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Abstract

In this paper we propose two dual notions of quantitative
information leakage in probabilistic systems, both related to
opacity for non probabilistic systems. The liberal one mea-
sures the probability for an attacker observing a random
execution of the system, to be able to gain information he
can be sure about. We show that a null value for this mea-
sure corresponds to a secure system, in the usual sense of
opacity. On the other hand, restrictive opacity is defined as
the complement of the information-theoretic notion of mu-
tual information. It measures the level of certitude in the
information acquired by an attacker observing the system:
we prove that a null value for this second measure corre-
sponds to non opacity. We also show how these measures
can be computed for regular secrets and observations. We
finally apply them to the dining cryptographers problem and
to the crowd anonymity protocol.

1 Introduction

Motivation. Opacity [14] is a very general framework al-
lowing to specify a wide range of security properties a sys-
tem has to assume when interacting with a passive attacker.
The general idea behind it is that an attacker should not gain
information by observing the system from the outside. The
approach, as most existing information flow-theoretic ap-
proaches, is possibilistic. We mean by this that non deter-
minism is used as a feature to model the random mechanism
generation for all possible system behaviors. As such, opac-
ity is not accurate enough to take into account two orthogo-
nal aspects of security properties both regarding evaluation
of the information gained by the attacker.
∗Author partially supported by project DOTS (ANR-06-SETI-003)

(French Government).
†Author partially supported by the NSERC of Canada under discovery

grant No. 13321-2009.
‡Author partially supported by project CoChaT (DIGITEO-2009-
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The first aspect regards the quantification of security
properties. If executions leaking information are negligi-
ble with respect to the rest of executions, the overall secu-
rity might not be compromised. For example if an error
may leak information, but appears only in 1% of cases, the
program could still be considered safe. The definitions of
opacity [6, 2] capture the existence of at least one perfect
leak, but do not grasp such a measure.

The other aspect regards the category of security prop-
erties a system has to assume when interacting with an at-
tacker able to infer from experiments on the base of statis-
tical analysis. For example, if every time the system goes
bip, there is 99% chances that action a has been carried out
by the server, then every bip can be guessed to have re-
sulted from an a. Since more and more security protocols
make use of randomization to reach some security objec-
tives [8, 15], it becomes important to extend specification
frameworks in order to cope with it.

Contribution. We define two generalizations of possi-
bilistic opacity in the setting of probabilistic automata with-
out non-determinism. One is more liberal than opacity
while the other is more restrictive, from a security point
of view. Moreover, as opacity itself, they can be instan-
tiated into several probabilistic security properties such as
probabilistic non-interference and anonymity. The first no-
tion measures the quantity of information leaked that is to
say, the probability for the system to yield perfect informa-
tion. The second, defined in terms of the information the-
oretic notion of mutual information, provides a measure of
the accuracy of a guess that is, the quantity of information
which can be inferred by an observer from the secret prop-
erty. We also show how to compute these values in some
regular cases and apply the method to the dining cryptog-
raphers problem and the crowd protocols, re-confirming in
passing the correctness result of Reiter and Rubin [15].

Related Work. The notion of opacity was introduced re-
cently with the aim to provide a uniform description for
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possibilistic security properties like non-interference and
anonymity [6]. Up to now, probabilistic approaches were
mostly centered on verifying specific security properties or
computing information leakage and few works tried to ex-
tend opacity to a probabilistic setting.

In [16], the author discusses several measures of infor-
mation leakage for deterministic or probabilistic programs
with probabilistic input. These measures quantify the infor-
mation concerning the input gained by a passive attacker ob-
serving the output. Exhibiting programs for which the value
of entropy is not meaningful, the author proposes to con-
sider instead the notions of vulnerability and min-entropy.

The authors of [1] study information leakage in sys-
tems modeled by process algebras, but they address the spe-
cific point of view of probabilistic non-interference and do
not relate it to information theory. In [5], an information-
theoretic point of view is adopted to measure information
leakage in process algebras, but no relation is made with
probabilistic security properties.

In [7], or more recently [3], the authors present a prob-
abilistic version of anonymity, also using the tools of in-
formation theory, which is computed using regular expres-
sions. Although anonymity can be seen as an instantiation
of opacity, these approaches are focused only on anonymity.

In [13], a notion of probabilistic opacity is defined, but
restricted to properties whose satisfaction depends only on
the initial state of the run. The opacity there corresponds to
the probability for an observer to guess from the observa-
tion whether the predicate holds for the run. In that sense
our restrictive opacity (Section 4) is close to that notion.
However, the definition of [13] lacks clear ties with the pos-
sibilistic notion of opacity.

Organization of the paper. Section 2 presents the under-
lying model and recalls definitions from the security and
probability fields. Section 3 and 4 present respectively the
notions of liberal and restrictive probabilistic opacity and
their applications. Section 5 discusses the power and limi-
tations of these definitions and concludes.

2 Preliminaries

In this section, we recall the notions of opacity, entropy,
probabilistic automata, and the way to compute the proba-
bility of regular events in such automata.

