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†Univ. Franche-Comté, FEMTO-ST, CNRS UMR 6174, Besançon, France
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Abstract—Given a probabilistic transition system (PTS) A
partially observed by an attacker, and an ω-regular predicate
ϕ over the traces of A, measuring the disclosure of the secret
ϕ in A means computing the probability that an attacker who
observes a run of A can ascertain that its trace belongs to ϕ. We
consider specifications given as Interval Markov Chains (IMCs),
which are underspecified Markov chains where probabilities on
edges are only required to belong to intervals. Scheduling an IMC
S produces a concrete implementation as a PTS and we define the
worst case disclosure of secret ϕ in S as the maximal disclosure
of ϕ over all PTSs thus produced. We compute this value
for a subclass of IMCs and we prove that simulation between
specifications can only improve the opacity of implementations.

I. INTRODUCTION

a) Context and motivation: When modeling complex
systems, a top-down approach allows gradually specifying var-
ious system requirements, while preserving some behavioral
properties, like safety, reachability, and liveness under some
conditions.

Security requirements, which are not behavioral ones [1],
may not fare well under refinement, unless tailored specially
to do so, as in [2]. Several known security properties such as
noninference or anonymity can be encoded in the framework
of opacity [3], [4], [2]. In this context, an external observer
tries to discover whether a predicate (given as an ω-regular set)
holds by partially observing the system through a projection of
its actions. A system is opaque if the attacker fails to discover
this information. In the possibilistic setting, a violation of
opacity captures the existence of at least one perfect leak.

In probabilistic models like Discrete Time Markov Chains
(DTMCs), naturally random events such as faults or message
transmission failure, can be taken into account. Opacity was
extended in this setting [5], [6], [7] to provide various mea-
sures of what is disclosed by observation.

Consider for instance the two systems in Figure 1(a)-
(b), which are DTMCs with the addition of labels on states
(indicated inside). We assume that the occurrence of b must be
kept secret and that all labels except b are observable. In this
case, the only runs disclosing the secret are those observed by
adω , since every such run betrays the occurrence of b. The
probability of disclosure is 1/4 in A1 while it is 3/4 in A2,
hence A1 is more secure than A2. Our aim is to establish
sufficient conditions on systems like A1 and A2, that can be
compared, for one of them to be more secure than the other.

In the process of system modeling, it is common practice to
use underspecified models as first steps of specification. A first
approach is to consider sub-stochastic models where transition
probabilities need not sum up to 1. In this framework, the
notions of satisfaction and simulation were extensively studied
in [8]. The second approach is to introduce non-determinism
in the model to describe environment choices [9], [10], [11],
[12], [13], [7], [14]. These models have also been studied
in relation to the refinement process [9]. For example, both
systems of Figure 1(a)-(b) could have been derived from a
single underspecified system S with the same structure but
imprecise probabilities, like the one in Figure 1(c). A particular
case of such models is the Interval Markov Chains (IMCs)
where the transitions are equipped with probability bounds in
the form of intervals, as done in Figure 1(c).

Scheduling is an effective way to obtain implementations
of IMCs: at each step, the scheduler provides a distribution
satisfying the bounds, producing a (possibly infinite) DTMC
on-the-fly. In the case of opacity, a scheduler represents a
strategy of an agent inside the system, trying to disclose as
much information as possible to a passive observer.

b) Contribution: We investigate opacity for IMCs, defin-
ing disclosure in the worst case scenario, as the supremum
of the disclosure for all scheduled implementations. This
measures the information obtained by the passive observer
when the system is controlled by the smartest scheduler in
coalition with the observer. We first show how to compute
this value for a subclass of IMCs, where no transition can
be completely blocked by the scheduler. Note that schedulers
were already used in [7] to evaluate disclosure, although in the
context of (fully specified) Markov Decision Processes. We
then prove that simulations between IMCs can only improve
the opacity of all implementations obtained by scheduling.
This can be viewed as an extension of the work in [2] to the
probabilistic setting. The main difficulty of this result comes
from the restriction of the implementations to those obtained
by scheduling.

c) Organization of the paper: In Section II we present
the underlying models for specification and implementation,
with the simulation relation and related semantics. We define
probabilistic disclosure in this context and show how to
compute it (for a restricted case) in Section III. Finally, we
prove monotonicity of opacity under simulation in Section IV.
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Figure 1. Probabilistic systems A1 or A2 implementing underspecified system S.
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Figure 2. A DPA for ϕb = abΣω with F (q0) = F (q2) = 1 and F (q2) = 2.

