaluate to true

in the first model and false in the second.

Refinement. As mentioned earlier in the paper, we use refinement as a relation that captures the notion of one model

having more information than another. Intuitively, an MTS N refines an MTS M if N includes all of M ’s required

behavior and does not have any of M ’s proscribed behavior. That is, only maybe behaviour might get changed,

either into required or proscribed.

Definition 7 (Refinement) [LT88] An MTS N = 〈SN , Act,∆r
N , ∆

p
N , n0〉 is a refinement of an MTS M =

〈SM , Act,∆r
M , ∆

p
M ,m0〉 over the same alphabet, written M � N , iff there exists a refinement relation R such

10 Mathieu Sassolas et al.

0C:

a?

b?

0 1D:
a

a?

b?

Fig. 4 Two MTSs C and D where D refines C.

that (m0, n0) ∈ R and ∀(m,n) ∈ R, the following hold:

m
`−→r m

′ ⇒ (∃n′ · n `−→r n
′ ∧ (m′, n′) ∈ R)

n
`−→p n

′ ⇒ (∃m′ ·m `−→p m
′ ∧ (m′, n′) ∈ R)

The above definition means that N has all required behaviours of M , and N does not introduce any new maybe

behaviour that was not present in M . The above definition also indicates that refinement is a reflexive and transitive

operation.

For example, model D refines model C in Figure 4 with R = {(0, 0), (0, 1)}.

Refinement of a given MTS M can proceed until all behaviours are known, and the resulting LTS is called

an implementation of M . Since different refinements yield different LTSs, one can view an MTS as the (possibly

infinite) set of its implementations denoted I(M).

Refinement also preserves values of “definite” Lpµ formulas. That means that if a Lpµ formula ϕ true or false in

an MTS M , it is guaranteed to have the same value in each of its refinements N , as formalized below. However,

nothing can be concluded about Lpµ formulas which evaluate to maybe in M : they can be true, false or maybe in N .

Property 1 Let MTSs M and N , where M � N be given. Then for each Lpµ property ϕ, if M � ϕ, then N � ϕ,

and if M � ¬ϕ, then N � ¬ϕ.

The above property is very important for the use of refinement as the underlying operation supporting development

of implementations from partial models: once a value of a property has been established (i.e., it is no longer ⊥), it

will remain so for all implementations of this model.

Consistency. When MTSs represent partial views on the future system, it makes sense to determine whether a pair

of views is consistent.

Two MTS models are consistent if they allow at least one common implementation. Formally, it means that a

common refinement of these two models exists:

Definition 8 (Consistency) Two MTSsM andN over the same alphabetAct are consistent (denoted Cons(M,N))

if there is an MTS P such that M � P and N � P .

Exploring Inconsistencies between Modal Transition Systems 11

Intuitively, MTSs are consistent if they can match each other’s behaviour, i.e., there isn’t a case where one MTS

has a required transition on an action ` and the other does not allow a transition on ` from this state. Thus, we want

to match states of the two MTSs so that when one has a required transition on an action, the other has a possible

transition on this action and vice versa. This matching is captured in a consistency relation:

Definition 9 (Consistency relation) [UC04] A Consistency relation between two MTSsM = 〈SM , Act,∆r
M , ∆

p
M ,m0〉

and N = 〈SN , Act,∆r
N , ∆

p
N , n0〉 is a binary relation CM,N ⊆ SM × SN such that (m0, n0) ∈ CM,N and for all

` ∈ Act and all (m,n) ∈ CM,N , the following hold:

m
`−→r m

′ ⇒ ∃n′ · n `−→p n
′ ∧ (m′, n′) ∈ CM,N

n
`−→r n

′ ⇒ ∃m′ ·m `−→p m
′ ∧ (m′, n′) ∈ CM,N

For example, the consistency relation between models C and D in Figure 4 is CC,D = {(0, 0), (0, 1)}.

Two states are consistent, denoted Cons(m,n), iff they are in a consistency relation. Moreover, consistency of

models and presence of a consistency relation are closely related:

Property 2 [FU08] Two MTSs M and N over the same alphabet are consistent if and only if there is a consistency

relation between them.

Thus, if we want to prove that two models are consistent, we can do so by identifying a consistency relation between

them.

Merge. The process of merging two consistent MTSs aims to put together knowledge contained in each of them

into a common model.

Definition 10 (Merge) [UC04] A merge of MTSs M and N with identical alphabets is an MTS P , over the same

alphabet, such that P is a minimum common refinement of M and N :

(M � P) ∧ (N � P) ∧ (∀Q · (M � Q ∧ N � Q)⇒ P � Q)

Intuitively, any common refinement adds knowledge from N to elaborate maybe behaviours of M and vice versa.

The fact that the common refinement we are looking for is minimal means that no extra knowledge gets introduced.

For example, model C over the alphabet {a, b} in Figure 4 has no required or proscribed behaviour – all of its

behaviour is maybe, and thus merging it with model D over the same alphabet leaves D unchanged.

Moreover, by Property 1, Lpµ properties which have value true or false in the original models have the same

value in their merge. For example, property 〈a〉t was true in D and this value is preserved in its merge with C.

Merge and inconsistency. Clearly, inconsistent models cannot be merged as they have no common refinements.

Moreover, if models disagree on some property, i.e., it is true in one model and false in the other, clearly they are

inconsistent and cannot be merged.

12 Mathieu Sassolas et al.

The theorem below indicates that presence of such distinguishing properties is necessary and sufficient for a pair

of models to be inconsistent:

Theorem 1 MTSs M and N over the same alphabet are inconsistent iff there exists an Lpµ property distinguishing

between them.

This theorem follows from an analogous one in [BCU06] that guarantees the existence of a full µ-calculus prop-

erty iff the models are inconsistent. The theorem holds for Lpµ because we aim to find a reachable pair of states

where models cannot simulate each other’s behavior – something that needs only a finite path for MTSs with finite

statespaces.

The above theorem allows us to use distinguishing properties for providing feedback for exploring inconsisten-

cies between models – the subject of the rest of this paper.

4 Explaining Inconsistency Graphically

In this section, we describe sound graphical feedback explaining why two models are inconsistent.

As shown in Section 3, inconsistency between two models can be characterized by the existence of a distin-

guishing Lpµ property. As Lpµ is clearly not an accessible language from a practitioner’s perspective, we show how

graphical feedback, in terms of two directed acyclic graphs (DAG) – each one overlaid on one of the models being

compared – can provide an intuitive explanation to inconsistency. These graphs formally correspond to proofs as to

why the property does or does not hold in the inconsistent models.

We first define the notion of a proof-tree. For a modelM with initial statem0 and an Lpµ property ϕ, a proof-tree

encodes a proof that M � ϕ. Each node of the tree consists of a tuple 〈node, property〉, with the root labelled with

〈m0, ϕ〉, and each transition labelled with an action ` ∈ Act ∪ {τ}. Label τ symbolizes a silent action. A node

〈m,ϕ〉 has successors 〈mi, ϕi〉 reached via transitions `i if m � ϕ follows from ∀i ·mi � ϕi ∧m
`i−→ mi. Leaves

of a proof-tree can be of the form 〈m, t〉 or 〈m, [`]ϕ〉, where there is no transition on ` from m.

Definition 11 (Proof-Trees) Let an MTS M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and an Lpµ property ϕ such that M � ϕ

be given. Further assume that ϕ is in negation normal form. Then a proof-tree for ϕ inM , denotedΠϕ
M , is a labelled

tree T (m0, ϕ), where T is inductively defined as follows:

Exploring Inconsistencies between Modal Transition Systems 13

4, 〈accept〉〈applyLaw〉t ∧ 〈amend〉t

0, 〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t)

4, 〈accept〉〈applyLaw〉t 4, 〈amend〉t

5, 〈applyLaw〉t 0, t

5, t

propose

τ τ

accept amend

applyLaw

(a)

0′, [propose]([accept][applyLaw]f ∨ [amend]f)

1′, [accept][applyLaw]f ∨ [amend]f4′, [accept][applyLaw]f ∨ [amend]f

1′, [amend]f4′, [accept][applyLaw]f

4′, [applyLaw]f

proposepropose

ττ

accept

(b)

Fig. 5 Proof-trees: (a) for a property Φ in model A; (b) for a property ¬Φ in model B.

T (m, t) = (m, t)

T (m, 〈`〉ϕ) = (m, 〈`〉ϕ) `−→ T (m′, ϕ), where m `−→r m
′ and m′ � ϕ

T (m, [`]ϕ) = (m, [`]ϕ) iff ∀m′, (m, `,m′) 6∈ ∆p
M or (m, [`]ϕ) `−→ {T (m′1, ϕ), . . . , T (m′k, ϕ)},

where {m′i}1≤i≤k are all states such that m `−→p m
′
i and for each i ∈ {1, . . . , k} m′i � ϕ

T (m,
∧k
i=1 ϕi) = (m,

∧k
i=1 ϕi)

τ−→ {T (m,ϕ1), . . . , T (m,ϕk)}

T (m,
∨k
i=1 ϕi) = (m,

∨k
i=1 ϕi)

τ−→ T (m,ϕj) for some j, 1 ≤ j ≤ k s.t. m � ϕj

For the models A and B in Figure 1 and the distinguishing property Φ = 〈propose〉(〈accept〉〈applyLaw〉t ∧

〈amend〉t), the proof-tree ΠΦ
A is shown in Figure 5(a). Note the conjunction in the property is encoded as two

separate branches.

A proof-tree for a propertyϕ and modelM can be depicted graphically by projecting it ontoM , which highlights

the portion of M covered by the proof. For example, Figure 1(d) depicts, using dashed lines, the projection of the

proof-tree shown in Figure 5(a) onto model A.

Definition 12 (Proof-tree projection) Let MTS M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and an Lpµ property ϕ such that

M � ϕ be given. Let Πϕ
M be a proof-tree for ϕ in M , defined as in Definition 11. Then projection of Πϕ

M is an MTS

N = 〈SM , Act,∆r
N , ∆

p
N ,m0〉 such that ∆r

N ⊆ ∆r
M is the largest set where (m

`−→r m
′ ∈ ∆r

N) iff ((m,ϕ0)
`−→

(m′, ϕ1) ∈ Πϕ
M), and ∆p

N ⊆ ∆
p
M is the largest set where m `−→p m

′ ∈ ∆p
N) iff ((m,ϕ0)

`−→ (m′, ϕ1) ∈ Πϕ
M).

