
Modeling DoS Attacks in WSNs with Quantitative Games

Quentin Monnet
Lab. LACL,

Université Paris-Est, France
quentin.monnet@lacl.fr

Mathieu Sassolas
Lab. LACL,

Université Paris-Est, France
mathieu.sassolas@lacl.fr

Lynda Mokdad
Lab. LACL,

Université Paris-Est, France
lynda.mokdad@u-pec.fr

Abstract—In this article, we propose to use game theory to model
our WSN network. In this setting, the goal of the compromised node is
to keep disrupting the network while remaining alive. The game studied
is a two-player quantitative infinite game on a finite graph, where each
transition can change some energy levels and some reward. The goal of
the compromised node is hence to maximize its reward while maintaining
a positive energy level. On the theoretical side, we show that solving these
games is not algorithmically possible if the objective is too complex. We
can however provide solutions in some restricted cases. The ultimate
purpose is to demonstrate that, with the presented detection solution, a
compromised node cannot “win the game”, and hence either gets detected,
dies, or behaves as an normal (sane) node would. Keywords: WSN,
Security, Game theory

I. INTRODUCTION

Projects such as the Internet of things or smart cities are most
probably going to interconnect a multitude of devices, and to bring
many functionalities to the end user through an extensive use of
connected sensors. Ambient light, temperature, air pollution degree
measurement, or traffic monitoring are mere examples of civil appli-
cations involving those sensors. There are also military uses: sensors
may be deployed as networks to detect the presence of biological,
chemical or nuclear agent, or to monitor infantry units.

Such networks are called wireless sensor networks (WSNs). The
sensors (or nodes) are small devices able to gather data on their
physical environment. They communicate with one another through
radio transmission, but they have low resources at their disposal:
limited computing power, limited memory, as well as a limited battery.
They are often dropped into hostile areas (by helicopter for instance),
or may generally be difficult to access, so the batteries must be
considered as single-use. The sensors have to self-organize themselves
and to deploy low-consuming routing algorithms so as to create a
functional network. All relevant data is forwarded to an entity called
base station (BS), which does not have the same limitations as the
sensors, and acts as an interface between the WSN and the user (or
the external world).

An important issue with WSNs is the security of the network. It
may be necessary to ensure that data flowing in the network cannot be
overheard (confidentiality), or that each participant in a data exchange
is actually the one it pretends to be (authentication). This is especially
important in the case of military uses, as collected data must not be
accessible to the enemy. Availability is also an important property:
once the network is deployed, it should be accessible for its intended
use. Sometimes an opponent disagrees with that, and tries to launch
a denial of service (DoS) attack to disrupt the network. In this article
we try to prevent some of these attacks. More precisely, we consider a
compromised node trying to send more messages than other legitimate
sensors and dropping the packets it should forward. Then we try to
create a situation in which the rogue node either fails to reach is goal,
dies (i.e. runs out of power), or gets detected.

To this aim, we model the running network as a game. Two
quantitative aspects are taken into account: the energy levels of the
sensors and the number of messages that they successfully send to
the base station. While legitimate sensors try to collaborate so as to
provide an efficient service, the compromised node may drop received
packets and tries to send as many of its own messages as possible.
The number of successfully sent messages may be seen as a “reward”,
a payoff; we mostly consider the mean-payoff value, that is to say the
payoff of a player divided by the number of its actions. The energy,
on the other hand, leads to a strong constraint: a node whose energy
level drops to zero dies and immediately looses the game.

The contributions of this paper are twofold: we provide a game
model to deal with wireless sensor networks which is well-suited
to deal with the constraints of such networks (energy consumption
and availability as a goal). Then we study the theoretical properties of
these games. We show that if a broad range of objectives on the energy
and payoff values are allowed, deciding which player wins the game
becomes undecidable. However, when limiting the scope of allowed
objectives, we obtain algorithms to decide whether a compromised
node may harm the system.

The rest of the paper is organized as follows: Section II briefly
introduces some related work achieved over the same research area.
Section III presents the problems and model we use for our quantita-
tive games. We introduce the theoretical results in Section IV. At last,
the conclusion in Section V permits us to sum up our contribution
and to consider future work leads.