2.1 Possibilistic opacity

The original definition of opacity was given in [6] for
transition systems.

Recall that a transition system is a tuple Π =
〈Σ, Q,∆, I〉 where Σ is a set of actions, Q is a set of states,

∆ ⊆ Q× Σ×Q is a set of transitions and I ⊆ Q is a sub-
set of initial states. A run in Π is a sequence of transitions
written as: ρ = q0

a1−→ q1
a2−→ q2 · · ·

an−−→ qn. For such a
run, fst(ρ) (resp. lst(ρ)) denotes q0 (resp. qn). We will also
write ρ · ρ′ for the run obtained by concatenating runs ρ and
ρ′ whenever lst(ρ) = fst(ρ′). The set of finite runs starting
in state q is denoted by Runq(Π) and Run(Π) denotes the
set of finite runs starting from an initial state.

Opacity qualifies a predicate ϕ, given as a subset of
Run(Π) (or equivalently as its characteristic function 1ϕ),
with respect to an observation function O from Run(Π)
onto a (possibly infinite) set Obs of observables. Two runs
ρ and ρ′ are equivalent w.r.t. O if they produce the same
observable: O(ρ) = O(ρ′). The setO−1(o) is called an ob-
servation class. We sometimes write [ρ]O for O−1(O(ρ)).

A predicate ϕ is opaque on Π for O if for every run ρ
satisfying ϕ, there is a run ρ′ not satisfying ϕ equivalent
to ρ. However, detecting whether an event did not occur
gives as much information as the detection that the same
event did occur. In addition, the asymmetry of this defini-
tion makes it impossible to use with refinement [2]: opacity
would not be ensured in a system derived from a secure
one in a refinement-driven engineering process. Hence we
use the symmetric notion of opacity, where a predicate is
symmetrically opaque if it is opaque as well as its negation.
More precisely:

Definition 1 (Symmetrical opacity). Let Π be a transition
system and O : Run(Π) → Obs a surjective function
called observation. A predicate ϕ ⊆ Run(Π) is symmetri-
cally opaque on Π for O if, for any o ∈ Obs, the following
holds:

O−1(o) 6⊆ ϕ and O−1(o) 6⊆ ϕ.

2.2 Information-theoretic measures

Recall that, for a countable set Ω, a discrete distribution
(or distribution for short) is a mapping µ : Ω → [0, 1] such
that

∑
ω∈Ω µ(ω) = 1. For any subset E of Ω, µ(E) =∑

ω∈E µ(ω). The set of all discrete distributions on Ω is
denoted by D(Ω). A discrete random variable with values
in a set Γ is a mapping Z : Ω→ Γ.

For a discrete random variable Z on Ω, the entropy of Z
is a measure of the uncertainty or dually, information about
Z, defined by the expected value of log(µ(Z)):

H(Z) = −
∑
z

µ(Z = z) · log(µ(Z = z))

where [Z = z] is the event {ω ∈ Ω | Z(ω) = z} and log is
the base 2 logarithm.

For two random variables Z and Z ′ on Ω, the joint en-
tropy of (Z,Z ′) is given by

H(Z,Z ′) = −
∑
z

∑
z′

(
µ(Z = z, Z ′ = z′)
· log(µ(Z = z, Z ′ = z′))

)
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where [Z = z, Z ′ = z′] is the event {ω ∈ Ω | Z(ω) =
z and Z ′(ω) = z′}.

The conditional entropy of Z given the event [Z ′ = z′]
such that µ(Z ′ = z′) 6= 0 is defined by:

H(Z|Z ′ = z′) = −
∑
z

(
µ(Z = z|Z ′ = z′)
· log(µ(Z = z|Z ′ = z′))

)

where µ(Z = z|Z ′ = z′) = µ(Z=z,Z′=z′)
µ(Z′=z′) .

The conditional entropy of Z given the random variable
Z ′ is defined by:

H(Z|Z ′) =
∑
z′

µ(Z ′ = z′) ·H(Z|Z ′ = z′)

= −
∑
z′

µ(Z ′ = z′)

·

[∑
z

(
µ(Z = z|Z ′ = z′)
· log(µ(Z = z|Z ′ = z′))

)]

= −
∑
z

∑
z′

(
µ(Z = z, Z ′ = z′))
· log(µ(Z = z|Z ′ = z′)

)
which can be interpreted as the average entropy of Z that
remains after the observation of Z ′.

The mutual information between Z and Z ′ is given by:

I(Z;Z ′) = H(Z)−H(Z|Z ′)
= H(Z ′)−H(Z ′|Z) = I(Z ′;Z)

and measures the decrease of uncertainty about Z resulting
from the observation of Z ′ or dually, the information gained
about Z from the observation of Z ′. See [10] for further
properties of entropy and mutual information and [16] for a
discussion.

2.3 Probabilistic automata

In this work, systems are modeled using probabilistic au-
tomata behaving as finite automata where non-deterministic
choices for the next action and state or deadlock are ran-
domized.