To aid user comprehension, we explicitly display the ` transitions that are not possible from the leaf node of the

form 〈m, [`]ϕ〉. For example, the proof-tree shown in Figure 5(b) has a leaf labelled (4, [applyLaw]f) which indicates

that there is no applyLaw transition from state 4 of model B. This fact is shown in the projection of the proof-tree

onto B in Figure 1(e) with a dashed crossed out transition. We call such augmented projections explanations. In

Section 6 we show how to a modeler can use these explanations to explore the inconsistencies between two models.

14 Mathieu Sassolas et al.

0, 0′ 4, 1′

4, 4′

1, 4′

5, 3′

3, 2′ 3, 2′

5, 5′

2, 5′

0, ∗

1, ∗

4, ∗

5, ∗

2, ∗

3, ∗∗, 0′

∗, 1′

∗, 4′

∗, 5′

∗, 3′

∗, 2′
propose

propose

propose

debate

accept

reject?

amend

debatereject

accept

debate

reject

accept

applyLaw

reject reject

applyAct

amend

propose?

propose

applyLaw

debate

accept

reject

amend

debate

accept

reject?

applyLaw

applyAct

reject
amend

applyAct

propose?

propose

applyAct

debate

accept

reject?

amend

accept

debate
reject

applyLaw

reject

Fig. 6 Pseudo-merge of models A and B. State 3, 2′ appears twice for clarity.

5 Characterization of Inconsistency

In this section, we define pseudo-merge which is the basis for providing the various features described in Section 2.

Intuitively, the pseudo-merge of two models is a model which distinguishes the behaviour for which the models

agree and captures the states in which they show disagreement. We then provide an algorithm that builds a pseudo-

merge that is correct and complete with respect to explaining the inconsistencies of the models being compared.

These results allow us to conclude that pseudo-merge is a sound, compact representation of the inconsistencies

between two models which can be used to generate appropriate feedback to users. In Section 6, we discuss how

users can choose which of the many properties encoded in the pseudo-merge is to be used as feedback.

5.1 Pseudo-merge

A pseudo-merge of MTSs M and N is an MTS with two identified subsets of states: disagreement states for M

(called DM) and disagreement states for N (called DN) such that if disagreement states for M are removed, then

the pseudo-merge is a refinement of M , and if disagreement states for N are removed, then the pseudo-merge is a

refinement ofN . All other states are called agreement states, with the interpretation that the transitions between such

states are behaviours that M and N agree upon. All behaviours leading to disagreement states are inconsistent with

either M or N . Transitions between two disagreement states are called disagreement transitions while transitions

that go from agreement states to disagreement states are called boundary disagreement transitions. The later are of

Exploring Inconsistencies between Modal Transition Systems 15

particular interest as they represent the first points in which one model disagrees with the other. Finally, a pseudo-

merge for M and N with empty disagreement states is a common refinement of M and N .

Definition 13 (Pseudo-merge) Let MTSs M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and N = 〈SN , Act, ∆r

N , ∆
p
N , n0〉 be

given. Their pseudo-merge is a tuple 〈P,DM , DN 〉, where P = 〈S,Act,∆r, ∆p, p0〉 is an MTS, DM ⊆ S and

DN ⊆ S such that subMTSs of P over states S \DM and S \DN refine M and N , respectively. We call transitions

in S × Act × (DM ∪DN) and (S \ (DM ∪DN)) × Act × (DM ∪DN) disagreement transitions and boundary

disagreement transitions, respectively.

A pseudo-merge of models A and B in Figures 1(a) and (b) is depicted in Figure 6. The disagreement states

for A are labelled pairs in which the first element is ∗ (they appear on the left-hand side of Figure 6 and are shown

in light grey). Similarly, the disagreement states for B have ∗ as as second element of the pair (they appear on the

right-hand side of Figure 6 and are shown in dark grey). Boundary disagreement transitions are dashed, and the rest

of the disagreement transitions are dotted.

We now present an algorithm, +pm, for computing a pseudo-merge of two models. It is an adaptation of the

algorithm introduced in [UC04] for constructing common refinements of consistent MTSs. The algorithm, applied

to models M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and N = 〈SN , Act, ∆r

N , ∆
p
N , n0〉, first builds a synchronous product by

constructing the Cartesian product of (SM∪{∗})×(SN∪{∗}), where ∗ is a special symbol for denoting states in one

model that do not have correspondences in the other. Second, the algorithm removes transitions related to specific

non-deterministic choices from the result. Finally, the sets of disagreement states are defined as DN = (SM ×{∗})

and DM = ({∗} × SN). Intuitively, DM means that M has gone into an inconsistent state from following N .

We now explain the algorithm in more detail. The synchronous product is built over the Cartesian product of

(SM ∪ {∗}) × (SN ∪ {∗}). The algorithm adds transitions resulting from executing M and N synchronously,

i.e., simultaneous transitions synchronizing on the action labelling these transitions. Transitions in the synchronous

product are computed based on the rules in Figure 7. For instance, if M and N can transit on ` through a required

transition, then the synchronous product of M and N can transit on ` through a required transition as well, as

indicated by rule RR. IfM can transit on ` over a required transition and N can transit on ` over a maybe transition,

this means that M has more information over the occurrence of ` than N does (N does not rule out the fact that

that the transition on ` can become required or prohibited in the future). Hence, there is an agreement, and the

synchronous product of M and N can transit on ` through a required transition. This is codified in rule RM, while

the symmetric situation is described in rule MR. Using a similar reasoning, it is expected that the rules do not allow

a transition on ` in the synchronous product if one model can transit on ` with a maybe transition while the other

cannot transit on ` at all. The rules also do not allow an ` transition on the synchronous product of M and N if they

both agree on prohibiting ` transitions.

16 Mathieu Sassolas et al.

Rules FR and RF are of particular interest as they capture the situation in whichM andN disagree. For instance,

RF states that if an `-transition is required in M but prohibited in N , then the synchronous product has transitions

on ` to a state in SM × {∗}. Such states express that N has flagged the fact that a transition has occurred which is

inconsistent with its own behaviour. Rules Γ∗ and ∗Γ encode the synchronous product once one of the models has

reached a ∗-state. Essentially, the synchronous product allows the model that is not in a ∗-state to transition freely

while prohibiting any transitions of the other model. The rules ensure that while one of the models has gone into a

∗-state, the synchronous product can simulate the behaviour of the other.

We give special treatment to the case in which both models have maybe `-transitions: Rule MM states that the

synchronous product of M and N has a maybe ` transition if M and N have maybe `-transitions, and the states

reached by these transitions are consistent (recall Definition 9). The intuition here is that we are not interested in

introducing inconsistent pairs of states reachable through maybe transitions because these do not represent true

disagreements between M and N as they can be removed by refining the maybe transition.

Once the synchronous product is constructed, a subset of transitions is then removed to resolve non-deterministic

choices of M and N according to the following rule: if a state (m,n) of the synchronous product has an `-transition

to (m′, n′) such thatm′ and n′ are inconsistent, remove this transition unless (i)m `−→r m
′ and there is no transition

on ` from n to any state n′′, where m′ and n′′ are consistent; or (ii) a dual case involving n `−→r n
′ occurs. The

intuition for this rule is similar to that of rule MM: we do not want to include transitions to pairs of inconsistent

states if these can be avoided in common implementations of M and N , because then they do not represent proper

disagreements. The rule states that non-deterministic transitions on ` should be paired in a way that the resulting

state in the synchronous product is consistent, if possible.

Definition 14 (The Synchronous Product) Let M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and N = 〈SN , Act, ∆r

N , ∆
p
N , n0〉

be MTSs. A synchronous product of M and N is an MTS P = 〈SP , Act,∆r
P , ∆

p
P , p0〉, where SP = SM × SN ,

p0 = (m0, n0), and ∆r
P and ∆p

P are the smallest relations that satisfy the rules given in Figure 7.

Definition 15 (The +pm Operator) LetM ,N andP be MTSs in Definition 14.M+pmN = 〈SP , Act,∆r
P ′ , ∆

p
P ′ , p0〉,

where ∆p
P ′ is as shown in Figure 8 and ∆r

P ′ = ∆r
P ∩∆

p
P ′ .

Applying +pm to the models of the law-making process (see Figure 1 in Section 2), we obtain the model in

Figure 6. This model includes three branches from the initial state on action propose, corresponding to all possible

matchings containing at least one required transition of the non-deterministic choice on this action in the origi-

nal models. The boundary disagreement transitions in these models are (4, 1′)
amend−→ (4, ∗), (5, 5′) applyLaw−→ (5, ∗),

(5, 5′)
applyAct−→ (∗, 5′), and (1, 4′)

amend−→ (∗, 4′).

As in the merge operation in [UC04], the pseudo-merge operator +pm works in O(|M | · |N | · |Act|), where

M and N are the original MTSs, size of a model is a number of states in it, and Act is their shared alphabet. The

Exploring Inconsistencies between Modal Transition Systems 17

m
`−→r m

′ n
`−→r n

′

(m,n)
`−→r (m

′, n′)
RR

m
`−→m m′ n

`−→m n′ Cons(m′, n′)

(m,n)
`−→m (m′, n′)

MM

m
`−→r m

′ n
`−→m n′

(m,n)
`−→r (m

′, n′)
RM

m
`−→m m′ n

`−→r n
′

(m,n)
`−→r (m

′, n′)
MR

m
`−→r m

′ n
`

6−→

(m,n)
`−→r (m

′, ∗)
RF

m
`

6−→ n
`−→r n

′

(m,n)
`−→r (∗, n′)

FR

γ ∈ {r,m}
m

`−→γ m
′

(m,n)
`−→γ (m′, ∗)

Γ∗ γ ∈ {r,m}
n

`−→γ n
′

(∗, n) `−→γ (∗, n′)
∗Γ

Fig. 7 Rules for the pseudo-merge operator +pm.

∆p
P ′ = ∆p

P \ {(m,n)
`−→p (m′, n′) ∈ ∆p

P | ¬Cons(m
′, n′) ∧ (m 6 `−→r m

′ ∨ ∃n′′ · (Cons(m′, n′′) ∧ n `−→p n
′′))

∧ (n 6 `−→r n
′ ∨ ∃m′′ · (Cons(m′′, n′) ∧m `−→p m

′′))}

Fig. 8 Definition of possible transitions for M +pm N .

maximal size of the resulting pseudo-merge is (|M | + 1) · (|N | + 1) since it is comprised of pairs of states in

M ∪ {∗} × N ∪ {∗}. We discuss the impact of the size of the pseudo-merge on the ability of users to inspect and

select alternative explanations to an inconsistency in Section 6.

We shall now prove that the object built by +pm corresponds to the definition of a pseudo-merge which was

tailored to capture refinement-related properties.