II. RELATED WORK

A. WSNs and DoS attacks

Security in wireless sensor networks has been deeply investigated
over the last years. While generally facing the same security issues
as generic wireless network, WSNs cannot resort to heavy intrusion
detection systems (IDSs) or to highly consuming cryptographic pro-
tocols. Thus a variety of mechanisms addressed to WSNs have been
proposed. Many of them provide solutions to ensure data privacy [7],
or authentication [11] in the network.

The issue at hand in this paper is the availability of the network.
We want to ensure that the network remains up and running, no matter
what an attacker attempts. There are many existing denial of service
attacks. Some may consist in basically jamming the channel used
for communication with radio noise. Other attacks can target higher
level such as the MAC protocols or the routing protocols [12]. For
instance we previously introduced a mechanism to elect monitoring
nodes in clustered networks so as to watch and detect potential rogue
nodes [7].

B. WSNs and game theory

The authors of [5] categorize game-theoretic approaches in WSNs
into three main categories: energy efficiency, security, and pursuit-
evasion. Pursuit-evasion games consist in a set of mobile players
trying to “capture” another set, to optimize tracking, while the
opponents aim at avoiding detection. The other two categories are
rather explicit: when looking for energy efficiency, games are used
to save as much energy as possible, by optimizing either the network
topology or their own behavior [3]. Security games, of course, oppose
normal sensors to attackers from inside or outside the network. In
a more recent survey [10] the pursuit-evasions games are just part
of a broader “application” category (along with data collection for
instance), whereas energy efficiency has been split into network
management (resources, power) and communication (QoS, topology,
routing design).

In [6] the authors model the interactions between the nodes and
an IDS as a Bayesian game (i.e. with partial information: the IDS
does not know a priori whether a given node is compromised). They
analyze the Nash equilibrium of this game to design a secure routing
protocol.

Repeated games are models involving sequences of history-
dependent game strategies: the players perform a sequence of actions,
and their strategies is influenced by what the other players have done
in the past. Those games are used in [1] to set up an IDS, or in a less
generic solution in [9], which relies on the acknowledgments upon
transmissions to detect a malicious node located in the forward data
path.

Our approach differs as the potential death (by exhaustion) of
nodes is included in the game constraints, alongside payoff values.
To the best of our knowledge, works related to this setting consider all
dimensions either as energy or as payoff, and deal only with conjunc-
tion [14]. In this case, the algorithms follow the same structure: the
game objective is decomposed according to each dimension and finite-
memory winning strategies for each dimension are retrieved. Then
these strategies are combined, possibly yielding an infinite-memory
strategy.

Some other works [13] deal with more involved objectives based
on combination of mean-payoff objectives using sum, max, and min
operators.

A little bit further from our approach, some authors consider
games with both a payoff requirement and a parity objective [2].
In that case the parity objective ensures that the system behaves
correctly, while the payoff represents a quantitative goal. In this
case, winning strategies may require infinite memory, although an
approximation can be obtained with finite memory. This kind of game
is however ill suited to the modeling of wireless sensor network, since
here the energy is an important factor to the life of the system.

III. INFINITE QUANTITATIVE GAMES ON FINITE GRAPH

We consider a network of sensors in the wild; one of them is
corrupted and may try to send lots of messages, forgetting its relay
role towards the others. The “normal” sensors try to collaborate, hence
they can be seen as the same coalition whose goal is for the whole
network to function properly. On the other hand, the corrupted sensor
tries to transmit as many messages as possible. They are all facing
one limitation: energy. Sending messages requires more energy than
waiting, hence it may lead to a timely death of a sensor.

A. The arena

The arena of the game is a graph G = (V,E) where V = Vc]Vg
is the set of states, partitioned between the states Vg of the good
sensors and the states Vc of the corrupted sensors. The edges E is
a subset of V × V such that for every q ∈ V, ∃q′ ∈ V, (q, q′) ∈ E,
i.e. there are no end states. The graph is weighted over k dimensions,
meaning there is a function w : E → Zk that assigns weights for
each dimension to every edge.