Due to lack of space, some proofs can be found in [15].

II. MODELS AND SIMULATION

The set of natural numbers is denoted by N. The composi-
tion of relations R2 and R1 is defined by R2 ◦R1 = {(x, z) |
∃y, (x, y) ∈ R1 ∧ (y, z) ∈ R2}. Given a finite alphabet Σ, we
denote by Σ∗ (resp. Σω) the set of finite (resp. infinite) words
over Σ, with Σ∞ = Σ∗ ∪ Σω and ε the empty word.

Given a countable set Z, a discrete distribution is a mapping
µ : Z → [0, 1] such that

∑
z∈Z µ(z) = 1. The support of µ

is supp(µ) = {z ∈ Z | µ(z) > 0}. The set of all discrete
distributions on Z is denoted by Dist(Z). When dealing with
a joint distribution on domain Z1×Z2, we write µ(Y1, Y2) =∑
y1∈Y1,y2∈Y2

µ(y1, y2) for Y1 ⊆ Z1 and Y2 ⊆ Z2, and we
use as shorthands µ(y1, Y2) = µ({y1}, Y2) and µ(Y1, y2) =
µ(Y1, {y2}).

A. Models

The secret to be protected from disclosure is described by
a Deterministic Parity Automaton (DPA, see example in Fig-
ure 2). Implementations are given by Probabilistic Transition
Systems (PTSs). They are classical Discrete Time Markov
Chains, with the addition of state labeling [8], restricting the
processes of [9] with a countable set of states. Specifications
are described by Interval Markov chains (IMCs).

Definition 1 (Deterministic Parity Automaton). A determinis-
tic parity automaton (DPA) is a tuple A = (Q,Σ, δ, q0, F ),
where Q is a finite set of states, Σ is an input alphabet,
δ : Q × Σ → Q is a transition function, q0 ∈ Q is an initial
state, and F is a mapping from Q to a finite set of colors
{1, . . . , k}.

A run of A on a word w = a1a2 · · · ∈ Σω is an infinite
sequence ρ = q0q1 · · · ∈ Qω such that for all i ≥ 0, qi+1 =
δ(qi, ai+1). For such a run ρ, we define Inf(ρ) as the set of
states appearing infinitely often in the sequence. The run is
accepting if min{F (q) | q ∈ Inf(ρ)} is even. In this case, the
corresponding word is accepted by A and L(A) is the subset

of Σω of words accepted by A. A subset K of Σω is ω-regular
if there is an automaton A such that K = L(A).

Definition 2 (Probabilistic Transition System). A probabilistic
transition system (PTS) over alphabet Σ is a 4-tuple A =
〈Q, qinit,∆, L〉 where Q is a countable set of states, with
qinit ∈ Q the initial state, ∆ : Q → Dist(Q) is a mapping
associating with any state q ∈ Q a distribution ∆(q) over Q,
with finite support, and L : Q → Σ is the labeling function
on states.

A (finite or infinite) run of A starting from state q ∈ Q is
a sequence of states ρ = q0q1q2 . . . such that q0 = q and for
each i, 0 ≤ i < |ρ|, ∆(qi)(qi+1) > 0. When the run is finite
ρ = q0q1 . . . qn, we note qn = lst(ρ). The trace of ρ is the
word tr(ρ) = L(q0)L(q1) . . . ∈ Σ∞. We denote by Runsq(A)
the set of infinite runs starting from q and we set Runs(A) =
Runsqinit(A), and Tr(A) = {tr(ρ) | ρ ∈ Runs(A)}, the set of
traces of A. We also define FRunsq(A) the set of finite runs
starting from q, and similarly FRuns(A) = FRunsqinit

(A)
and FTr(A) = {tr(ρ) | ρ ∈ FRuns(A)}, the subset of Σ∗ of
finite traces of A.