Theorem 2 Let M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and N = 〈SN , Act,∆r

N , ∆
p
N , n0〉 be MTSs and let M +pm N be

an MTS P = 〈SP , Act,∆r
P , ∆

p
P , p0〉, defined as in Definition 15. Then 〈P,DM , DN 〉, where DN = (SM × {∗})

and DM = ({∗} × SN), is a pseudo-merge of M and N .

Proof Let PM be a subMTS of P w.r.t. states SP \ DM . We show that M � PM by defining the relation R =

{(m, (m,n))|(m,n) ∈ SP \DM} (n may well be ∗) and showing thatR is a refinement relation between PM and

M ; that is, it satisfies both conditions of Definition 7.

Let ((m,n),m) ∈ R. If m `−→r m
′, then by one of the rules RR, RM, RF, or Γ∗ with γ = t, there is a

transition (m,n)
`−→r (m′, n′). Of all such transitions, at least one has remained after the removal step shown

in Figure 8. Otherwise, if a pair of consistent targets did not exist, the removed transitions could just be the ones

corresponding to cases where neither m `−→r m
′ nor n `−→r n

′. These transitions would not have been inserted in

the product in the first place because of the condition on rule MM. And since there is a pair of consistent targets,

18 Mathieu Sassolas et al.

((m,n), `, (m′, n′)) ∈ ∆G ⇒ (((∀m′′, ((m,n), `, (m′′, n′)) ∈ ∆r ⇒ ((m,n), `, (m′′, n′)) ∈ ∆G) ∧

(∀n′′, ((m,n), `, (m′, n′′)) ∈ ∆G ⇒ (n′ = n′′)) ∧ ((n, `, n′) ∈ ∆r
N)) ∨

((∀n′′, ((m,n), `, (m′, n′′)) ∈ ∆r ⇒ ((m,n), `, (m′, n′′)) ∈ ∆G) ∧

(∀m′′, ((m,n), `, (m′′, n′)) ∈ ∆G ⇒ (m′ = m′′)) ∧ ((m, `,m′) ∈ ∆r
M)))

Fig. 9 Formalization of condition (6) of Definition 16.

the corresponding transition has to remain in the product. On the other hand, the transition (m,n)
`−→p (m′, n′)

could not have been created by rules FR or ∗Γ, since those would imply that (m′, n′) ∈ DM . All other rules have

the premise that m `−→p m
′; therefore, usingR as a refinement relation proves the theorem. ut

5.2 Correctness and Completeness

We now define the set ofLpµ properties denoted byM+pmN , show that all the properties in the set are distinguishing

properties of M and N , and then that there are no distinguishing properties that provide shorter explanations (in the

sense of Definition 12) of the inconsistency between M and N .

The set of Lpµ properties denoted by M +pmN is defined as those that can be constructed by any distinguishing

DAG embedded into M +pm N .

Definition 16 (Distinguishing DAG) Let M +pm N = 〈〈S,Act,∆r, ∆p, p0〉, DM , DN 〉. We call a DAG G =

(v0, V,∆G), where V ⊆ S, a distinguishing DAG iff all of the following conditions hold:

(1) G has the same initial state, i.e., v0 = p0 ;

(2) G contains only required transitions, i.e., ∆G ⊆ ∆r ;

(3) G contains no transitions from a disagreement state , i.e., p `−→ p′ ∈ ∆G =⇒ p /∈ (DM ∪DN);

(4) Leaf transitions are the only disagreements, i.e., p ∈ V ∧ (∀p′ ∈ S · p `−→ p′ /∈ ∆G) =⇒ p ∈ DM ∪DN ;

(5) All transitions from a given state are on the same symbol, i.e., (p `−→ p′ ∈ ∆G ∧ p
`′−→ p′′ ∈ ∆G) =⇒ ` = `′;

(6) Each transition corresponds to taking all transitions on a symbol in one original MTS and only one,

required, transition in the other, as formalized in Figure 9.

A distinguishing DAG represents a joint execution in MTSs M and N that highlights a disagreement. Rule (1)

expresses the fact that the execution starts in the initial state of both models. Rule (2) means that each step cor-

responds to a required transition in at least one of the models. Rules (3) and (4) express minimality, while rule

(5) ensures that only a single execution is followed. Finally, rule (6) means that a required transition on a given

action in one model is matched by all transitions on the same action in the other. An example distinguishing DAG

for M +pm N is the subgraph which consists of transitions (0, 0′)
propose−→r (4, 4′)

accept−→r (5, 5′)
applyLaw−→r (5, ∗) and

(0, 0′)
propose−→r (4, 1′)

amend−→r (0, ∗).

Exploring Inconsistencies between Modal Transition Systems 19

Definition 17 (Property of a Distinguishing DAG) The property induced by a distinguishing DAGG = (v0, V,∆G)

on the pseudo-merge 〈〈S,Act,∆r, ∆p, (m0, n0)〉, DM , DN 〉 is an Lpµ property FG, defined inductively as follows:

(i) If ((m,n), `, (m′, ∗)) ∈ ∆G, then FG((m,n)) = 〈`〉t;

(ii) If ((m,n), `, (∗, n′)) ∈ ∆G, then FG((m,n)) = [`]f ;

(iii) If ∀i, 1 ≤ i ≤ k · ((m,n), `, (m′, n′i)) ∈ ∆G, or if k = 1 and m `−→r m
′,

then FG((m,n)) = 〈`〉
∧k
i=1 FG((m′, n′i));

(iv) If ∀i, 1 ≤ i ≤ k · ((m,n), `, (m′i, n′)) ∈ ∆G, or if k = 1 and m 6 `−→r m
′
1

then FG((m,n)) = [`]
∨k
i=1 FG((m′i, n′)).

Note that the property built from the above definition is not symmetrically defined. Indeed, we chose it to be true

in model M and false in model N , as shown in the proof of Theorem 3. The property for the distinguishing DAG

in our example is Φ = 〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t) which evaluates to true in the model A and to

false in the model B. Projecting this DAG onto the model A in Figure 1(a), we obtain the diagram of Figure 1(d)

(see Section 2), where the dashed edges correspond to those covered by the DAG.

Definition 18 (Properties of +pm) Let MTSsM andN be given. The set of properties of a pseudo-merge ofM and

N , M +pm N are those induced by all distinguishing DAGs of M +pm N .

Theorem 3 (Correctness of +pm) Let MTSs M and N be given and let M +pm N be their pseudo-merge. Then

all properties of M +pm N are distinguishing properties of M and N .

The proof consists of proving the following lemma which states that the distinguishing properties of M +pm N

hold in M and their negation holds in N .

Lemma 1 Let M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and N = 〈SN , Act,∆r

N , ∆
p
N , n0〉 be two inconsistent MTSs. Let G

be a distinguishing DAG of M +pm N and ϕ = FG(m0, n0). Then M � ϕ ∧N � ¬ϕ.

Proof 1. If G has only one transition, then it is between a regular state (m,n) ∈ SM × SN (in this case (m0, n0))

and a disagreement state (case (4) of Definition 16). This transition could only have been created by rules RF or

FR.

If rule RF was applied, then the transition is of the form (m,n)
`−→ (m′, ∗). Hence, ϕ = 〈`〉t, by case (i) of

Definition 17. As a premise of rule RF, there is a transition m `−→r m
′, so M � ϕ. Since we know that there is no

transition on ` from N , so N � ¬ϕ.

If rule FR was applied, we have a dual situation. The property we obtain is [`]f (case (ii) of Definition 17),

which is true in states of M that do not have a transition on ` and false in those states of N that require one.

2. Suppose the lemma holds on all DAGs with up to height k. We prove it for a DAG G with height k + 1.

Consider all transitions stemming from the root (m,n) of G. By case (6) of Definition 16, we have two dual cases.

20 Mathieu Sassolas et al.

Suppose these transitions are on ` from (m,n) to states (m′, n′1), . . . , (m
′, n′k). By case (iii) of Definition 17,

the property ϕ is then 〈`〉
∧k
i=1 ϕi, where ϕi is a shorthand for FG((m′, n′i)). By induction hypothesis, ∀i ∈

{1, . . . , k},′ � ϕi ∧ n′i � ¬ϕi. In that case, we also know that there is a transition m `−→r m
′. Therefore, M � ϕ.

With rules RR and RM, the operator builds a transition (m,n)
`−→r (m

′, n′) for every possible transition on ` from

n. Therefore, ∀n n−→p
′
,∃i ∈ {1, . . . , k} such that n′ = n′i. Since for all possible targets on ` from n the conjunction

of the ϕis does not hold, N � ¬ϕ.

The dual case is treated with case (iv) of Definition 17.

All properties induced by the pseudo-merge are built from a distinguishing DAG, and are therefore true in M

and false in N . ut

We now express the notion of completeness of the pseudo-merge constructed by +pm. We say that M +pm N

is complete in the sense that for any explanation of a distinguishing property for M and N , there is an explanation

for a property derived from M +pm N which is a sub-graph of the former.

Theorem 4 (Completeness of +pm) Let M and N be inconsistent MTSs. For any distinguishing property ϕ and

two proofs, Πϕ
M and Π¬ϕN , there exists a property ϕ′ induced by M +pm N , and proofs Πϕ′

M and Π¬ϕ
′

N such that

the projection of Πϕ′

M on M is a subgraph, with the same initial state, of the projection of Πϕ
M on M ; and similarly,

the projection of Π¬ϕ
′

N on N is a subgraph of Π¬ϕN on N .

Proof (Outline) We start by combining the given proofs, Πϕ
M and Π¬ϕN , into one tree. We then collapse those nodes

that correspond to loops in the pseudo-merge, and cut some superfluous subtrees: the ones corresponding to an

execution that already reached an inconsistency or redundant explanation of an inconsistency for a pair of states.

The result is a simpler tree, encoding the (smaller) proof of another property. We show that we can project this tree

onto the pseudo-merge, and that the projection yields a distinguishing DAG. We also show that the property induced

by the distinguishing DAG is the same as proved by the tree. Finally, we split the tree into two proof-trees, one for

each model. The way the new tree is built ensures that the new proofs start at the same state as the original ones and

are projected as subgraphs of the original trees. ut

A detailed proof of this theorem is given in Appendix A.

It is interesting to note that if MTSs M and N are consistent, then M +pm N yields a common refinement.

Although procedures for constructing common refinements from consistent MTSs exist (e.g., [FU08]), this result

indicates that pseudo-merge extends the theory of MTSs in a sound way as it works both for consistent and incon-

sistent cases.