B. The semantics

A configuration of the game is a tuple (q, p) ∈ V × Zk: q is
the current state, p is the accumulated payoff. From a configuration
(q, p), if an edge e = (q, q′) is taken, then subsequent configuration
is (q′, p+ w(e)).

A run is an infinite sequence of such configurations. A finite
prefix of a run is called a history.

The partition of V decides which player chooses the next edge. A
strategy for a player is a function that gives this chosen state (hence
edge): σc : V ∗Vc → V , σg : V ∗Vg → V .

Given a pair of such strategies and an initial configuration,
the game yields a single run called outcome of the strategies:
outcome(σc, σg).

Remark 1: All the above definitions extend naturally to the case
of more than two players.

C. Winning conditions

Here, we consider zero-sum games: the goal of the good sensors
is to have the corrupted sensor lose. In the general sense, a winning
condition is a subset of the runs. For practical reasons, winning
conditions studied in the literature are ones that can be expressed
finitely: ω-regular conditions [4], and ones based on the values of
counters.

In our case, the dimensions of the weight can express either
an energy level or a payoff. We hence assume that dimensions
are separated into ke energy dimensions and kv payoff ones, and
a configuration is now (q, val, energ). Energy levels are meant to
remain above zero, regardless of their value. Payoffs can be negative,
although the goal of the player receiving the payoff is to maximize
it. Since we consider infinite runs, it is sensible to average the payoff
with respect to the length of the run, hence considering mean-payoff
as an objective.

The set of winning runs is then given by the set of runs that
satisfy a given payoff formula in the following grammar:

ϕ ::= ϕ ∨ ϕ | ϕ ∧ ϕ | ¬at at ::= pe ./ c | pv ./ c

where c ∈ N, ./∈ {≥, >} is a comparison operator pe is an energy
component and pv a payoff component. Note that constants c could
also be in Q and scaled back to N along the weights of transitions.

The semantics is as follows. A run ρ satisfies an atom pe ./ c
if for every i ∈ N, energ(ρi)e ./ c. A run ρ satisfies an atom pv ≥
c if lim supn→∞

val(ρ≤n)v

n
≥ c. That is, for a given component,

we consider the sum of all the weights divided by the number of
steps. Since runs are infinite, we consider the limit of this average for
prefixes of increasing length. Since the limit may not always exist, we
chose superior limit. This is consistent with the fact that the network

considers the worst case scenario. Although inferior limit can be used
from a modeling point of view, the solving of the games is more
involved.

The satisfaction of boolean combination of atoms is defined in
the classical way. Note that the negation can only happen to atoms.
Following classical vocabulary, an atom or its negation is called a
literal. In solving those games, we consider the positive fragment of
this logic, i.e. conjunctions of literals.

A run is hence winning if the formula is satisfied, written ρ � ϕ.

Remark 2: Without loss of generality, payoffs start with value 0,
while energy levels start with a non-zero positive value, called the
initial credit.

D. Decision problems

The decision problems that arise on this setting are the following:

• Winning problem: Given an initial configuration and a
payoff formula ϕ, is there a strategy σc for the corrupted
sensor such that for every strategy σg of the good sensors,
outcome(σc, σg) � ϕ?

• Initial credit problem: Given an initial state q and a
payoff formula , is there a value χ ∈ N such that the
winning problem from configuration (q, 0kp , χke) answers
positively?

IV. SOLVING GAMES WITH ENERGY AND PAYOFF

We address in this section the problem of solving these games.
We first show that it is undecidable to solve games where the winning
condition is an arbitrary payoff formula. Then we focus on the positive
fragment of such formulas, and give sufficient conditions for the game
to be solvable.

In order to give a general presentation, the two players in the
games will be called player 0 and player 1. Player 0 is the one that
has to fulfill the objective given by the payoff formula, hence he
represents the compromised node. On graphs provided as figures,
all its states are depicted as squares. On the other hand, player 1
represents the other nodes, and its states are depicted as circles.

A. Undecidability of the general case

In this section we show that there is no algorithmic solution to
solve the winning problem on these games if the winning condition
can be specified by any payoff formula. Namely, we show the
following:

Theorem 1: The winning problem and the initial credit problem
are undecidable for objective defined by a given payoff formula with
four energy components and one payoff component.