Recall that a finite automaton (FA) is a tuple Π =
〈Σ, Q,∆, I, F 〉 where 〈Σ, Q,∆, I〉 is a finite transition sys-
tem and F ⊆ Q is a subset of final states. The automaton
is deterministic if I is a singleton and for all q ∈ Q and
a ∈ Σ, the set {q′ | (q, a, q′) ∈ ∆} is a singleton. Runs
in Π, Runq(Π) and Run(Π) are defined like in a transition
system. A run of an FA is accepting if it ends in a state of
F . The trace of a run ρ = q0

a1−→ q1 · · ·
an−−→ qn is the word

tr(ρ) = a1 · · · an ∈ Σ∗. The language of Π, written L(Π),
is the set of traces of accepting runs starting in an initial
state.

Replacing in a FA non-deterministic choices by choices
based on a discrete distribution results in a fully probabilis-
tic automaton (FPA). Consistently with the standard notion
of substochastic matrices, we also consider a more general
class of automata, substochastic automata (SA), which al-
low to describe subsets of behaviors from FPAs, see Fig-
ure 1 for examples. In both models, no non-determinism re-
mains, thus the system is to be considered as autonomous:
its behaviors do not depend on an exterior probabilistic
agent acting as a scheduler for non-deterministic choices.

Definition 2 (Substochastic automaton). Let
√

be a new
symbol representing a termination action. A substochastic
automaton (SA) is a tuple 〈Σ, Q,∆, q0〉 where

• Σ is a finite set of actions,

• Q is a finite set of states,

• ∆ : Q→ ((Σ×Q)]{
√
} → [0, 1]) is a mapping such

that for any q ∈ Q,∑
x∈(Σ×Q)]{

√
}

∆(q)(x) ≤ 1

∆ defines substochastically the action and successor
from the current state, or the termination action

√
,

• q0 is the initial state.

A fully probabilistic automaton (FPA) is a particular case
of SA where for all q ∈ Q, ∆(q) = µ is a distribution in
D((Σ×Q) ] {

√
}) i.e.∑

x∈(Σ×Q)]{
√
}

∆(q)(x) = 1.

In SA or FPA, we write q → µ for ∆(q) = µ and q a−→ r
whenever q → µ and µ(a, r) > 0. We also write q ·

√

whenever q → µ and µ(
√

) > 0. In the latter case, q is said
to be a final state.

The notation above allows to define a run for an SA like
in a transition system as a finite sequence of transitions writ-
ten ρ = q0

a1−→ q1
a2−→ q2 · · ·

an−−→ qn. The sets Runq(Π)
and Run(Π) are defined like in a transition system. A com-
plete run is a sequence denoted by ρ ·

√
where ρ is a run

and ∆(lst(ρ))(
√

) > 0. The set CRun(Π) denotes the set
of complete runs starting from the initial state.

The trace of a run for an SA Π is defined like in finite
automata. The language of a substochastic automaton Π,
written L(Π), is the set of traces of complete runs starting
in an initial state.

For an SA Π, a mapping PΠ into [0, 1] can be defined
inductively on the set of complete runs by:

PΠ(q
√

) = µ(
√

)

PΠ(q
a−→ ρ) = µ(a, r) ·PΠ(ρ)
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√
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√
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(a) FPAA1

a, 1
2

√
, 1

4

(b) SAA2

Figure 1. A2 is the restriction of A1 to a∗.

where q → µ and fst(ρ) = r.
When Π is clear from the context, PΠ will simply be

written P. Since PΠ is a (sub-)probability on CRun(Π),
for any predicate ϕ ⊆ CRun(Π), we have P(ϕ) =∑
ρ∈ϕP(ρ). The measure is extended to languages K ⊆

L(Π) by P(K) = P
(
tr−1(K)

)
=
∑

tr(ρ)∈K P(ρ).
In the examples of Figure 1, restricting the runs of A1 to

those satisfying ϕ = {ρ | tr(ρ) ∈ a∗} yields the SA A2,
and PA1

(ϕ) = PA2
(CRun(A2)) = 1

2 .

A non probabilistic version of any SA is obtained by for-
getting any information about probabilities.

Definition 3. Let Π = 〈Σ, Q,∆, q0〉 be an SA.
The (non-deterministic) finite automaton unProb(Π) =
〈Σ, Q,∆′, q0, F 〉 is defined by:

• ∆′ = {(q, a, r) ∈ Q× Σ×Q | q → µ, µ(a, r) > 0},
• F = {q ∈ Q | q → µ, µ(

√
) > 0} is the set of final

states.

It is easily seen that L(unProb(Π)) = L(Π).
An observation function O : CRun(Π) → Obs can

also be easily translated from the probabilistic to the non
probabilistic setting. For Π′ = unProb(Π), we define
unProb(O) on Run(Π′) by:
unProb(O)(q0

a1−→ q1 · · · qn) = O(q0
a1−→ q1 · · · qn

√
).