Exploring Inconsistencies between Modal Transition Systems 21

Input: Inconsistent MTSs M = 〈SM , Act,∆r
M ,∆

p
M ,m0〉 and N = 〈SN , Act,∆r

N ,∆
p
N , n0〉,

their pseudo-merge P =M +pm N = 〈SP , Act,∆r
P ,∆

p
P , p0〉,

a boundary disagreement transition t = (s, `, s′) ∈ ∆r
P ∩ ((SM × SN)×Act× (SP \ (SM × SN))).

1. Compute the shortest sequence of transitions π = t0, . . . , tn in P from p0 to s.

2. Append t to π.

3. Perform a depth-first search for a distinguishing DAG G (see rules in Definition 16) such that π is included in G:

a. Define a set I containing the transitions of π and an empty set J .

b. Add τ , the next transition in I or in J if I is empty, to G. Stop if both are empty.

c. Add all new transitions required to comply to the rules of Definition 16 to J .

4. If found, RETURN G. Else ABORT.

Fig. 10 Algorithm for computing user-guided feedback.

6 User-guided Feedback Generation

We now show how a compact representation of all explanations to inconsistency, constructed in Section 5, can be

used by a modeler to explore the inconsistencies between two models. Having constructed the pseudo-merge, the

modeler can select a boundary disagreement transition asking why the models are inconsistent at that point. We

show how this user-selected boundary disagreement transition can get converted into a distinguishing property that,

when explained using the technique in Section 4, covers the selected transition.

The general algorithm for computing user-guided feedback on inconsistent models is shown in Figure 10. The

algorithm receives the pseudo-merge of two models, M and N , and a boundary disagreement transition of the

pseudo-merge, and produces a distinguishing DAG (see Definition 16) over the pseudo-merge which covers this

transition. This disagreement DAG encodes (see Definition 17) a distinguishing property ϕ for M and N , i.e., there

exist proof-trees showing that ϕ holds in M and does not hold in N , and, projected onto M and N respectively,

these trees cover the boundary disagreement transition selected by the user. In other words, the algorithm constructs

explanations, in the form of highlighted transitions inM andN , of a distinguishing property forM andN such that

the explanations cover the user-selected disagreement transition.

The more detailed procedure is given in Appendix B.

Applying the algorithm on the pseudo-merge in Figure 6 and boundary disagreement transitions

{(5, 5′) applyLaw−→r (5, ∗), (4, 1′) amend−→r (0, ∗), (5, 5′)
applyAct−→r (∗, 5′), (1, 4′) amend−→r (∗, 0′)},

we respectively obtain distinguishing graphs corresponding to the properties

22 Mathieu Sassolas et al.

〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t)

〈propose〉(〈accept〉〈applyLaw〉t ∧ 〈amend〉t)

〈propose〉(〈accept〉[applyAct]f ∧ 〈amend〉t)

[propose](〈accept〉〈applyLaw〉t ∨ [amend]f)

More specifically, the first boundary disagreement property (5, 5′)
applyLaw−→r (5, ∗) yields the following subset of the

pseudo-merge of Figure 6:

(0, 0′)
propose−→ (4, 1′)

amend−→ (0, ∗); (0, 0′) propose−→ (4, 4′)
accept−→ (5, 5′)

applyLaw−→ (5, ∗)

This DAG is then converted into formula Ψ and proof-trees of Figure 5. The first two properties are identical because

both (5, 5′)
applyAct−→r (∗, 5′) and (4, 1′),

amend−→r (0, ∗) form part of exactly the same argument as to why the models are

inconsistent.

There are cases when a distinguishing DAG covering the user-selected disagreement transition cannot be con-

structed. For example, suppose we want to distinguish between models E and G in Figure 11 and use their pseudo-

merge, selecting transition (3, 2′)
d−→r (∗, 3′). If we want to reach this transition, we have to take transition

(0, 0′)
a−→r (2, 1′) first. However, since condition (6) of Definition 16 tells us to include all possible transitions

on a from state 0, we have to add transition (0, 0′)
a−→r (1, 1) to the DAG. Condition (4) of Definition 16 forces

us to continue from (1, 1), which is not a disagreement state, including transition (1, 1)
b−→r (0, 0

′) which forms a

loop, violating condition (1) that requires the graph to be acyclic.

The reason why we were unable to find a distinguishing DAG through (3, 2′)
d−→r (∗, 3′) is that distinguishing

properties that cover this transition are not minimal. For example, property [a](〈c〉[d]f∨〈b〉〈b〉t) covers the transition,

but its proof-trees are strictly larger than those for the property 〈b〉t. The latter are generated by the algorithm in

Figure 10 when transition (0, 0)
b−→r (4, ∗) is selected. We believe that the problem is caused by the rule for

removing unnecessary transitions for non-deterministic case being too weak, and thus this irrelevant transition is

kept in the pseudo-merge. Informally, the fact that we can reduce a distinguishing property covering (3, 2′)
d−→r

(∗, 3′) into one that does not cover it, shows that this disagreement is not relevant.

For the cases in which a distinguishing DAG cannot be constructed to cover the user-selected disagreement

transition, as described above, the user is forced to select a different disagreement transition. In future work, we aim

to strengthen the rules defining pseudo-merge in order to avoid such situations.

One of the potential difficulties related to the complexity of constructing a pseudo-merge (see Section 5) to allow

for user-selected generation of inconsistency feedback is the size of the pseudo-merge state space. Pseudo-merge

models can be large; it is the price to pay for providing all possible explanations to an inter-model inconsistency

in one compact representation. The problem can, however, be mitigated via tool support. We believe that existing

tools for validating traditional behaviour models can be extended to support inspecting pseudo-merge models and

Exploring Inconsistencies between Modal Transition Systems 23

E : 0

1

2 3

4

a?
a?

b
b

c

G: 0′ 1′ 2′ 3′

a

b?

c? d

E +pm G: 0, 0′

1, 1′

2, 1′

3, 2′∗, 3′

4, ∗

a

a b

b

c

d

Fig. 11 Two models, E and G, and their pseudo-merge E +pm G.

selecting distinguishing DAGs. In particular, support for animation, hiding, minimization, and hierarchical states

can aid these tasks significantly.

Summarizing, in this section we have shown how to build a distinguishing DAG that covers a user-selected

disagreement transition in a pseudo-merge of MTSs M and N . The resulting DAG can be used to generate a

distinguishing property that holds in M . The proof of such property in M and the proof of its negation in N can be

visualized as explanations (see Section 4). This process allows us to provide sound feedback on the inconsistencies

between the models being compared. We have also shown that the pseudo-merge may include some disagreement

transitions, related to non-deterministic choices, that do not yield minimal distinguishing properties. Although this

situation did not occur in the validation of our approach, the practical implications, if it does occur, is that the user,

when selecting one of these transitions, may be required to pick a different transition in order to produce feedback

on inconsistency.

7 Validation

In this section, we briefly describe tool support for our approach and then discuss two case studies.

7.1 Tool Support

In order to validate our approach, we have built a prototype tool [Sas09] that constructs a pseudo-merge from

two MTS models and an Lpµ property for a given boundary disagreement transition, when possible. The tool is

implemented in OCaml, and exchanges information with MTSA [DFCU08] by using the same textual representation

for MTSs in order to allow automated graphical representation of models.

24 Mathieu Sassolas et al.

– The system: a printer with a pre-output tray

– One model:

– No difference between input and output

– No modelling of the repairman or the job giver/taker

– Alphabet :

idle The printer doesn’t do anything

jobIn A print job is given to the printer

jobOut Ejects the printed job and reports

jobDiscard Discard whatever was printed and reports

takeSheet The rolls takes a sheet from the tray

printSheet The ink is put on the paper

staple Staple the sheets together

block The sheet folds and get stuck in the printer

noPaper No more paper in the tray

noInk No more ink in the toner

resume A repairman fixes the printer

– Requirement: A sheet never goes backwards. Instead, it

follows these steps:

1. sheet is on the paper tray

2. sheet is taken off the tray

3. sheet is printed

4. sheet goes on the pre-output tray

5. sheet goes on the output tray (or garbage)

Table 1 The informal specification of the printer.

7.2 The Printer Case Study

The aim of this case study was to (1) compare models developed by people not involved in the development of our

approach; and (2) to evaluate the effectiveness of our techniques to identify and explain the inconsistencies between

the models.

We developed a deliberately underspecified natural language specification of a printer controller (see Table 1),

and two PhD students with behaviour modelling experience were requested to build behaviour models from the

specification. Our approach was then used to generate examples of inconsistency which became the basis of a

“negotiation” – discussion with the two modellers aimed to understand the difference in their interpretation of the

printer specification.

The specification fixed a communication alphabet for the printer controller and described the process for printing

paper (from the paper tray through to the output tray), requiring that the paper never goes backwards even in the

case of events such as noInk, jobDiscard, (paper-)block. Note that we asked the modellers to produce LTS rather

than MTS models (i.e., to make explicit decisions when they encounter underspecification, since LTSs do not allow

possible transitions). The goal here was two-fold: to eliminate problems stemming from inexperience with the MTS

formalism, and to increase the likelihood of modellers introducing inconsistencies.

Figure 12 shows the resulting models. The pseudo-merge, depicted in Figure 13, results in 13 boundary dis-

agreement transitions, from which 11 different distinguishing properties were constructed. Interestingly, although

model H in Figure 12(a) is non-deterministic, all properties were linear, and hence feedback was produced in the

Exploring Inconsistencies between Modal Transition Systems 25

H: 0 1

2

3

4

5

6

7

8

9

idle
jobIn

noInk, noPaper

takeSheet

resume block

printSheet

resume

jobDiscard, jobOut

block

jobDiscard,
jobOut

staple

resume

blockresume

jobDiscard,jobOut

jobDiscard,
jobOut

(a)

J : 0′ 1′ 2′

3′

4′5′

idle

jobIn

noPaper

takeSheet
noInk

block

printSheet

resume

staple

jobDiscard,
jobOut

(b)

Fig. 12 Two models of a printer.

form of traces. This is because the non-deterministic behaviour in modelH was matched by deterministic behaviour

in model J (see Figure 12(b)).

Trace jobIn, takeSheet, printSheet, jobOut is an example of an inconsistency produced by our approach. It

identifies a difference in criteria for when stapling occurred: in model H, it was an optional step in the workflow,

while model J made it mandatory. The trace corresponds to the proof of the property

〈jobIn〉〈takeSheet〉〈printSheet〉〈jobOut〉t

which holds in model H. A second example trace, jobIn, noPaper, takeSheet, identifies an inconsistency on a com-

pletely unrelated matter: in model H, human intervention, followed by pressing the resume button, is needed to

handle errors such as the lack of paper, whereas in the other model, the printer can sense that paper has been

introduced and can takeSheet immediately. This trace corresponds to the proof of the distinguishing property

〈jobIn〉〈noPaper〉〈takeSheet〉t over model J ; its negation holds in modelH.