The proof consists in encoding the halting problem on two-
counter machines – which is known to be undecidable with such a
game. Each counter is represented by two energy components (one for
each player) carrying a copy of the value of said counter. In the case
of the 0-test, player 0 can claim that the counter was or was not null
and the second one can check the validity of the claim. If the machine
reaches its halting state, a reward component is incremented, and all
other components are reset to 0. Hence if the machine halts, player 0
has a winning strategy (encoding faithfully the machine’s behavior)
to get a strictly positive reward. Otherwise the reward remains null.

` ‘c = 0’ `1

stop‘c > 0’

`2 stop′

(0, 0, 0, 0, 0) (0, 0, 0, 0, 0)

(0,−1, 0, 0, 0)(−1,−1, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 0)

(0, 0, 0, 0, 1)

Figure 1. Module for encoding a 0-test instruction into a game: “if c = 0
then goto `1 else decrement c and goto `2”.

More precisely, a two-counter machine is a list of labeled instruc-
tions which can be:

• increment: increment counter c (resp. d) and goto label `

• 0-test: if c = 0 (resp. d = 0) then goto `1 else decrement c
(resp. d) and goto `2

• halting: halt

The first label is the initial one. Initially, both counters are set to 0.

Now given a machineM, we build an arena GM based on small
modules for each kind of instructions (for counter c, it is symmetrical
for d). The arena has 5 components c, c′, d, d′, p, where only p is a
payoff. Components c and c′ (resp. d and d′) are supposed to always
retain the same value, except in the 0-test. Initially, all components
have value 0.

The goal of player 0 is to obtain a strictly positive payoff while
faithfully simulating the machine. The faithful simulation depends on
the component’s values: c and d must remain positive. Components
c′ and d′ ensure that player 1 cannot wrongfully claim that player 0
cheated. If so, their value will be strictly negative. As a result, the
winning condition is the satisfaction of the following payoff formula:

(c ≥ 0 ∧ d ≥ 0 ∧ p > 0) ∨ (c′ < 0 ∧ c ≥ 0) ∨ (d′ < 0 ∧ d ≥ 0)

Each labeled instruction has a state in the arena belonging to
player 0, with the same label (some other states will be added). The
case of incrementation is trivial if instruction ` is “increment c then
goto `′”, then there is an edge from ` to `′ with weights (1, 1, 0, 0, 0).
There is no other edge from `, so the player has no choice.

The 0-test is trickier, since player 0 could “cheat” by choosing
the wrong branch of the conditional. Formally, assume ` is “if c = 0
then goto `1 else decrement c and goto `2”. Then there are two edges
stemming from state `: one claiming that c = 0, the other claiming
that c > 0, as depicted in Figure 1. The edge claiming that c = 0 goes
to a state owned by player 1, which can either accept the claim (hence
going into `1) or reject it. Rejecting the claim means decrementing c′

(but not c) and going to a stop state: this state has one edge to itself
labeled (0, 0, 0, 0, 0), meaning the simulation has stopped. Note that
wrongfully rejecting the claim means that c′ < 0 while c = 0, since
c and c′ were equal. Rightfully rejecting it means that the payoff is
null.

Similarly, the claim that c > 0 is made by an edge decrementing
both c and c′ (hence (−1,−1, 0, 0, 0)), and going to state of player 1.
He can either follow with the simulation or go to a stop′ state. This
state has a single edge to itself labeled (0, 0, 0, 0, 1), meaning the

halt check

stop

`0

(−1,−1, 0, 0, 0)

(0, 0,−1,−1, 0)

(0, 0, 0, 0, 0)

(0,−1, 0, 0, 0) (0, 0, 0,−1, 0)

(0, 0, 0, 0, 1)

(0, 0, 0, 0, 0)

Figure 2. Module for encoding the halting instruction into a game.

simulation has stopped but the payoff is 1. If player 0 cheated, then
c < 0 and the simulation need not go further. If he didn’t, then both
c > 0 and c′ > 0, and p > 1.