2.4 Computing the probability of a substochastic
automaton

Given an SA Π, a system of equations can be derived
on the probabilities for each state to yield an accepting run.
This allows to compute the probability of all complete runs
of Π by a technique similar to those used in [9, 12, 4] for
probabilistic verification.

Definition 4 (Linear system of a substochastic automata).
Let Π = 〈Σ, Q,∆, q0〉 be a substochastic automaton. The
linear system associated with Π is the following system SΠ

of linear equations over R:

SΠ =

Xq =
∑
q′∈Q

αq,q′Xq′ + βq


q∈Q

where αq,q′ =
∑
a∈Σ

∆(q)(a, q′) and βq = ∆(q)(
√

)

When non-determinism is involved, for instance in
Markov Decision Processes [9, 4], two systems of inequa-
tions are needed to compute maximal and minimal proba-
bilities. Here, without non-determinism, both values are the
same, hence the probability can be computed in polynomial
time by solving the linear system associated with the SA.

Lemma 1. Let Π = 〈Σ, Q,∆, q0〉 be a substochastic au-
tomaton and define for all q ∈ Q, LΠ

q = P(CRunq(Π)).
Then (LΠ

q )q∈Q is the unique solution of the system SΠ.

3 Relaxing opacity through probabilities

3.1 Definition and properties

One of the aspects in which the definition of opacity
could be extended to probabilistic automata is by relaxing
the universal quantifiers of Definition 1. Instead of want-
ing that all run satisfying ϕ have a similar (w.r.t. O) run
not in ϕ, we can just require that almost all of them do. To
obtain this, we give a measure for the set of runs leaking in-
formation. To express properties of probabilistic opacity in
an FPA Π, O is considered as a random variable. The char-
acteristic function 1ϕ of ϕ is also considered as a random
variable.

Definition 5 (Liberal probabilistic opacity). The liberal
probabilistic opacity (LPO) of predicate ϕ on FPA Π, with
respect to observation function O is defined by:

Lpo(Π, ϕ,O)=
∑
o∈Obs
O−1(o)⊆ϕ

P(O = o) +
∑
o∈Obs
O−1(o)⊆ϕ

P(O = o)

This definition provides a measure of how insecure the
system is.

The following proposition shows that a null value for this
measure coincides with symmetrical opacity for the system,
which is then secure. In this case, each equivalence class
O−1(o) overlaps both ϕ and ϕ as in Figure 2(a). On the
other hand, the system is totally insecure when, observing
through O, we have all information about ϕ. In that case,
the predicate ϕ is a union of equivalence classes O−1(o) as
in Figure 2(c) and this can be interpreted in terms of condi-
tional entropy relatively toO. The intermediate case occurs
when some, but not all, observation classes contain only
runs satisfying ϕ or only runs not satisfying ϕ, as in Fig-
ure 2(b).

Proposition 1.
(1) 0 ≤ Lpo(Π, ϕ,O) ≤ 1

(2) Lpo(Π, ϕ,O) = 0 if and only if ϕ is symmetrically
opaque on unProb(Π) with respect to unProb(O).
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(a) Lpo(Π, ϕ,O) = 0 (b) 0 < Lpo(Π, ϕ,O) < 1

(c) Lpo(Π, ϕ,O) = 1

ϕ

O−1(o)

Classes leaking
their inclusion into
ϕ or into ϕ

Figure 2. Liberal probabilistic opacity.

(3) Lpo(Π, ϕ,O) = 1 if and only if H(1ϕ|O) = 0.

Proof.
(1) The considered events are mutually exclusive, hence

the sum of their probabilities never exceeds 1.

(2) First observe that a complete run r0a . . . rn
√

has a
non null probability in Π iff r0a . . . rn is a run in
unProb(Π). Suppose Lpo(Π, ϕ,O) = 0. Then there
is no observable o with non-null probability such that
O−1(o) ⊆ ϕ (resp. ϕ). Hence for each observable o,
O−1(o) 6⊆ ϕ (resp. ϕ). Conversely, if ϕ is opaque
on unProb(Π), there is no observable c ∈ Obs such
that O−1(c) ⊆ ϕ (resp. ϕ), hence the null value for
Lpo(Π, ϕ,O).

(3) H(1ϕ|O) = 0 iff∑
o∈Obs

i∈{0,1}

P(1ϕ = i|O = o)·log(P(1ϕ = i|O = o)) = 0

Since all the terms have the same sign, this sum is null
if and only if each of its term is null. Setting for every
o ∈ Obs, f(o) = P(1ϕ = 1|O = o) = 1 − P(1ϕ =
0|O = o), we have: H(1ϕ|O) = 0 iff ∀ o ∈ Obs,
f(o) · log(f(o))+(1−f(o)) · log(1−f(o)) = 0. Since
the equation x · log(x) + (1−x) · log(1−x) = 0 only
accepts 1 and 0 as solutions, it means that for every ob-
servable o, either all the runs ρ such that O(ρ) = o are
in ϕ, or they are all not in ϕ. Therefore H(1ϕ|O) = 0
iff for every observable o, O−1(o) ⊆ ϕ or O−1(o) ⊆
ϕ, which is equivalent to Lpo(Π, ϕ,O) = 1.