7.3 The Safety Injection System Case Study

In this study, we explored inconsistencies between behavior models automatically synthesized from declarative

specifications. The inconsistent models were generated by making changes to the declarative specification, and our

goal was to validate whether exploring the pseudo-merge could generate examples traceable back to the changes we

made in the specification.

The safety injection system is part of a controller for a nuclear power plant. It is intended to maintain a suf-

ficiently high pressure of coolant in the reactor, except when it operates in a special Overridden mode, in which

case a lower pressure is allowed. Discrete time is modelled explicitly through action tick. When it is enabled, the

controller receives information on the current pressure level inside the plant. It can then send signals to the plant to

26 Mathieu Sassolas et al.

H+pm J : 0, 0′ 1, 1′

2, ∗

2, 1′ 3, 2′

1, ∗

∗, 1′

∗, 2′

4, 3′

5, 4′

3, ∗

∗, 3′

∗, 4′

6, ∗

7, ∗

9, 5′

4, ∗ 5, ∗

∗, 5′

8, ∗

7, 0′

9, ∗

0, ∗

∗, 0′

idle

jobIn

noInk

noPaper
takeSheet

resume

resume

noPaper

takeSheet

noInk

block

printSheet

noInk,
noPaper

takeSheet

noPaper

takeSheet

noInk

block

printSheet

resume

block

jobDiscard,
jobOut

jobDiscard,
jobOut

staple

block

printSheet

resume

staple

resume

block

jobIn
idle

jobDiscard, jobOut

jobDiscard, jobOut

resume

block

jobDiscard,
jobOut

jobDiscard,
jobOutstaple

jobDiscard,
jobOut

resume

jobIn

block

idle

jobDiscard,
jobOut

jobDiscard,
jobOut

jobIn

idle

Fig. 13 The pseudo-merge of the printer models shown in Figure 12.

start (resp. stop) the injection system through action sendSignal (resp. stopSignal). The specification is given as a

set of pre-, post- and trigger-conditions (formalized in fluent linear temporal logic [GM03]) over the operations to

be provided by the system. This model was reported in [LKMU08].

Two behaviour models were automatically synthesized [LKMU08]: one from the original and the other from a

modified specification. The modifications consisted of changing the pre- and the triggering conditions related to the

urgency for starting and stopping the safety injection signal. Rather than requiring these actions to occur within one

time unit after sensing particular environment conditions, we required them to be triggered in the next time unit.

In addition, to increase the degree of non-determinism in the models, we abstracted away the various degrees of

domain-related quantities in the model. For instance, rather than having events modelling the change of pressure

levels to x (raisePressure[x] and lowerPressure[x]), we introduced more abstract events indicating whether the

Exploring Inconsistencies between Modal Transition Systems 27

pressure level was raised or lowered w.r.t. the relevant threshold. The resulting synthesized models have 36 and 48

states, respectively.

The pseudo-merge of these models consists of 220 states and can be animated in order to aid the exploration

of agreement and disagreement states. Of the 104 disagreement transitions, one of the distinguishing properties we

have found was

Ψ = 〈enable〉〈tick〉〈pressure〉(〈sendSignal〉〈tick〉〈stopSignal〉〈tick〉t ∧ [tick]f).

When projected on the synthesized models, this feedback directly relates to the changes made in the specifica-

tion (due to space restrictions, we cannot show this projection). The feedback indicates that once the safety injection

has been enabled and there is high pressure, the two models disagree on the potential behaviour of the system. In one

model, it is possible to send and then stop sending the safety injection signal (the 〈sendSignal〉〈tick〉〈stopSignal〉〈tick〉t

branch), and time cannot advance (the [tick]f branch) without the controller performing an action. This relates to the

urgency requirement for sending and stopping safety injection signals that was part of the original specification. In

the other model, either sending and stopping the signal is not possible, or time can advance without the controller

performing an action. This relates to the change in the urgency requirement: in the modified specification, sending

and stopping the signal must occur after one time unit, i.e., after the occurrence of a tick.

8 Related Work

Generation and Analysis of Counterexamples. The original counterexample generation algorithm [CGMZ95],

implemented in most symbolic model-checkers, produces linear counterexamples. It was extended to handle arbi-

trary ACTL properties [CLJV02] using the notion of tree-like counterexamples. However, navigating to “interesting”

parts of the counterexamples, and thus understanding them, remains difficult.

Our work assumed that proofs of whether a µ-calculus property holds or fails in the model can be obtained, i.e.,

using the techniques of [Nam01,TC02], which concentrate not only on creation of the proof but also on techniques

for presenting it to the user. We have relied on being able to overlay the proof onto the original models and then

use animation to help present the evidence to the user. More sophisticated methods for evidence presentation, which

provide a variety of graphical views, have been developed as well, e.g. [DRS03]. We also found it essential to be

able to generate multiple causes of inconsistency, which are encoded compactly in our pseudo-merge. Multiple

counterexamples have been generated in the context of LTL by [CIW+03] and in the context of CTL by [CG07]. In

both approaches, users can visualize the result in various ways.

The problem of the automatic analysis of counterexamples was addressed by many researchers, e.g., [GV03,

BPR03]. While we assume that the (human) modeller does the analysis, our work is complementary to this line of

research.

28 Mathieu Sassolas et al.

Treatment of Inconsistency. A number of approaches to inconsistency management have been studied in the con-

text of viewpoint-based modeling [NKF94]. Some of this work, e.g., [FGH+94,NCEF02], detects inconsistencies

by using first-order logic rules and does not consider merge as a means of model exploration and inconsistency

detection. Other researchers [HP01,EC01,SE03,NC05] propose ways of merging viewpoint models, where incon-

sistency is either explicitly represented using multi-valued logic [EC01,SE03,NC05] or resolved across inconsistent

viewpoints by using a dominance ordering on owners of the viewpoints [HP01].

Our work is similar in spirit to [NC05], but our goal is not yet to support negotiation, but just help users identify

causes of their disagreement. We augment the work of [NC05] with proof generation and visualization techniques.

Our pseudo-merge effectively allows to represent inconsistencies, and is thus similar to the approaches of [EC01,

SE03]. In contrast, the work of [NSC+07] represents inconsistencies as variabilities, assuming that the disagree-

ments have already been resolved, and thus any remaining discrepancies should be treated as variabilities in the

system’s intended functionality.

9 Conclusion and Future Work

In this paper, we have presented a well-founded approach to providing feedback on inconsistencies between par-

tial behaviour models expressed as MTSs; a special case of this approach is providing feedback for non-bisimilar

LTS models. We have shown why feedback in the form of traces is not adequate in the general case and how

sound explanations for inconsistencies, derived from formal proofs of distinguishing properties, can be visualized

as branching structures, depicted independently or overlaid on the models being compared. We have shown how

the pseudo-merge, implemented using the +pm operator, compactly represents all relevant explanations of incon-

sistency between two models. Pseudo-merges can be used by modelers to guide the generation of explanations by

selecting disagreement transitions, in order to explore causes of inconsistencies.

While it has not hindered the application of our approach so far, we are planning to address the problem of deal-

ing with disagreement transitions in the pseudo-merge that do not represent distinguishing properties with minimal

explanations. We believe that this can be accomplished by refining the notion of pseudo-merge.

The scalability of our approach is currently limited by the support to inspect large pseudo-merge models and

the distinguishing properties constructed from them. Although a large pseudo-merge model is the price to pay for

providing feedback on all possible explanations to an inter-model inconsistency in one compact representation, scal-

ability, however, can be achieved via tool support. We believe that tool support for validating traditional behaviour

models can be extended to support validating pseudo-merge models. In particular, we envisage the need for anima-

tion, hiding, minimization, and hierarchical states. We aim to integrate our prototype into the MTSA toolset which

provides some of this functionality and use it to further validate the approach.

Exploring Inconsistencies between Modal Transition Systems 29

Acknowledgements

We thank anonymous SoSyM referees for their comments on an earlier version of the journal paper. We gratefully

acknowledge the support of CONICET, ERC StG 204853-2, PICT 11-32440, UBACYT X021 and NSERC. This

work was carried out when the first author was studying at and being supported by ENS Cachan, France.

References

[BCU06] G. Brunet, M. Chechik, and S. Uchitel. “Properties of Behavioural Model Merging”. In Proceedings of International

Conference on Formal Methods (FM’06), volume 4085 of LNCS, pages 98–114. Springer, August 2006.

[BPR03] T. Ball, A. Podelski, and S. Rajamani. “Boolean and Cartesian Abstraction for Model Checking C Programs”.

International Journal of Software Tools for Technology Transfer (STTT), 5(1):49–58, 2003.

[CCGR99] A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. “NUSMV: a new Symbolic Model Verifier”. In Proceedings

of CAV’99, volume 1633 of LNCS, pages 495–499, 1999.

[CG07] M. Chechik and A. Gurfinkel. “A Framework for Counterexample Generation and Exploration”. International

Journal of Software Tools for Technology Transfer (STTT), 9(5-6), 2007.

[CGMZ95] E.M. Clarke, O. Grumberg, K.L. McMillan, and X. Zhao. “Efficient Generation of Counterexamples and Witnesses

in Symbolic Model Checking”. In Proceedings of 32nd Design Automation Conference (DAC’95), pages 427–432,

1995.

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[CIW+03] F. Copty, A. Irron, O. Weissberg, N. Kropp, and G. Kamhi. “Efficient Debugging in a Formal Verification Environ-

ment”. International Journal on Software Tools for Technology Transfer (STTT), 4(3):335–348, May 2003.

[CLJV02] E.M. Clarke, Y. Lu, S. Jha, and H. Veith. “Tree-Like Counterexamples in Model Checking”. In Proceedings of

the Seventeenth Annual IEEE Symposium on Logic in Computer Science (LICS’02), pages 19–29. IEEE Computer

Society, July 2002.

[CPS93] R. Cleaveland, J. Parrow, and B. Steffen. “The Concurrency Workbench: A Semantics Based Tool for the Verification

of Concurrent Systems”. ACM Transactions on Programming Languages and Systems, 15(1):36–72, January 1993.

[DFCU08] N. D’Ippolito, D. Fishbein, M. Chechik, and S. Uchitel. “MTSA: The Modal Transition System Analyzer”. In

Proceedings of International Conference on Automated Software Engineering (ASE’08), pages 475–476, September

2008.

[DRS03] Y. Dong, C.R. Ramakrishnan, and S. A. Smolka. “Evidence Explorer: A Tool for Exploring Model-Checking Proofs”.

In Proceedings of the 15th International Conference on Computer-Aided Verification (CAV’03), volume 2725 of

LNCS, pages 215–218, 2003.