Finally, upon reaching the halt state, player 0 decreases both c and
c′ at will, then go to a check state. State check belongs to player 1,
and behaves as in the case of 0-test where player 0 claimed that
c = 0. The same is also done for d, and finally an edge goes back
from check to the initial state giving a reward to the p component:
(0, 0, 0, 0, 1). This module is depicted in Figure 2.

Now assume that machine M halts. Consider the strategy of
player 0 that plays faithfully i.e. claims exactly what the counter
value tells (and in the end decrements components so that they exactly
reach 0). Then if player 1 never claims wrongdoing, counters c and d
remain positive as in M. In addition, assume M finished in k steps
and let ck and dk be the values of c and d, respectively, upon reaching
the halting instruction. Then the run of the machine is then at most
2k steps in the game (because of the claims that must be accepted),
then from the halt state the game needs ck + dk + 2 steps to reach
the initial state again: it is the number of steps required in order to
decrement both counters and traverse the module of Figure 2. Hence
the mean payoff is at least 1

2k+ck+dk+2
> 0.

If player 1 rejected a claim:

• if c = c′ = 0 but player 1 decremented c′ to contest the
claim, then the game “stops” but condition c′ < 0 ∧ c ≥ 0
is satisfied;

• if c = c′ ≥ 0 after decrementation but the game was
“stopped”, payoff is 1 while both c and d are above 0, hence
condition c ≥ 0 ∧ d ≥ 0 ∧ p > 0 is satisfied.

As a result, this faithful simulation strategy is winning.

On the other hand if M does not halt, faithful simulation yields
a payoff of 0 provided player 1 never wrongfully attacks a claim (the
halt state is never reached, and if player 1 does not claim cheating,
stop′ is not reached either). Note that in case of unfaithful simulation
from player 0, player 1 only needs to detect this fault: either c < 0
or the payoff is irremediably null.

This construction can be adapted to the initial credit problem: one
needs to add a module before the initial state that resembles the halt
module, in the sense that it ensures bringing all energy levels to 0.
Hence any initial credit is irrelevant and player 0 wins if and only if
M halts.

B. The positive fragment

We now consider the initial credit problem. It is “easier” for the
compromised node to win for this game rather than for the corre-
sponding winning game. Additionally, it is common when combining
strategies that an initial credit required to win is increased; in other
words, strategies for the winning problem are usually not robust
enough. From the model point of view, solving this problem yields
more information: if a strategy and a credit are found, they give an
actual value to which the initial energy level must be set.

We show in this section that winning strategies for objectives
defined by literals may be combined into a winning strategy for the
whole objective.

First, the case of a literal is the well-studied case of either energy
games or mean-payoff games. These games have simple solutions,
in the sense that (1) these games are determined, i.e. one of the
player has a winning strategy; (2) if a winning strategy exists, there
exists one with finite memory; (3) which player wins the game can
be decided in NP∩ coNP [15]. Moreover, it was proved in [14] that
finite memory suffice to win a conjunction of energy requirements.
The case of conjunction of payoff requirement has also been studied
in [14], where the memoryless strategies for each payoff condition
is combined into infinite memory strategies for the whole objective.
For example, when mean-payoff is defined with the superior limit:
each strategy is played in increasingly longer phases until reaching
the desired value.

As a result we here focus on mixing energy and payoff objectives.
Remark that since the objective of the compromised node is a
conjunction of literals, it is clear that if the objective specified by
one of the literals cannot be achieved, then the conjunction cannot,
hence the game cannot be won.

If there are strategies for each of the objectives, it may be possible
to combine finite-memory winning strategies for each of the literals
into a single winning strategy, possibly needing infinite memory. We
provide sufficient conditions to do so; finding an algorithm for this
problem is still open.

1) Attractors: In two-player games, it is common to use the notion
of attractor of a set Q to denote states where a player can force the
play to reach Q.