Example. Consider the systems A3 and A4 of Figure 3.
On these systems we define the predicate ϕNI which is true
if the trace of a run contains letter h. In both cases the obser-
vation function OL returns the projection of the trace onto
the alphabet {`1, `2}. Remark that this example is an inter-
ference property [11] seen as opacity. Considered unproba-
bilistically, both systems are interferent since an `2 not pre-
ceded by an `1 betrays the presence of an h. However, they
differ by how often this case happens.

The runs ofA3 andA4 and their properties are displayed
in Table 1. Then we can see that [ρ1]OL

= [ρ2]OL
overlaps

both ϕNI and ϕNI , while [ρ3]OL
is contained totally in ϕ.

Hence the LPO can be computed for both systems:

Lpo(A3, ϕNI ,OL) =
1

4
Lpo(A4, ϕNI ,OL) =

3

4

Therefore A3 is more secure than A4. Indeed, the run that
is interferent occurs more often in A4, leaking information
more often.

`1,
1
2h, 1

4

h, 1
4

`1, 1

`2, 1 `2, 1

√
, 1

(a) FPAA3

`1,
1
8h, 3

4

h, 1
8

`1, 1

`2, 1 `2, 1

√
, 1

(b) FPAA4

Figure 3. Interferent FPAs A3 and A4.

tr(ρ) PA3
(ρ) PA4

(ρ) ∈ ϕNI? OL(ρ)
tr(ρ1) = `1`2

√
1/2 1/8 0 `1`2

tr(ρ2) = h`1`2
√

1/4 1/8 1 `1`2
tr(ρ3) = h`2

√
1/4 3/4 1 `2

Table 1. Runs of A3 and A4.

3.2 Computation of LPO

We now show how LPO can be computed for regular
predicates and simple observation functions. The method
relies on a synchronized product between an SA Π and a de-
terministic FA K, similarly to [9]. This product (which can
be considered pruned of its unreachable states and states not
reaching a final state) constrains the unprobabilistic version
of Π by synchronizing it with K. The probability of L(K)
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is then obtained by solving the associated system of equa-
tions. The computation of LPO results in applications of
this operation with several FPAs.

Definition 6 (Synchronized product).
Let Π = 〈Σ, Q,∆, q0〉 be a substochastic automaton and
let K = 〈Q × Σ × Q,QK ,∆K , qK , F 〉 be a determinis-
tic finite automaton. The synchronized product Π||K is the
substochastic automaton 〈Σ, Q×QK ,∆′, (q0, qK)〉 where
transitions in ∆′ are defined by: if q1 → µ ∈ ∆, then
(q1, r1) → ν ∈ ∆′ where for all a ∈ Σ and (q2, r2) ∈
Q×QK ,

ν(a, (q2, r2)) =

{
µ(a, q2) if r1

q1,a,q2−−−−→ r2 ∈ ∆K

0 otherwise

and ν(
√

) =

{
µ(
√

) if r1 ∈ F
0 otherwise

Lemma 2. Let Π = 〈Σ, Q,∆, q0〉 be an SA and K a regu-
lar language over Q × Σ × Q accepted by a deterministic
finite automaton K = 〈Q×Σ×Q,QK ,∆K , qK , F 〉. Then

PΠ(K) = L
Π||K
(q0,qK)

Proposition 2. Let ϕ be a regular predicate in an FPA Π,
i.e. such that ϕ is a regular subset of (Q×Σ×Q)∗, and let
O be an observation function satisfying:

• the set of observables Obs is finite

• for each o ∈ Obs, the subset O−1(o) of CRun(Π) is
a regular set.

Then Lpo(Π, ϕ,O) can be computed.

Proof. The computation ofLpo(Π, ϕ,O) proceeds with the
following steps:

• From the conditions on O, a deterministic finite au-
tomaton Ao accepting O−1(o) can be associated with
each o ∈ Obs. Synchronizing this automaton with Π
and pruning it yields a substochastic automaton Π||Ao.
By Lemma 2, the probability P(O = o) is then com-
puted by solving the linear system associated with
Π||Ao.
• On the other hand, since ϕ is regular, there is a

deterministic finite automaton Aϕ (respectively Aϕ)
accepting the runs which satisfy ϕ (respectively Aϕ).
By testing language emptiness for
unProb(Π||Ao||Aϕ) (resp. unProb(Π||Ao||Aϕ)), it
can be decided if O−1(o) ⊆ ϕ (resp. O−1(o) ⊆ ϕ).
The value of Lpo(Π, ϕ,O) is then obtained by adding
probabilities P(O = o) when O−1(o) is contained in
ϕ or its complement.