[EC01] S. Easterbrook and M. Chechik. “A Framework for Multi-Valued Reasoning over Inconsistent Viewpoints”. In Pro-

ceedings of International Conference on Software Engineering (ICSE’01), pages 411–420. IEEE Computer Society

Press, May 2001.

30 Mathieu Sassolas et al.

[FGH+94] A. C. W. Finkelstein, D. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh. “Inconsistency Handling in Multi-

Perspective Specifications”. IEEE Transactions on Software Engineering, 20(8):569–578, 1994.

[FU08] D. Fischbein and S. Uchitel. “On Correct and Complete Merging of Partial Behaviour Models”. In Proceedings of

SIGSOFT Conference on Foundations of Software Engineering (FSE’08), pages 297–307, November 2008.

[GM03] D. Giannakopoulou and J. Magee. “Fluent Model Checking for Event-Based Systems”. In Proceedings of the 9th

joint meeting of the European Software Engineering Conference and ACM SIGSOFT Symposium on the Foundations

of Software Engineering (ESEC/FSE’03), pages 257–266. ACM Press, September 2003.

[GV03] A. Groce and W. Visser. “What Went Wrong: Explaining Counterexamples”. In Proceedings of SPIN Workshop on

Model Checking of Software, pages 121–135, 2003.

[Har87] D. Harel. “StateCharts: A Visual Formalism for Complex Systems”. Science of Computer Programming, 8:231–274,

1987.

[HJS01] M. Huth, R. Jagadeesan, and D. A. Schmidt. “Modal Transition Systems: A Foundation for Three-Valued Program

Analysis”. In Proceedings of 10th European Symposium on Programming (ESOP’01), volume 2028 of LNCS, pages

155–169. Springer, 2001.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, New York, 1985.

[Hol97] G.J. Holzmann. “The Model Checker SPIN”. IEEE Transactions on Software Engineering, 23(5):279–295, May

1997.

[HP01] M. Huth and S. Pradhan. “Model-Checking View-Based Partial Specifications”. Electronic Notes in Theoretical

Computer Science, 45, November 2001.

[Kel76] R. Keller. “Formal Verification of Parallel Programs”. Communications of the ACM, 19(7):371–384, 1976.

[LKMU08] E. Letier, J. Kramer, J. Magee, and S. Uchitel. “Deriving Event-Based Transition Systems from Goal-Oriented

Requirements Models”. Journal of Automated Software Engineering, 15(2):175–206, 2008.

[LT88] K.G. Larsen and B. Thomsen. “A Modal Process Logic”. In Proceedings of 3rd Annual Symposium on Logic in

Computer Science (LICS’88), pages 203–210. IEEE Computer Society Press, 1988.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.

[Mil99] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, 1999.

[Nam01] K. Namjoshi. “Certifying Model Checkers”. In Proceedings of 13th International Conference on Computer-Aided

Verification (CAV’01), volume 2102 of LNCS. Springer-Verlag, 2001.

[NC05] S. Nejati and M. Chechik. “Let’s Agree to Disagree”. In Proceedings of 20th IEEE International Conference on

Automated Software Engineering (ASE’05), pages 287 – 290. IEEE Computer Society, 2005.

[NCEF02] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. “xlinkit: A Consistency Checking and Smart Link Gener-

ation Service”. ACM Transactions on Internet Technology, 2(2):151–185, 2002.

[NKF94] B. Nuseibeh, J. Kramer, and A. Finkelstein. “Framework for Expressing the Relationship Between Multiple Views

in Requirements Specifications”. IEEE Transactions on Software Engineering, 20(10):760–773, October 1994.

[NSC+07] S. Nejati, M. Sabetzdeh, M. Chechik, S. Easterbrook, and P. Zave. “Matching and Merging of Statecharts Specifica-

tions”. In Proceedings of the 29th International Conference on Software Engineering (ICSE’07), pages 54–64, May

2007.

Exploring Inconsistencies between Modal Transition Systems 31

[PB00] A.W. Roscoe P. Broadfoot. “Tutorial on FDR and Its Applications”. In Proceedings of the 9th SPIN Workshop on

Model Checking Software (SPIN’00), volume 1885 of LNCS, page 322. Springer, 2000.

[Sas09] M. Sassolas. “PseudoMerge: a Prototype Tool”. http://pagesperso-systeme.lip6.fr/Mathieu.

Sassolas/recherche/tools/PseudoMergePrototype.zip, 2009.

[SE03] M. Sabetzadeh and S.M. Easterbrook. “Analysis of Inconsistency in Graph-Based Viewpoints: A Category-Theoretic

Approach”. In Proceedings of 18th IEEE International Conference on Automated Software Engineering (ASE’03),

pages 12–21. IEEE Computer Society, October 2003.

[TC02] L. Tan and R. Cleaveland. “Evidence-Based Model Checking”. In Proceedings of 14th Conference on Computer-

Aided Verification (CAV’02), volume 2404 of LNCS, pages 455–470. Springer-Verlag, July 2002.

[UBC09] S. Uchitel, G. Brunet, and M. Chechik. “Synthesis of Partial Behavior Models from Properties and Scenarios”. IEEE

Transactions on Software Engineering, 35(3):384–406, 2009.

[UC04] S. Uchitel and M. Chechik. “Merging Partial Behavioural Models”. In Proceedings of 12th ACM SIGSOFT Interna-

tional Symposium on Foundations of Software Engineering (FSE’04), pages 43–52, November 2004.

A Proof of completeness of the pseudo-merge

In this section, we prove Theorem 4.

The outline of the proof is as follows: We start by combining the given proofs into a single tree (Section A.1).

We then collapse this tree, removing nodes that correspond to loops in the pseudo-merge and cutting superfluous

subtrees (Section A.2). This results in another tree that encodes the proof of a new, smaller, formula. We show

that we can project this tree onto the pseudo-merge, and that the projection is a distinguishing DAG (Section A.3).

Moreover, we show that the distinguishing DAG induces the same formula as proved by the tree (Section A.4).

Finally, we split the tree into two proof-trees, one for each model. Our construction ensures that the new proofs are

projected as subgraphs of the original ones (Section A.5).

We illustrate steps of this proof using the following example.

Example. Consider models X and Y in Figure 14. Suppose that the original distinguishing property is

Λ = 〈a〉([b]〈d〉〈c〉〈c〉[a][d]f ∧ [c]〈d〉〈b〉[a]f)

Proof-trees for this property on the models are shown on Figure 15. We do not show the projections of these proof-

trees on the original models since in both cases they correspond nearly to the entire respective model. In Y , the only

transition not included in the projection is the self-loop on b in state 4; in X it is the self-loop on b in state 6′.

32 Mathieu Sassolas et al.

X : 0 1 2 3 4
a

b?

c?

d
b

c

b

c

(a)

Y: 0′

1′

2′

3′

4′

5′

7′

6′

8′ 9′

a?

a?

b

c

d

d

c

b

c?

a

b?

a

d

d

(b)

Fig. 14 Models used to illustrate completeness of the pseudo-merge.

A.1 Combining the proof-trees

First, we define a combination Πϕ
(M,N) of the proof-trees Πϕ

M and Π¬ϕN . Intuitively, Πϕ
(M,N) encodes the two very

similar proofs for each model into a proof that ϕ is a distinguishing formula for M and N . This combination can be

built with the Comb operator.

Definition 19 (The Comb operator) Let M and N be MTSs and let ϕinLpµ be a distinguishing formula. Given two

proof-trees Πϕ
M and Π¬ϕN for ϕ in M and its negation in N , respectively, we define the Comb operator inductively

as follows:

(i) Comb((Πϕ
M , (∗,⊥))) = Πϕ

M , where every node (m,ϕ′) is replaced by a node ((m, ∗), ϕ′);

(ii) Comb((∗,⊥), (Π¬ϕN)) = Π¬ϕN , where every node (n, ϕ′) is replaced by a node ((∗, n), ϕ′);

(iii) Comb((m, 〈`〉ϕ) `−→ (m′, ϕ), (n, [`]¬ϕ)) = ((m,n), 〈`〉ϕ) `−→ Comb((m, ∗), ϕ);

(iv) Comb((m, [`]ϕ), (n, 〈`〉¬ϕ) `−→ (n′,¬ϕ)) = ((m,n), [`]ϕ)
`−→ Comb((∗, n), ϕ);

(v) Comb((m, 〈`〉ϕ) `−→ (m′, ϕ), (n, [`]¬ϕ) `−→ {(n′i,¬ϕ)}i) = ((m,n),
∧k
i=1 ϕ)

`−→ {Comb((m′, ϕ), (n′i,¬ϕ))}i;

(vi) Comb((m, [`]ϕ) `−→ {(m′i, ϕ)}i, (n, 〈`〉¬ϕ)
`−→ (n′,¬ϕ)) = ((m,n),

∨k
i=1 ϕ)

`−→ {Comb((m′i, ϕ), (n′,¬ϕ))}i;

(vii) Comb((m,
∧k
i=1 ϕi)

τ−→ {(m,ϕi)}i, (n,
∨k
i=1 ¬ϕi)

τ−→ (n,¬ϕi0)) =

((m,n),
∧k
i=1 ϕi)

τ−→ Comb((m,ϕi0), (n,¬ϕi0));

(viii) Comb((M,
∨k
i=1 ϕi)

τ−→ (M,ϕi0), (N,
∧k
i=1 ¬ϕi)

τ−→ {(N,¬ϕi)}i) =

((M,N),
∨k
i=1 ϕi)

τ−→ Comb((M,ϕi0), (N,¬ϕi0))

Rules (v) and (vi) of Definition 19 duplicate the subformula ϕ, but the obtained formula is logically equivalent

to the original one. We treat each copy separately; in particular, we keep track of correspondences between each

Exploring Inconsistencies between Modal Transition Systems 33

1, [b] · · · ∧ [c] . . .

0, Λ = 〈a〉 . . .

1, [b] . . . 1, [c] . . .

2, 〈d〉 . . . 2, 〈d〉 . . .

3, 〈c〉 . . . 3, 〈b〉 . . .

4, 〈c〉 . . . 4, 〈a〉f

4, 〈a〉 . . .

a

τ τ

b c

d d

c b

c

(a)

0′,¬Λ = [a] . . .

1′, 〈b〉 · · · ∨ 〈c〉 . . . 2′, 〈b〉 · · · ∨ 〈c〉 . . .

1′, 〈b〉 . . . 2′, 〈c〉 . . .

3′, [d] . . . 4′, [d] . . .

5′, [c] . . . 5′, [b] . . .