Definition 1: The 1-step attractors for players 0 and 1 of a set
Q of states are defined as follows:

1Attr0(Q) =
{
q ∈ V0

∣∣ ∃(q, q′) ∈ E s.t. q′ ∈ Q
}

∪
{
q ∈ V1

∣∣ ∀(q, q′) ∈ E, q′ ∈ Q}
1Attr1(Q) =

{
q ∈ V0

∣∣ ∀(q, q′) ∈ E, q′ ∈ Q}
∪
{
q ∈ V1

∣∣ ∃(q, q′) ∈ E s.t. q′ ∈ Q
}

The attractors for player 0 (resp. player 1) of a set Q of states are
the fix-point of the 1-step attractor, starting from Q: for i ∈ {0, 1},

Attri(Q) =
⋃
j∈N

(1Attri)j (Q)

The attractor of player i is therefore the set of states from which
he can ensure that the play reaches Q. Note that from any state in
(1Attri)j(Q), player i has a memoryless strategy to reach Q in at
most j steps. Since the fix-point is reached in at most |V | iterations,

Q can be reached in at most |V | steps from any state of Attri(Q).
Note that this bound also shows that attractors can be computed in
polynomial time.

Lemma 2: From any state of Attri(Q), player i has a memoryless
strategy that ensures reaching Q in at most |V | steps.

A property of attractors in games is that they can be “safely”
removed from a game while leaving the graph structure still a game
(i.e. without end-states):

Lemma 3: Let G = 〈V0, V1, E〉 be a game graph (i.e. such that
every state of V has an outgoing edge in E). Let j ∈ {0, 1} be a
player. Let Q ⊆ V and consider the graph G′ = (V ′0 , V

′
1 , E ∩ (V ′ ×

V ′)) with V ′i = Vi \Attrj(Q) for i ∈ {0, 1}. Then every state of V ′

has an outgoing edge in E ∩ (V ′×V ′), i.e. G′ is also a game graph.

Proof: Assume by contradiction that q ∈ V ′ has no outgoing
edge. Since q had an outgoing edge in E, it means that all successor
states of q belong to Attrj(Q). Then by definition of an attractor, so
does q, and q /∈ V ′.

2) Conjunction of an energy and payoff objective: In this first
simpler case, we study objectives for player 0 of the form pe ≥ ce ∧
pv ≥ cv , with ce, cv ∈ N. These objectives state that a certain reward
must be achieved while maintaining the energy level above a given
limit. A simple example of this kind of objective for a compromised
node is the greedy objective: to remain alive (pe ≥ 1) while sending
at least a message every 6 steps (pv ≥ 1

6
, as noted before, this can

be transformed into an integral threshold by multiplying each weight
of this component by 6).

First, it is clear that from states where one of the objective cannot
be fulfilled, player 0 cannot win. In addition, if player 1 can force to
reach such states, then the objective of player 0 cannot be fulfilled.
Namely, we use the classical notion of attractors defined above. We
write Le the states where player 0 loses for pe ≥ ce (i.e. player 1 has
a strategy to prevent that), and Lv the states where player 0 loses for
pv ≥ cv . It is clear that player 1 can prevent player 0 from winning for
objective pe ≥ ce∧pv ≥ cv from any state in Attrg(Le∪Lv). Hence
any winning strategy for player 0 must remain in G \Attr1(Le∪Lv).
Conversely, a winning strategy that remains in G \ Attr1(Le ∪Lv) is
also a winning strategy in G since player 1 cannot force the play into
Attr1(Le ∪ Lv), by the definition of attractors.

As a result, one can recursively remove states in G until player 0
wins for both objectives in every state. Note that if the game is empty
at that point, then player 0 cannot win from any state.

Now assume player 0 has winning strategies λe, λv for objectives
pe ≥ 1, pv ≥ 1

15
, respectively, that win from every state. Remark that

these strategies can be assumed to be memoryless, hence functions
from Vc to V .

Consider Ge the single player game obtained when player 0 plays
λe: each transition entering a state v ∈ Vc goes instead to λe(v), and
weights are added: v0

w1−−→ v
w2−−→ λe(v) is replaced by v0

w1+w2−−−−−→
λe(v). Similarly, let Gv the single player game obtained when playing
λv .