4 Tightening opacity through information
theory

4.1 Definition and properties

The completely opposite direction that can be taken to
define a probabilistic version is a more paranoid one: how
much information is leaked through the system’s uncer-
tainty? For example, on Figure 2(a), even though each
observation class contains a run in ϕ and one in ϕ, some
classes are nearly in ϕ. In some other classes the balance
between the runs satisfying ϕ and the ones not satisfying ϕ
is more even. We would like to measure globally the bal-
ance between ϕ and ϕ in each observation class. Hence, for
a run ρ ∈ ϕ, we will not ask if there exists a similar run not
in ϕ, but how many there are, with a probabilistic measure
taking into account the likelihood of such runs. We adopt an
information-theoretic view: how much information is trans-
mitted from the predicate ϕ to the observation function O?

Definition 7 (Restrictive probabilistic opacity). Let ϕ be
a predicate on the complete runs of an FPA Π and O an
observation function. The restrictive probabilistic opacity
(RPO) of ϕ on Π, with respect to O, is defined by

Rpo(Π, ϕ,O) = 1− I(1ϕ;O)

Proposition 3.
(1) 0 ≤ Rpo(Π, ϕ,O) ≤ 1

(2) If Rpo(Π, ϕ,O) = 0, then ϕ is not opaque on
unProb(Π) with respect to unProb(O).

Proof.
(1) Since 1ϕ can take only two different values and en-

tropy decreases with knowledge, 0 ≤ H(1ϕ|O) ≤
H(1ϕ) ≤ log(2) = 1.

(2) This case is reached only when H(1ϕ) = 1 and
H(1ϕ|O) = 0. When H(1ϕ|O) = 0, by Proposi-
tion 1 case (3), Lpo(Π, ϕ,O) = 1 > 0, then ϕ is not
opaque on unProb(Π) with respect to unProb(O).

4.2 Computation of RPO

Computing RPO can be done in a similar way with the
same hypotheses as for LPO:

Proposition 4. Let ϕ be a regular predicate for an FPA Π
and letO be an observation function with a finite number of
observation classes which are all regular sets of runs. Then
Rpo(Π, ϕ,O) can be computed.

Proof. Again we consider a finite deterministic automaton
Aϕ (resp. Aϕ) accepting runs in ϕ (resp in ϕ) and, for
each o ∈ Obs, a finite deterministic automaton Ao accept-
ing O−1(o). We successively compute:
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• P(ϕ) = P(1ϕ = 1) (respectively P(ϕ) = P(1ϕ =
0)) by synchronizing Π with Aϕ (respectively Aϕ),
pruning it, and computing the solution of the associ-
ated linear system;

• the probability P(O = o), for each o ∈ Obs, with
similar techniques but with Ao, and the probabilities
P(ϕ ∩ [O = o]) = P(1ϕ = 1,O = o) (respectively
P(ϕ ∩ [O = o]) = P(1ϕ = 0,O = o)), using syn-
chronization of Π, Aϕ (respectively Aϕ), and Ao;

• the conditional probabilities P(1ϕ = 1|O = o) =
P(1ϕ=1,O=o)

P(O=o) and P(1ϕ = 0|O = o) =
P(1ϕ=0,O=o)

P(O=o) ;
entropies H(1ϕ) and H(1ϕ|O) using probabilities
computed above and finally, mutual information be-
tween 1ϕ and O andRpo(Π, ϕ,O).

4.3 Application and examples

4.3.1 The Dining Cryptographers

Introduced in [8], this problem involves three cryptogra-
phers C1, C2 and C3 dining in a restaurant. At the end
of the meal, their master secretly tells each of them if they
should be paying: pi = 1 iff cryptographer Ci pays, and
pi = 0 otherwise. Wanting to know if one of the cryptog-
raphers paid or if the master did, they follow the following
protocol. They flip a coin with each of their neighbor, the
third one not seeing the result of the flip, marking fi,j = 0
if the coin flip between i and j was heads and fi,j = 1 if
it was tails. Then each cryptographer Ci, for i ∈ {1, 2, 3},
announces the value of ri = fi,i+1 ⊕ fi,i−1 ⊕ pi (where
‘3 + 1 = 1’, ‘1− 1 = 3’ and ‘⊕’ represents the XOR oper-
ator). If

⊕3
i=1 ri = 0 then no one (i.e. the master) paid, if⊕3

i=1 ri = 1, then one of the cryptographers paid, but the
other two do not know who he is.

Here we will use a simplified version of this problem to
limit the size of the model. We consider that some cryp-
tographer paid for the meal, and adopt the point of view of
C1 who did not pay. The anonymity of the payer is pre-
served if C1 cannot know if C2 or C3 paid for the meal.
In our setting, the predicate ϕ2 is, without loss of symme-
try, “C2 paid”. The observation function lets C1 know the
results of its coin flips (f1,2 and f1,3), and the results an-
nounced by the other cryptographers (r2 and r3). We also
assume that the coin used by C2 and C3 has a probability
of q to yield heads, and that the master flips a fair coin to
decide if C2 or C3 pays. It can be assumed that the coins
C1 flips with its neighbors are fair, since it does not affect
anonymity from C1’s point of view. In order to limit the
(irrelevant) interleaving, we have made the choice to fix the
ordering between the coin flips.