7′, [c] . . . 6′, 〈a〉t

7′, 〈a〉 . . . 8′, t

8′, 〈d〉t

9′, t

a a

τ τ

b c

d d

c b

ac

a

d

(b)

Fig. 15 The original proof-trees showing that Λ is true in model X and false in model Y: (a) a proof-tree for X � Λ; (b) a

proof-tree for Y � ¬Λ.

child and each duplicate. Note that we actually lose some information in cases (vii) and (viii), but it is either not

important (in the sense that it represents a proof for a part of the formula that gets removed) or present in a sibling,

and can be retrieved when needed. The main property of this combined tree is that in each node ((m,n), ϕ′) with

both m 6= ∗ and n 6= ∗, m � ϕ′ and n � ¬ϕ′. This property holds because for each such ((m,n), ϕ′), there are

nodes (m,ϕ′) ∈ Πϕ
M and (n,¬ϕ′) ∈ Π¬ϕN .

Example. Combining the proof-trees of Figure 15 yields the proof-tree in Figure 16(a). If we project it onto the

pseudo-merge of models X and Y , displayed on Figure 17, we get almost the entire graph (only the self-loop on b

in state (4, 6′) is not included in the projection). Here, we do not have a DAG because of the loop on state (4, 7′)

(hence the graph is not acyclic); furthermore, there are outgoing transitions on both b and c from state (3, 5′),

34 Mathieu Sassolas et al.

(0, 0′), Λ = 〈a〉 . . .

(1, 1′), [b] · · · ∧ [c] . . . (1, 2′), [b] · · · ∧ [c] . . .

(1, 1′), [b] . . . (1, 2′), [c] . . .

(2, 3′), 〈d〉 . . . (2, 4′), 〈d〉 . . .

(3, 5′), 〈c〉 . . . (3, 5′), 〈b〉 . . .

(4, 7′), 〈c〉 . . . (4, 6′), [a]f

(4, 7′), [a] . . . (∗, 8′), f

(∗, 8′), [d]f

(∗, 9′), f

a a

τ τ

b c

d d

c b

c a

a

d

(a)

(0, 0′), Υ = 〈a〉 . . .

(1, 1′), [b] · · · ∧ [c] . . . (1, 2′), [b] · · · ∧ [c] . . .

(1, 1′), [b] . . . (1, 2′), [c] . . .

(2, 3′), 〈d〉 . . . (2, 4′), 〈d〉 . . .

(3, 5′), 〈c〉 . . . (3, 5′), 〈c〉 . . .

(4, 7′), [a]f (4, 7′), [a]f

(∗, 8′), f (∗, 8′), f

a a

τ τ

b c

d d

c c

a a

(b)

Fig. 16 (a) Combination of the proof-trees of Figure 15. τ transitions between identical nodes have been ignored to reduce the

size of the tree. (b) Reduction of the tree in part (a).

violating condition (5) of Definition 16, and there is a transition stemming from a disagreement state (∗, 8′) on a

which violates condition (3) of Definition 16.

A.2 Reducing the combination

Now we prune the tree, removing parts of the proof which are not needed to show the explanation of the inconsis-

tency. We begin by removing loops. Suppose that two states are inconsistent and there are two ways of showing it,

in terms of proofs of formulas ϕ and ϕ′. If ϕ′ is a subformula of ϕ, the witness ϕ′ is smaller and therefore would

be preferred. Similarly, the witness is obtained as long as one of the proof-trees being combined has reached a leaf.

More formally, we apply the following procedure to Πϕ
(M,N):

Exploring Inconsistencies between Modal Transition Systems 35

Y +pm X : 0, 0′

1, 1′

1, 2′

2, 3′

2, 4′

3, 5′

4, 7′

4, 6′

∗, 8′ ∗, 9′

a

a

b

c

d

d

c

b

c

a

b

a

d

d

Fig. 17 Pseudo-merge of the models of Figure 14.

Step 1 Replace each non-leaf node ((m, ∗), ϕ′) by a leaf ((m, ∗), t), and each non-leaf node ((∗, n), ϕ′) by a leaf

((∗, n), f).

Step 2 For each node pair (m,n), find the set Fm,n of all nodes of the form ((m,n), ϕ′′). Aiming to produce the

shortest proof (and thus the smallest distinguishing formula), we choose those that cannot be further reduced.

We do this by selecting a node ((m,n), ϕ′′) ∈ Fm,n such that no descendent of it is in Fm,n, replacing all

subtrees rooted in ((m,n), ϕ′) by the one rooted in ((m,n), ϕ′′).

Step 3 For each node ((m,n), [`]ϕ′) with only one child ((m′, n′), ϕ′′), if m `−→r m
′ ∈M , then change [`]ϕ′ into

〈`〉ϕ′. This is necessary in cases where a path is an explanation for a formula and its negation. TheF operator

arbitrarily chooses the formula to be true in the first model and false in the other; this step anticipates this

choice when building the new formula.

Step 4 Propagate the changes made to the formulas bottom-up. Since we have kept track of the correspondences

between children and subformulas, if the child has changed, we update the corresponding subformula in the

parent. Since we have made copies of the formulas, a change in one subtree does not affect its sibling.

The result of this procedure is a new treeΠϕ′

(M,N). Note that all τ transitions have been collapsed in step 2. Therefore,

all formulas are either constants t and f , or start with 〈`〉 or [`]. In the latter case, the outgoing transitions are labelled

with `.

In Section A.4, we show that this tree encodes the proofs of ϕ′ in the original models M and N , that is, we can

extract proof-trees Πϕ′

M and Π¬ϕ
′

N from it.

Example Applying the procedure described above to our example means replacing the branch

(4, 7′), [a][d]f
a−→ (∗, 8′), [d]f d−→ (∗, 9′), f

by

(4, 7′), [a]f
a−→ (∗, 8′), f .

36 Mathieu Sassolas et al.

Then we note that the pair of states (3, 5′) appears twice (we do not count the trivial collapsing of τ transitions).

Since neither of the (3, 5′) nodes are ancestors of one another, we can choose either of them to replace the other.

Suppose that we choose to keep the subtree for the formula 〈c〉〈c〉[a][a]f (note that the changes made to one of

the branches of the proof-tree are not yet reflected in the formula). This still gives us two occurrences of the node

(4, 7′). In that case, the one labelled with 〈c〉[a][a]f is an ancestor of the one labelled with [a][a]f . We therefore keep

the latter and replace the former. Finally, we update the labels of the formulas, starting from the leaves, yielding the

new tree of Figure 16(b). The transformation of the tree yields a transformation of the formulas, i.e., instead of the

original formula Λ, the root of this tree is now labelled by the formula

Υ = 〈a〉([b]〈d〉〈c〉[a]f ∧ [c]〈d〉〈c〉[a]f).

Note that the graph we obtain by projecting this tree onto the pseudo-merge is a distinguishing DAG.

A.3 Obtaining a distinguishing DAG

Here we show that the distinguishing formula is induced by the pseudo-merge. Let us consider the projection of

Πϕ′

(M,N) onto M +pm N . This projection is possible because each non-τ transition in the original tree Πϕ
(M,N) cor-

responds to at least one required transition in an original model, thus complying with condition (2) of Definition 16.

The reason for this is as follows. Rules in Figure 7 (except MM, Γ∗, or ∗Γ when γ = m) add a required transition to

M+pmN . This transition is not removed because removal happens only if there is no inconsistency on a label ` and

we assume that a distinguishing property starts with `. Since the transformation of Πϕ
(M,N) into Πϕ′

(M,N) collapses

only those nodes that share the same labels for states, and never adds transitions, we can still project it onto the

pseudo-merge.

Moreover, step 2 of the transformation removes all loops. Therefore, the projection is a DAG, as required by

condition (1) of Definition 16. Step 1 has removes all transitions from nodes corresponding to (m, ∗) or (∗, n).

Hence. the projection satisfies condition (3) of Definition 16.

In addition, all leaves of the proof are either created by step 1 or are copies of leaves of the original proof, created

either by case (iii) of Definition 19, followed by an application of case (i), or, dually, by case (iv) followed by case

(i). In all such cases, the leaves are disagreement states, and condition (4) of Definition 16 holds.

By step 2, all nodes corresponding to a pair of states correspond to the same formula, with the outgoing transition

from these labelled by the first letter of the formula. Thus, condition (5) holds.

Finally, in cases where the formula starts with 〈`〉, we have combined a proof-tree for 〈`〉ϕ with one for [`]¬ϕ.

By construction, we consider a single required transition inM and all possible transitions inN . By a dual reasoning,

condition (6) of Definition 16 holds in the case when the formula starts with [`]. Therefore, we can project Πϕ′

(M,N)

onto the pseudo-merge and obtain a distinguishing DAG.

Exploring Inconsistencies between Modal Transition Systems 37

A.4 Extracting a formula

We now show that ϕ′ is exactly the formula obtained by applying the F operator on the DAGG built in Section A.3.

The proof is by structural induction on the size of G.

By step 1 of the transformation, cases (i) and (ii) of Definition 17 guarantee that F applied to a DAG with a

single transition yields a formula that labels the corresponding proof-tree.

Inductive hypothesis: Suppose that F applied to any subgraph of G yields the formula that labels the corre-

sponding proof-tree.

Inductive case: Suppose case (iii) of the F operator is applied. That means that we have used the case (v) of

the Comb operator to produce the tree (or the subtree that has now replaced it). In that case, we have introduced a

conjunction of formulas, one for each child. Even if the formulas were originally identical, they may have changed

during the transformation. In all cases, the propagation of changes by step 4 changed the placeholder into the formula

that now labels the corresponding child. Since each child is labelled with the formula that could have been produced

by the F operator over the projection, so does the parent. Case (iv) being dual, nodes are always labelled with the

formula that would have been produced by the application of the F operator over the projection of Πϕ′

(M,N) over

M +pm N .

Therefore, applying F to the initial state of the DAG yields the formula ϕ′.

A.5 Building new proof-trees

We now show that ϕ′ produced in Section A.4 is still distinguishing by producing proof-trees for each model. We

do so by applying the Split operator defined below to the tree Πϕ′

(M,N), resulting in proof-trees Πϕ′

M and Π¬ϕ
′

N .