Recall [16] that a probability measure PA can be defined
on Runs(A): measurable sets are generated by cones, where
the cone Cρ associated with a finite run ρ = q0q1 . . . qn is the
subset of infinite runs in Runs(A) having ρ as prefix. The
probability of Cρ is PA(Cρ) =

∏n−1
i=0 ∆(qi)(qi+1). The cone

of a word w ∈ Σ∗ is defined by Cw =
⋃
ρ∈tr−1(w) Cρ.

IMCs were introduced for specifications in [9] and fur-
ther investigated in [11], [13] from a verification point of
view. They were also extended to Constraint Markov Chains
in [12] and to Parametric IMCs in [14], with a focus on
the consistency problem, i.e., the problem of existence of an
implementation satisfying a given specification. We denote by
I the set of intervals in [0, 1].

Definition 3 (Interval Markov Chains). An Interval Markov
Chains (IMC) is a 4-tuple S = (S, sinit, T, λ) where S is a
finite set of states, with sinit ∈ S the initial state, T : S →
(S → I) associates with any state s ∈ S a mapping T (s)
from S into I, λ : S → Σ is the labeling function.

By extension, f ∈ T (s) will denote any distribution f :
S → [0, 1] (hence

∑
s′∈S f(s′) = 1) such that for all s′ ∈ S,

f(s′) ∈ T (s)(s′).



Several semantics have been given to IMCs [9], [11],
[12], [13]. The simplest one is the Uncertain Markov Chain
semantics, which corresponds to first choosing all distributions
for the states, with probabilities belonging to the specified
intervals to obtain an implementation. This results in a PTS,
with the same structure as the specification. A richer semantics
consists in introducing a scheduler choosing the distribution
at each step to obtain an implementation, as in a Markov
Decision Process (MDP). Finally, the most general semantics
is directly given by the satisfaction relation from [9].

We consider here the MDP semantics. A run of S starting
from a state s is a sequence s

µ1−→ s1
µ2−→ . . . where si ∈ S

and each µi is a distribution over S such that ∀s ∈ S, µi(s) ∈
T (si−1)(s). As before, we denote by Runss(S) the set of runs
starting from s, we set Runs(S) = Runssinit(S), FRuns(S)
is the set of finite runs of S starting from sinit, and for a run
ρ = s

µ1−→ s1
µ2−→ . . . sn−1

µn−−→ sn in FRuns(S) we define
lst(ρ) = sn.

To associate a probability measure with the runs, it is
necessary to resolve the non determinism by a scheduler that
chooses a distribution at each step. More precisely:

Definition 4 (Scheduler). A scheduler A for an IMC spec-
ification S = (S, sinit, T, λ), is a mapping A : FRuns(S)
→ Dist(S) such that for each run ρ with s = lst(ρ),
A(ρ)(s′) ∈ T (s)(s′).

We denote by Sched(S) the set of schedulers for S. Like
for Markov Decision Processes, scheduling S with A produces
a PTS denoted by S(A) where states are finite runs: Q ⊆
FRuns(S), the initial state is the run containing only the initial
state of S: qinit = sinit, and for ρ ∈ Q, L(ρ) = λ(lst(ρ)) and

∆(ρ)(ρ′) = A(ρ)(s′) for ρ′ = ρ
A(ρ)−−−→ s′. We note sat(S) =

{S(A) | A ∈ Sched(S)}.
Note that the Uncertain Markov Chains semantics corre-

sponds to the particular case of memoryless schedulers.
Also, relating MDP semantics with the general notion

introduced in [9], it can be seen that scheduling an IMC
specification is a particular case of implementation in the sense
of [9]. For any scheduler A, S(A) is a kind of unfolding of
S, which restricts the structure of S(A): at each step, the
scheduler chooses a valid distribution among successor states.
Hence not every implementation in the sense of [9] can be
mapped to a scheduler (see [15] for details).

B. Simulation

The notion of simulation relation between probabilistic
specifications was introduced in [9], where it is proved to
be a sufficient condition for refinement: if S2 simulates S1,
then all implementations of S1 are implementations of S2.
This notion, which consists in lifting the usual simulation to
distributions [8], is adapted to our setting in Definition 5 below.