The corresponding FPA D is depicted on Figure 4 where
all
√

transitions with probability 1 have been omitted from

final (rectangular) states. On D, the runs satisfying predi-
cate ϕ2 are the ones where action p2 appears. The obser-
vation function O1 takes a run and returns the sequence of
actions over the alphabet {h1,2, t1,2, h1,3, t1,3} and the final
state reached, containing the value announced by C2 and
C3.

There are 16 possible complete runs in this system, that
yield 8 equiprobable observables:

Obs = {(h1,2h1,3(r2 = 1, r3 = 0)),
(h1,2h1,3(r2 = 0, r3 = 1)),
(h1,2t1,3(r2 = 0, r3 = 0)),
(h1,2t1,3(r2 = 1, r3 = 1)),
(t1,2h1,3(r2 = 0, r3 = 0)),
(t1,2h1,3(r2 = 1, r3 = 1)),
(t1,2t1,3(r2 = 1, r3 = 0)),
(t1,2t1,3(r2 = 0, r3 = 1)) }

Moreover, each observation results in a run in which C2

pays and a run in which C3 pays, this difference being
masked by the secret coin flip between them. For ex-
ample, runs ρh = h1,2h1,3h2,3p2(r2 = 1, r3 = 0) and
ρt = h1,2h1,3t2,3p3(r2 = 1, r3 = 0) yield the same ob-
servable o0 = h1,2h1,3(r2 = 1, r3 = 0), but the predicate is
true in the first case and false in the second one. Therefore,
if 0 < q < 1, the unprobabilistic version of D is opaque.
However, if q 6= 1

2 , for each observable, one of them is more
likely to be lying, therefore paying. In the aforementioned
example, when observing o0, ρh has occurred with prob-
ability q, whereas ρt has occurred with probability 1 − q.
RPO can measure this advantage globally.

For the next RPO computation, we write 1ϕ instead of
1ϕ2 and O instead of O1.

I(1ϕ;O) = H(1ϕ)−H(1ϕ|O)

= 1+ Q

where

Q =
∑

o∈Obs
i∈{0,1}

P(O = o)·P(1ϕ = i|O = o)·log(P(1ϕ = i|O = o))

For each observable o, P(1ϕ = 1|O = o) = 1 −P(1ϕ =
0|O = o). In addition, P(1ϕ = 1|O = o) is either q or
1− q. This allows to compute the RPO, parametrized by q:

Rpo(D, ϕ2,O1) = −(q · log(q) + (1− q) · log(1− q))

On this expression we can see that Rpo(D, ϕ2,O1) = 1
if q = 1

2 , and Rpo(D, ϕ2,O1) = 0 if q = 0 or q = 1.
The variations of the RPO when changing the bias on q are
depicted in Figure 5.

4.3.2 Crowds protocol

The anonymity protocol known as crowds was introduced
in [15] and recently studied in the probabilistic framework
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Figure 4. The FPA corresponding to the Dining Cryptographers protocol.
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Rpo(D, ϕ2,O1)

0
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1

Figure 5. Evolution of the restrictive proba-
bilistic opacity of the Dining Cryptographers
protocol when changing the bias on the coin.

in [7, 3]. When a user wants to send a message (or re-
quest) to a server without the latter knowing the origin of the
message, the user routes the message through a crowd of n
users. To do so, it selects a user randomly in the crowd (in-
cluding himself), and sends him the message. When a user
receives a message to be routed according to this protocol, it
either sends the message to the server with probability 1−q
or forwards it to a user in the crowd, with probability q. The
choice of a user in the crowd is always equiprobable. Under
these assumptions, this protocol is known to be secure (in-
deed, its RPO is 1). However, there can be c corrupt users in
the crowd which divulge the identity of the person that sent
the message to them. In that case, if a user sends directly a
message to a corrupt user, its identity is no longer protected.
RPO can measure the security of this system, depending on
n and c.

First, consider our protocol as the system in Figure 6.
The predicate we want to be opaque is ϕi that contains all
the runs in which i is the initiator of the request. The obser-
vation function O returns the penultimate state of the run,
i.e. the honest user that will be seen by the server or a cor-
rupt user.

For sake of brevity, we write ‘i ’ to denote the event “a
request was initiated by i” and ‘ j’ when “j was detected
by the adversary” i  ∧  j is abbreviated in i  j. No-
tation ‘¬i  ’ means that “a request was initiated by some-
one else than i”; similarly, combinations of this notations

0 1′

1
n−c

Server1

n− c

√
, 1

. . . 1− q

q · 1
n

q · 1
n

q · 1
n

q · 1
n

. . .n− c+ 1 n
√
, 1

√
, 1

1
n

1
n

q · 1
n q · 1

n

Figure 7. SA Ccn||A1 (n−c) corresponding to
runs where user 1 initiates the protocol and
user (n− c) is detected

are used in the sequel. We also use the Kronecker symbol
δij defined by δij = 1 if i = j and 0 otherwise.