Definition 20 (The Split operator) Let T be a tree whose nodes are in (S1×S2)×Lpµ. The Split operator is defined

inductively as follows, with ⊥ being the empty tree; transitions leading to ⊥ are ignored:

(i) Split((m, ∗), t) = ((m, t),⊥)

(ii) Split((∗, n), f) = (⊥, (n, t))

(iii) Split(((m,n), 〈`〉
∧k
i=1 ϕi)

`−→ {((m′, n′i), ϕi)}i) =

((m, 〈`〉
∧k
i=1 ϕi)

`−→ (m′,
∧k
i=1 ϕi)

τ−→ {Πϕi

m′}i, (n, [`]
∨k
i=1 ¬ϕi)

`−→ {(n′i,
∨k
i=1 ¬ϕi)

τ−→ Π¬ϕi

n′
i
}i)

where ∀i ∈ {1, . . . , k}, (Πϕi

m′ , Π
¬ϕi

n′
i

) = Split(((m′, n′i), ϕi))

(iv) Split(((m,n), [`]
∨k
i=1 ϕi)

`−→ {((m′i, n′), ϕi)}i) =

((m, [`]
∨k
i=1 ϕi)

`−→ {(m′i,
∨k
i=1 ϕi)

τ−→ Πϕi

m′
i
}i, (n, 〈`〉

∧k
i=1 ¬ϕi)

`−→ (n′,
∧k
i=1 ¬ϕi)

τ−→ {Πϕi

n′ }i)

where ∀i ∈ {1, . . . , k}, (Πϕi

m′
i
, Π¬ϕi

n′) = Split(((m′i, n
′), ϕi))

If none of the above cases is applicable, then the result of the Split operator is undefined.

38 Mathieu Sassolas et al.

1, [b] · · · ∧ [c] . . .

0, Υ = 〈a〉 . . .

1, [b] . . . 1, [c] . . .

2, 〈d〉 . . . 2, 〈d〉 . . .

3, 〈c〉 . . . 3, 〈c〉 . . .

4, [a]f 4, [a]f

a

τ τ

b c

d d

c c

(a)

0′,¬Υ = [a] . . .

1′, 〈b〉 · · · ∨ 〈c〉 . . . 2′, 〈b〉 · · · ∨ 〈c〉 . . .

1′, 〈b〉 . . . 2′, 〈c〉 . . .

3′, [d] . . . 4′, [d] . . .

5′, [c] . . . 5′, [c] . . .

7′, 〈a〉t 7′, 〈a〉t

8′, t 8′, t

a a

τ τ

b c

d d

c c

a a

(b)

Fig. 18 The proof-trees obtained from the reduced tree of Figure 16(b): (a) X � Υ and (b) Y � ¬Υ .

Note that because of the form of trees built by our algorithms, the above definition is total. That is, one of the cases

(i)-(iv) always applies. To prove that the trees produced by Split are indeed proof-trees, we just have to show that

in the case of [`] (resp. 〈`〉), we consider all possible transitions on ` in M (resp. N). This is the case because we

started with proof-trees and never removed just transitions; instead, we replaced nodes by other nodes from the tree.

When we did remove transitions, we removed all of them, changing the formula accordingly.

Finally, we show that the proofs we produced are subgraphs of the ones we initially had. Since we never added

transitions and only replaced nodes with those with the same labels, all transitions of the projection of Πϕ′

M over M

(resp. Π¬ϕ
′

N over N) are also transitions of the projection of Πϕ
M over M (resp. Π¬ϕN over N).

Example When we split the tree of Figure 16(b), we obtain the proof-trees of Figure 18. The projection of each of

these new proof-trees is a subgraph of the projection of the original corresponding proof-tree, as expected.

B Algorithm to build a distinguishing DAG

In this section, we describe the algorithm BUILDDAG. It builds a path to the targeted boundary disagreement

transition. The algorithm uses the t operator, defined below, that computes a “union” of sets whose elements are of

Exploring Inconsistencies between Modal Transition Systems 39

the form (a,B), where B is a set. The elements having the same head (e.g., (a,B) and (a,C)) are merged into a

single pair by merging B and C. For example,

{(a, {1, 2}), (b, {2, 3}), (c, {1, 3})} t {(a, {2, 3}), (c, {0, 1})} = {(a, {1, 2, 3}), (b, {2, 3}), (c, {0, 1, 3})}

Definition 21 (S t T) Let S and T are sets of pairs of the form (a,B), where B is a set. Then,

S t T = {(a,B ∪ C)|(a,B) ∈ S ∧ (a,C) ∈ T} ∪ {(a,B)|(a,B) ∈ S ∧ @C · (a,C) ∈ T} ∪

{(a,C)|(a,C) ∈ T ∧ @B · (a,B) ∈ S}

The algorithm BUILDDAG uses a sub-routine to add the needed transitions to comply with the conditions re-

quired by the definition of a distinguishing DAG (Definition 16). The newly added transitions may require additional

transitions in order to actually obtain a distinguishing DAG, hence the DAG is computed as a fixpoint.

Recall the example in Figure 11 of Section 6. It showed that there are cases when M and N are inconsistent

MTSs over the same alphabet and yet a distinguishing DAG containing a given (boundary disagreement) transition

does not exist. We thus define the following notion of correctness of Algorithm 1:

Property 3 (Correctness of Algorithm 1) Let M = 〈SM , Act,∆r
M , ∆

p
M ,m0〉 and N = 〈SN , Act,∆r

N , ∆
p
N , n0〉 be

inconsistent MTSs. If the distinguishing DAG of P = M +pm N with the user-specified transition (mu, nu)
`−→r

(m′u, n
′
u) ∈ P exists, Algorithm 1 computes it.

Proof We shall show that the graph that is built by BUILDDAG is indeed a distinguishing DAG, as defined by

Definition 16. First, we do build a DAG, because before adding new vertices, we check that the pair of states is not

in the set F of ancestors in the graph we are constructing, preventing the inclusion of any cycle in the graph. In each

case of the call to SUBROUTINE, every transition we add corresponds to a required transition at the leaf of one of

the models. Therefore, by one of the rules RR, RM, MR, RF, FR, the transition we are adding to the DAG should

be a required one. Because we never add states from DM ∪DN in sets I or J , we never take transitions that stem

from one of these in the DAG. On the other hand, a transition is a leaf only if it has been built by one of the two first

cases of SUBROUTINE: otherwise, we add its targets to one of the set I or J , unless it has already been visited. In

both cases, the pair has been or will be visited, and visiting a state means adding transition from it in the DAG. As

we visit a given pair of states only once, and since an application of the SUBROUTINE adds transitions labelled by

only one letter, all transitions stemming from a node of our DAG will have the same letter. Finally, the conditions of

lines 10 and 19 of the algorithm ensure that we add all transitions on a given symbol for one of the MTSs and only a

single, required, transition for the other. Therefore, the graph returned by BUILDDAG is a distinguishing DAG. ut

40 Mathieu Sassolas et al.

Algorithm 1 BuildDAG
1: procedure BUILDDAG(M,N)

2: Let 〈SM , Act,∆r
M ,∆

p
M ,m0〉 =M

3: Let 〈SN , Act,∆r
N ,∆

p
N , n0〉 = N

4: Let P =M +pm N

5: Choose (mu, nu)
`−→r (m

′
u, n

′
u) ∈ P such that (m′

u, n
′
u) ∈ DM ∪DN (∗ Chosen by the user ∗)

6: Let π be a required agreement path with no loop to (m1, n1) traversing only pairs of inconsistent states

7: π = π :: ((mu, nu)
`−→r (m

′
u, n

′
u)) (∗ Extend π with our goal transition ∗)

8: X = ∅ (∗ Set of visited states ∗)

9: Let I = {((m,n), {(m,n)})|(m,n) ∈ π} (∗ Pairs of states to traverse first ∗)

10: Let J = ∅ (∗ Pairs of states to traverse ∗)

11: Let G = ((m0, n0), V,∆G) = ((m0, n0), {(m0, n0)}, ∅) (∗ A placeholder for the DAG ∗)

12: while I ∪ J 6= ∅ do

13: if I = ∅ then

14: Let (m,n), F = J.pop()

15: else

16: Let (m,n), F = I.pop()

17: X = X ∪ {(m,n)}

18: if (m,n) a−→r (m
′, n′) is a step in π then

(∗ Try to apply the normal algorithm with letter a ∗)

19: Let success = SUBROUTINE(m,n, F, {m′}, {n′}, {a})

20: if ¬ success then

21: Backtrack

22: else

23: Let success = SUBROUTINE(m,n, F, SM , SN , Act) (∗ Apply the normal algorithm ∗)

24: if ¬ success then

25: Backtrack

26: return G

Exploring Inconsistencies between Modal Transition Systems 41

Algorithm 2 SubRoutine
1: procedure SUBROUTINE(m,n, F, targetsM , targetsN , subAct)

2: if m a−→r m
′ ∧ n

a

6−→ ∧m′ ∈ targetsM ∧ a ∈ subAct then (∗ Rule RF ∗)

3: V = V ∪ {(m′, ∗)}

4: ∆G = ∆G ∪ (m,n)
a−→r (m

′, ∗)

5: return True

6: else if n a−→r n
′ ∧ m

a

6−→ ∧ n′ ∈ targetsN ∧ a ∈ subAct then (∗ Rule FR ∗)

7: V = V ∪ {(∗, n)}

8: ∆G = ∆G ∪ (m,n)
a−→r (∗, n′)

9: return True

10: else if m a−→r m
′ ∧ (∀n′, n

a−→p n
′ ⇒ ¬Cons(m′, n′) ∧ (m′, n′) /∈ F) ∧ m′ ∈ targetsM ∧ a ∈ subAct then

(∗ Rule RR or RM ∗)

11: Let T = {n′|n a−→p n
′}

12: V = V ∪ {(m′, n′)|n′ ∈ T}

13: ∆G = ∆G ∪ {(m,n)
a−→r (m

′, n′)|n′ ∈ T}

14: for n′ ∈ T such that (m,n) a−→r (m
′, n′) ∈ π do

15: I = (I t {((m′, n′), F ∪ {(m′, n′)})}) \X

16: T.remove(n′)

17: J = (J t {((m′, n′), F ∪ {(m′, n′)})|n′ ∈ T}) \X

18: return True

19: else if n a−→r n
′ ∧ (∀m′,m

a−→p m
′ ⇒ ¬Cons(m′, n′) ∧ (m′, n′) /∈ F) ∧ n′ ∈ targetsN ∧ a ∈ subAct then

(∗ Rule RR or MR ∗)

20: Let T = {m′|m a−→p m
′}

21: V = V ∪ {(m′, n′)|n′ ∈ T}

22: ∆G = ∆G ∪ {(m,n)
a−→r (m

′, n′)|n′ ∈ T}

23: for m′ ∈ T such that (m,n) a−→r (m
′, n′) ∈ π do

24: I = (I t {((m′, n′), F ∪ {(m′, n′)})}) \X

25: T.remove(m′)

26: J = (J t {((m′, n′), F ∪ {(m′, n′)})|m′ ∈ T}) \X

27: return True

28: else

29: return False