Definition 5 (Simulation relation). For two IMC specifications
S1 = (S1, s1,init, T1, λ1) and S2 = (S2, s2,init, T2, λ2), S2
simulates S1 if there exists a relation R ⊆ S1 × S2 such that
s1,initRs2,init and if s1Rs2 then:
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Figure 3. A simulation of S1 by S2.

(1) λ1(s1) = λ2(s2),
(2) there exists a function δ : S1 → Dist(S2) such that for

all f ∈ T1(s1) and s′2 ∈ S2,
∑
s′1∈S1

f(s′1) · δ(s′1)(s′2) ∈
T2(s2)(s′2),

(3) s′1Rs′2 whenever δ(s′1)(s′2) > 0.

In a rather counter-intuitive way, Figure 3 illustrates the
simulation relation R of S1 by S2, with dashed lines labeled
by δ(qi)(rj): for Condition (2) above, we may uniformly use
the function: δ(qi)(rj) = 1 if (qi, qj) ∈ R and 0 otherwise.

Note that there is no simulation relation of S2 by S1. Indeed,
let f ∈ T2(r0) defined as f(r1) = 1. The only way to
distribute f over S1 in order to satisfy Condition (2) is to
distribute 2

3 of f to q1 and 1
3 to q2. Hence, it forces to set

δ(r1)(q1) to 2
3 and δ(r1)(q2) to 1

3 but this choice for δ is not
uniform for any g ∈ T2(r0): for instance, Condition (2) is not
satisfied for g(r1) = 1

2 .
Finally, remark that Definition 5 also applies to PTSs, but

intervals reduce to points and Condition (2) becomes (2′):∑
s′1∈S1

∆1(s1)(s′1) · δ(s′1)(s′2) = ∆2(s2)(s′2).

III. OPACITY

The original definition of opacity was given in [4] for
(non probabilistic) transition systems, w.r.t. some observation
function O and some predicate ϕ (the secret) on the runs of
the system. We first define a quantitative version for IMCs and
show how its value can be computed in a restricted case.

A. Opacity for probabilistic models

For an ω-regular set ϕ ⊆ Σω , a run ρ of a PTS A satisfies ϕ
if its trace belongs to ϕ. We consider an observation function
defined as a morphism O : Σ∞ → Σ∞ob , based on a mapping
π : Σ→ Σob ∪ {ε} for a finite alphabet Σob.

The set ϕ is opaque with respect to A and O if each time a
word satisfies ϕ, another word with the same observation does
not. More precisely, the set of words violating this condition is
defined by V(A,O, ϕ) = (Tr(A)∩ϕ) \ (O−1(O(Tr(A) \ϕ)))
and ϕ is opaque if V(A,O, ϕ) = ∅.

This set is used in [17], [5] to define various notions of
probabilistic opacity (for instance in [5] in the particular case
where ϕ corresponds to finite runs reaching secret states). The
boolean property is extended by defining the probability of this
set, which is measurable since ϕ is ω-regular:
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Figure 4. The influence of modal transitions on disclosure.

Definition 6 (Probabilistic Disclosure). Let A be a PTS,
with observation function O and ω-regular predicate ϕ. The
probabilistic disclosure of ϕ in A for O is Disc(A,O, ϕ) =
PA(V(A,O, ϕ)).

For instance, recall systems A1 and A2 of Figure 1. The
secret predicate in this case is the set ϕb = abΣω (accepted
by the DPA in Figure 2) and the observation function is the
projection π onto {a, c, d}ω . This predicate is not opaque since
the run abdω discloses the occurrence of b. This is measured
by the disclosure: Disc(A1, π, ϕb) = PA1(abdω) = 1

4 and
Disc(A2, π, ϕb) = PA2(abdω) = 3

4 .
Remark that disclosure only measures probabilities of the

observer being sure that the run is in the secret. For example,
one can model anonymity of an agent α initiating some
protocol by defining ϕα as the set of all runs initiated by
α. Anonymity of α is then equivalent to opacity of ϕα. In the
case where anonymity is not guaranteed, disclosure provides
a measure of the threat. In the case where anonymity holds,
this measure will be 0 and does not give any insight on the
“strength” of anonymity. Other notions measuring this strength
were proposed in [18], [19] and quantitative opacity for partial
disclosure of the secret have also been defined in [6], although
they are not linear hence do not fare well under standard
optimization techniques.