Let α be the lowest value that can be obtained for component
kv in a simple cycle in Ge, and dually β the lowest value that can
be obtained for ke in Gv . In other words, α is the worst that can
happen to reward when playing the strategy ensuring adequate level
of energy, while β is the worst that can happen to energy level when

q0 q1+1, 0

0, 0

−42,+1

0, 0

Figure 3. A simple game that requires infinite memory. The first component
is an energy level while the second is a payoff.

ensuring adequate reward. Note that if α ≥ cv , then λe is also a
winning strategy for objective pv ≥ cv , hence is a winning strategy
for the whole objective. Similarly, if β > 0, then λv ensures objective
pe ≥ ce provided the initial credit is adapted to the minimal sum of
weights reached along a cycle:

initial_credit = 1 + c+ min
ρ prefix of C
C cycle in Gv

we(ρ)

If the above sufficient condition is not fulfilled, we do not so far
have a solution for solving these games in the general setting. Indeed,
strategies for each component or the other can be incompatible.
For example, consider the (single-player) game of Figure 3. In this
example, q0 acts as a recharging state while q1 is an active state,
producing a useful effect rewarded by a payoff. One can see that
recharging the battery is much slower than using it, since it takes 42
“energy units” per active step.

One can achieve a positive energy (first component) at all times
by remaining in q0 (or going there if starting from q1). It is also
possible to achieve a payoff (second component) of 1 by remaining in
q1 (or going there if starting from q0, the transitive effect is negligible
in the long run). However, one cannot achieve a payoff of 1 while
maintaining the energy positive, since it takes 42 turns of “recharging”
before being allowed to do something rewarding.

3) Using bounded memory: However, one can consider that nodes
of a wireless sensor network are very limited in their resources, hence
can only implement finite memory strategies. In this case, bounding
a priori the amount of memory that can be used by player provides a
solution for solving the initial credit problem for games with winning
condition in the positive fragment.

A finite memory strategy is a strategy that can be implemented
by a finite deterministic Mealy machine: given the current state of
the machine and of the game, the machine produces an edge to be
played and the next state of the machine. The size of the memory is
the size of the Mealy machine.

For example, a finite memory strategy for the game of Figure 3
that loops 42 times in q0 then goes to q1, loops once there, and
goes back to q0 to start again can be represented by the machine of
Figure 4. This machine has 46 states, since it needs to count how
many times it has accumulated energy in q0. Note that if starting in
q1, the machine first goes back to q0 then applies the aforementioned
strategy. Also, a strategy must be complete on its input, hence it must
allow q1 to occur in any memory state (in this case it goes back to
the initial memory state and to q0 in the game).

Remark 3: Note that the strategies with given memory may not
be optimal. Consider for example the game of Figure 3 with objective
being to maintain the energy level above 0 and ensure a mean-payoff
greater than or equal to 1

43
.

An infinite memory strategy can win this game. It is defined by
phases, as follows. At the k-th phase, loop 42k times in q0, then go

m0 m1 . . . m42 m43

m44m45

q1|q0

q0|q0 q0|q0 q0|q0

q0|q1

q1|q1
q1|q0

q1|q0
q1|q0

q1|q0

q0|q0 q0|q0

Figure 4. A Mealy machine representing a finite memory strategy (46 states).
The input of edges is the current state of the game, the output is the chosen
next state.

to q1, loop k times, go back to q0. This ensures that the transitions
between q0 and q1 are negligible, hence the limit of the payoff is
1
43

, since 43 steps are needed to increment the payoff counter once.
In addition, at each phase the energy goes back to its initial value
(which can be 1), while only encountering positive values.

On the other hand, if only k states of memory are allowed, the
best payoff achievable is k

43k+2
(the corresponding strategy consists

in repeating phase k). Hence not only the optimal payoff cannot be
achieved, but allowing more memory allows to achieve better payoff.

Solving the game assuming player 0 has bounded memory k given
as input consists in guessing this strategy as a machine, which is
an exponential object if k is given in binary. Then the machine is
synchronized with the game, yielding a single-player game, to be
played by player 1. In this game, only memoryless strategies need to
be considered.