Computing probabilities. All probabilities P(i  j)
can be automatically computed using the method described
in Section 4.2. For example, P(1  (n − c)), the proba-
bility for the first user to initiate the protocol while the last
honest user is detected, can be computed from substochastic
automaton Ccn||A1 (n−c) depicted on Figure 7. The associ-
ated system is represented in Table 2 where LS corresponds
to the “Server” state. Resolving it yields, Li = q

n for all
i ∈ {1, . . . , n − c − 1}, Ln−c = 1 − q·(n−c−1)

n , L1′ = 1
n ,

and L0 = 1
(n−c)·n . Therefore, P(1 (n− c)) = 1

(n−c)·n .
In this case, simple reasoning on the symmetries of the

model allows to derive other probabilities P(i  j). Re-
mark that the probability for a message to go directly from
initiator to a corrupt user or the server is c

n : it only happens
if a corrupt user is chosen by the initiator. If a honest user is
chosen by the initiator, then the length will be greater, with
probability n−c

n . By symmetry all honest users have equal
probability to be the initiator, and equal probability to be
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Figure 6. FPA Ccn for Crowds protocol with n users, among whom c are corrupted.

L0 = 1
n−c · L1′

L1′ =
∑n−c
i=1

1
n · Li

L1 =
∑n−c
i=1

q
n · Li

...

Ln−c−1 =
∑n−c
i=1

q
n · Li

Ln−c = (1− q) · LS +
∑n
i=1

q
n · Li

Ln−c+1 = 1
...

Ln = 1
LS = 1

Table 2. Linear system associated to SA
Ccn||A1 (n−c) of Figure 7

detected. Hence P(i ) = P( j) = 1
n−c .

Event i  j occurs when i is chosen as the initiator
(probability 1

n−c ), and either (1) if i = j and i chooses a
corrupted user to route its message, or (2) if a honest user is
chosen and j sends the message to a corrupted user or the
server (the internal route between honest users before j is
irrelevant). Therefore

P(i j) =
1

n− c
·
(
δij ·

c

n
+

1

n− c
· n− c

n

)
P(i j) =

1

n− c
·
(
δij ·

c

n
+

1

n

)
The case when i is not the initiator is derived from this prob-

ability:

P(¬i j) =

n−c∑
k=1
k 6=i

P(k  j)

P(¬i j) =
1

n− c
·
(

(1− δij) ·
c

n
+
n− c− 1

n

)
Conditional probabilities thus follow:

P(i | j) =
P(i j)

P( j)
= δij ·

c

n
+

1

n

P(¬i | j) =
P(¬i j)

P( j)
= (1−δij)·

c

n
+
n− c− 1

n

Interestingly, these probabilities do not depend on q.

Computing RPO. We finally compute RPO (tedious cal-
culi being omitted due to space constraints), denoting by 1i
the random variable 1ϕi and by O the observation function
of the penultimate state of the run:

−H(1i|O)=
n−c∑
j=1

(
P(i j) · log(P(i | j))
+P(¬i j) · log(P(¬i | j))

)

=
1

n− c
·

 (n−c−1)·(n−1)
n

· log(n− 1)
+n−c−1

n
· log(n− c− 1)

+ c+1
n
· log(c+ 1)

− log(n)

On the other hand

H(1i) = P(i ) · log(P(i ))
+P(¬i ) · log(P(¬i ))

= log(n− c)− n−c−1
n−c · log(n− c− 1)
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Hence

Rpo(Ccn, ϕi,O) = 1 + log(n)− log(n− c)

+
n− c− 1

n− c
· log(n− c− 1)

− 1

n− c
·

 (n−c−1)·(n−1)
n

· log(n− 1)
+n−c−1

n
· log(n− c− 1)

+ c+1
n
· log(c+ 1)


Remark that in the case where there is no corrupt user

(i.e. when c = 0), we obtain Rpo(C0
n, ϕi,O) = 1, thus

re-confirming in passing the result from [15] stating that the
crowds protocol is secure. It can also be noted that, as ex-
pected, more corrupt users decrease the security, while more
honest users increase it.

5 Discussion and conclusion

In this paper we introduced two dual notions of proba-
bilistic opacity. The liberal one measures the probability
for an attacker observing a random execution of the system
to be able to gain information he can be sure about. The
restrictive one measures the level of certitude in the infor-
mation acquired by an attacker observing the system. The
extremal cases of both these notions coincide with the pos-
sibilistic notion of opacity, which evaluates the existence of
a leak of sure information.

The definition of these notions through probability and
information theory allows to inherit from all the results in
these fields when necessary. However, probabilistic opac-
ity is not always easy to compute, especially if there are
an infinite number of observables. Nevertheless, automatic
computation is possible when dealing with regular predi-
cates and finitely many regular observation classes.

In future work we plan to investigate other measures
along the line of [16] and explore more of the properties
of probabilistic opacity, to instantiate it to known security
measures (anonymity, non-interference, etc.). Furthermore,
we want to address the more general case of probabilistic
automata in which the non-determinism has not been re-
solved.
Acknowledgments. We wish to thank the anonymous re-
viewers for their insightful comments and suggestions.
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