For two PTSs A1 and A2 over the same alphabet Σ,
predicate ϕ and observation function O, we say that A1 is
more opaque than A2 if Disc(A1,O, ϕ) ≤ Disc(A2,O, ϕ).

We now lift the notion of disclosure to the set of scheduled
implementations of a specification S by:

Disc(S,O, ϕ) = sup
A∈Sched(S)

Disc(S(A),O, ϕ).

Note that this notion differs from the similar one in [7]
for Markov Decision Processes. The notion presented here
is finer since the set of runs measured by the disclosure
depends on the scheduled implementation. In [7], the set of
runs of the disclosure is defined on the (unscheduled) MDP,
and its probability is optimized afterwards. This would not
be consistent in IMCs, since two scheduled implementations

can have different sets of edges with non-null probability, as
explained below.

B. Computing the probabilistic disclosure of a specification

When the interval of an edge in an IMC is non-punctual
and closed on the left by 0, then the corresponding action can
be completely blocked by a scheduler. Following [9], we call
these edges modal edges, and IMCs that contain such edges
are called modal IMCs.

Definition 7 (Modal edge). An edge T (s)(s′) in IMC S is
modal if there exists a scheduler A such that in S(A), for any

run ρ with lst(ρ) = s, ∆(ρ)(ρ
A(ρ)−−−→ s′) = 0.

In the context of opacity, removing an edge drastically
changes the disclosure, since it can remove ambiguities. For
example, consider the modal IMC Sm of Figure 4(a), where
a and b are observed and the secret is the presence of c.
An implementation of Sm that blocks the direct edge from
a to b (Figure 4(c)) has a disclosure of 1, since the secret is
guaranteed to be part of the only possible run. On the other
hand, in the non-modal version of the IMC (Figure 4(b)),
such implementations are banned and only implementations
that retain a small probability to avoid c are allowed. In
these implementations, the disclosure is 0, since every run is
observed as abω and it is possible that c did not occur.

The detection of modal edges is the first step toward
computation of the disclosure of an IMC.

Proposition 1. The set of modal edges can be computed in
time polynomial in the number of edges.

Proof. The decision procedure for each edge is as follows:
• if an edge is not weighted by an interval containing 0, it

is not modal;
• otherwise, compute the sum of maximal interval values

of all other edges stemming from the same state;
– if this sum is > 1, the edge is modal;
– if this sum is < 1, the edge is not modal;
– otherwise (the sum is = 1), the edge is modal if, and

only if, all intervals of other outgoing edges are closed
on the right.

Note that the procedure does not rely entirely on the
syntactic criterion of an interval closed on 0: it is sufficient but
may lead to false positives. For example, consider a state with
two outgoing edges e1, [ 14 ; 2

3 ] and e2, [0; 1]. The e2 edge is not
actually modal since any probability distribution satisfying the
specification can give at most 2

3 to e1, hence must at least give
weight 1

3 to e2. This is avoided by the pre-computation of the
least possible probability that can be put on an edge.

In the case of non-modal IMCs, disclosure can be computed:

Theorem 1. Computing the value of disclosure for an IMC S
without modal edges can be done in 2EXPTIME.

Proof. Note that intervals may be closed or open on any non-
zero bound, which is not the case of IMCs in [11] where all



intervals are closed. Hence our procedure adapts ideas from
this work to deal with the general case.

First remark that there exists a regular language K such
that for any scheduler A, Tr(S(A)) = K. This is only true
because S is assumed non-modal. Let AK be a PTS such that
Tr(AK) = K; it can be chosen of size |S|. By the definition
of disclosure, if the secret ϕ is ω-regular and the observation
function O is a projection, then finding the supremum of the
disclosure means finding the maximal probability to reach an
ω-regular set of runs, namely V(AK ,O, ϕ).