Indeed, any infinite path not satisfying pe ≥ ce ∧ pv ≥ cv either
is such that pe falls below ce or the limit average of pv is below cv .
In both cases this amounts to finding a lasso path in the graph, which
can be guessed.

Regarding complexity, the procedure described above is in
NEXPSPACE (equivalent to EXPSPACE [8, Chap. 20]), although
the bound is not tight.

V. CONCLUSION

In this paper, we presented a model of games well suited to
study the behavior of wireless sensor networks, combining energy
and payoff constraints. We considered the theoretical properties of
such games, first showing that a broad range of objectives yield
undecidability, then showing sufficient conditions where the game
can be decided. Future work include bridging this theoretical gap by
finding an exact algorithmic solution for the solving of such games in
order to detect greedy attacks; such attacks are not evident in wireless
sensor networks as the latter are built as distributed systems.

REFERENCES

[1] A. Agah and S. K. Das. Preventing DoS attacks in wireless sensor
networks. A repeated game theory approach. International Journal of
Network Security, 5(2):145–153, Sept. 2007.

[2] K. Chatterjee, T. Henzinger, and M. Jurdziński. Mean-payoff parity
games. In Proceedings of the 20th International Symposium on Logic
in Computer Science (LICS’05), June 2005.

[3] P. Closas, A. Pagès-Zamora, and J. A. Fernández-Rubio. A game
theoretical algorithm for joint power and topology control in distributed
wsn. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP’09), pages 462–468, Athens,
Greece, Apr. 2009.

[4] E. Grädel, W. Thomas, and Th. Wilke, editors. Automata, Logics, and
Infinite Games. Lecture Notes in Computer Science. Springer, Oct.
2002.

[5] R. Machado and S. Tekinay. A survey of game-theoric approaches in
wireless sensor networks. Computer Networks, 52(16):3047–3061, Nov.
2008.

[6] M. Mohi, A. Movaghar, and P. M. Zadeh. A bayesian game approach
for preventing DoS attacks in wireless sensor networks. In Proceedings
of the 2009 International Conference on Communications and Mobile
Computing (CMC’09), Kunming, Yunnan, China, Feb. 2009.

[7] Q. Monnet, L. Mokdad, and J. Ben-Othman. Energy-balancing method
to detect denial of service attacks in wireless sensor networks. In
Proceedings of the IEEE International Conference on Communications,
Sydney, NSW, Australia, 2014.

[8] C. H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.
[9] Y. B. Reddy. a game theory approach to detect malicious nodes in

wireless sensor networks. In Proceedings of the third international
conference on sensor technologies and applications, pages 462–468,
Athens, Greece, June 2009.

[10] H.-Y. Shi, W.-L. Wang, N.-M. Kwok, and S.-Y. Chen. Game theory
for wireless sensor networks: a survey. Sensors, 12(7):9055–9097, July
2012.

[11] M. A. Simplicio, Jr, B. T. de Oliveira, P. S. L. M. Barreto, C. B. Margi,
T. C. M. B. Carvalho, and M. Naslund. Comparison of authenticated-
encryption schemes in wireless sensor networks. In Proceedings of
the 36th Annual IEEE Conference on Local Computer Networks, pages
454–461, Bonn, Germany, Oct. 2011.

[12] S. K. Singh, M. P. Singh, and D. K. Singh. A survey on network
security and attack defense mechanism for wireless sensor networks.
International Journal of Computer Trends and Technology, May 2011.

[13] Y. Velner. The complexity of mean-payoff automaton expression. In
A. Czumaj, K. Mehlhorn, A. M. Pitts, and R. Wattenhofer, editors, Pro-
ceedings of the 39th International Colloquium on Automata, Languages,
and Programming (ICALP’12, Part II), volume 7392 of Lecture Notes
in Computer Science, pages 390–402. Springer, July 2012.

[14] Y. Velner, K. Chatterjee, L. Doyen, T. A. Henzinger, A. Rabinovich, and
J.-F. Raskin. The complexity of multi-mean-payoff and multi-energy
games. CoRR, 2012.

[15] U. Zwick and M. Paterson. The complexity of mean payoff games on
graphs. Theoretical Computer Science, 158(1&2):343–359, 1996.