Then we claim that open intervals can be handled as closed
ones when trying to optimize the probability of V(AK ,O, ϕ).
Indeed, if the optimal scheduler uses a value x which is
the bound of an open interval, then one can build a family
of schedulers using value x ± 1

2n for the nth scheduler.
The limit probability of reaching V(AK ,O, ϕ) is therefore
the one computed when using exact value x. Remark that
using closed intervals may introduce intervals containing 0,
although it is of no concern since the observation classes are
already defined and may not change, only their probability
may change. Said otherwise, this does not mean that we are
computing disclosure of the closed version, since it is only a
probability. On the example of Figure 4(b), it means trying to
compute the maximal probability of the empty set, which is
indeed zero.

The procedure is hence as follows. Starting from a DPA
Aϕ for ϕ, a DPA AV for V(AK ,O, ϕ) can be built, with size
exponential in the size of S and Aϕ (and with a number k of
colors polynomial in the size of A and Aϕ). This construction
relies on intersections and complementations of DPA, with a
determinization step that brings the exponential blowup [20].

The construction of [11] yields a memoryless scheduler,
although it is memoryless on the product, and hence is finite-
memory on the original IMC. The procedure of [11] is in EX-
PTIME with respect to the size of its input, hence computation
of disclosure is doubly exponential: 22

O(|A|×|Aϕ|) .

Remarks on modal edges. When a scheduler is faced with the
choice to include or exclude a modal edge, it can produce sev-
eral versions of PTSs, say A1 and A2, with Tr(A1) 6= Tr(A2),
hence V(A1,O, ϕ) 6= V(A2,O, ϕ). In addition, these choices
may be history dependent, as in the example of Figure 5, with
ϕ = aΣω and only letters c and d being observed. Intuitively,
a way for the scheduler to always disclose the presence of
an initial a is to always follow an a by the same letter,
say a c. However, this choice must be made after the first
letter has been seen. Moreover, leaving the possibility of a
run ad · · · to occur means that run ac · · · does not disclose
ϕ. As a result, the scheduler should also take into account ϕ
and the observation function before committing to a choice
with respect to modal edges. So far, the general case of modal
IMCs remains open.

IV. MONOTONICITY OF OPACITY UNDER SIMULATION

The last section is devoted to the proof of the following
result, establishing monotonicity for the disclosure over sched-
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Figure 5. IMC where the choice on modal edge requires history.
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Figure 6. The result of Theorem 3. Relation sat1◦R always exists but might
not be a scheduling.

uled implementations:

Theorem 2. Let S1 and S2 be IMC specifications such that
S2 simulates S1. Then Disc(S1,O, ϕ) ≤ Disc(S2,O, ϕ).

Since scheduling is a restrictive way to derive implemen-
tations from a specification, it is not the case in general that
sat(S1) ⊆ sat(S2): although any scheduling S1(A1) of S1
with A1 is an implementation of S2 this implementation may
not be a scheduling. Instead, the proof builds a scheduler A2

for S2, producing an implementation S2(A2) that simulates
S1(A1) (Theorem 3, illustrated in Figure 6). Then, this sim-
ulation is shown to ensure that the probabilities of (cones of)
finite words coincide (Propositions 2 and 3). The disclosure
set being a measurable event, coincidence of probabilities on
cones ensures coincidence of probabilities for the disclosure.

Notations. Given two specifications S1 and S2 such that S2
simulates S1 through relation R, we define the relation ∼ on
FRuns(S1)×FRuns(S2) by: ρ1 ∼ ρ2 if |ρ1| = |ρ2| and at any
intermediate step i, the corresponding states satisfy s1,iRs2,i.

Let A1 and A2 be two schedulers of S1 and S2, respectively.
We set A1 = S1(A1) and A2 = S2(A2), with respective sets
of states Q1 and Q2. For ρ2 ∈ Q2, we set sim(ρ2) = {ρ1 ∈
Q1 | ρ1 ∼ ρ2}. We now define a measure µρ2 over sim(ρ2) by
µρ2(ρ1) =

PA1
(ρ1)

PA1
(sim(ρ2))

(where the probability of finite run ρ
is abusively written instead of the probability of its cone Cρ).

We first show how to build a scheduler for S2 that simulates
the scheduling of S1. The proof of the theorem below is given
in [15].

Theorem 3. Let S1 and S2 be IMC specifications such that
S2 simulates S1. Then for any A1 ∈ Sched(S1) there exists
A2 ∈ Sched(S2) such that S2(A2) simulates S1(A1).

Now we show that simulation between two PTSs is suffi-
cient to compare their disclosure. Namely, we show that the
probabilities of cones of words are equal in both systems. Note
that although this property is well known to hold for paths, it
needs to be lifted to words in order to compare disclosure.



We start by considering the sets of traces globally; although
it is folklore that simulation implies trace inclusion, we provide
a proof for completeness sake.

Proposition 2. Let A1 and A2 be PTSs such that A2 simulates
A1. Then Tr(A1) = Tr(A2).

Proof. We prove the proposition by induction on a strength-
ened statement. Namely, we claim that for every finite run
in A1 there exists a similar run in A2. Since an infinite run
is the limit of the sequence of its finite prefixes, this claim
is sufficient to prove the proposition. Assume by induction
that the proposition holds for every word of length n. Let
w ∈ FTr(A1) of length n + 1. We write w = w0a for some
a ∈ Σ. Consider a run of A1 that produces w. It is of the
form ρ0s

′
1 where λ(s′1) = a; let s1 = lst(ρ0). Let ρ′0 be a

run in A2, similar to ρ0, and s2 = lst(ρ′0). By definition of
simulation, there exists a function δ such that for any state s′2
of A2,

∆2(s2)(s′2) =
∑
σ1∈S1

∆1(s1)(σ1) · δ(σ1)(s′2).

Moreover, whenever δ(σ1)(s′2) > 0, λ(s′1) = λ(s′2). Since
δ(s′1) is a distribution over S2, δ(s′1)(s′2) > 0 for at least one
state s′2. Hence ρ′0s

′
2 is similar to ρ, which shows in particular

that w ∈ FTr(A2).

We additionally show that probabilities coincide:

Proposition 3. Let A1 and A2 be PTSs such that A2 simulates
A1. Then for all w ∈ Σ∗, PA1

(Cw) = PA2
(Cw).

Since a given word may be produced by several paths, their
probabilities should be considered altogether. Hence the proof
of the above proposition is not immediate; it is quite technical
and can be found in [15].

Existing properties about simulation for PTSs can be re-
trieved as consequences of the above result. They were for
example obtained as a particular case of sub-stochastic simula-
tion in [8]. Although not necessary to prove the main theorem,
these results illustrate how constraining simulation between
PTSs is.

Recall that a probabilistic bisimulation [9] is a bisimulation
that preserves transition probabilities, i.e., a bisimulation rela-
tion R on states such that for any equivalence class R of R,
and any two related states sRs′, ∆(s)(R) = ∆(s′)(R).
Corollary 1. ([8]) Let A1 and A2 be PTSs such that A2

simulates A1. Then there exists a probabilistic bisimulation
over the union of both PTSs.
Corollary 2. ([8]) Let A1 and A2 be PTSs such that A2

simulates A1. Then A1 also simulates A2.
We are now ready to prove Theorem 2:

Proof. Let A1 ∈ sat(S1). By Theorem 3 there exists A2 ∈
sat(S2) that simulates A1. By Proposition 3, PA1(Cw) =
PA2

(Cw) for every word w ∈ FTr(A1). Hence, for any ω-
regular (hence measurable) language L, one has PA1

(L) =
PA2

(L). It is in particular the case for V(A1,O, ϕ) =
V(A2,O, ϕ). Therefore, Disc(A1,O, ϕ) = Disc(A2,O, ϕ).
Consequently, the theorem holds.

V. CONCLUSION

This work investigates how simulation between probabilistic
models impacts the security – modeled as opacity. Directions
for future work include computing disclosure for IMCs with
modal edges. In addition, while we considered here only the
worst case scenario, it would be interesting to handle also
the best case, thus providing bounds on the disclosure of
all possible implementations. Finally, we plan to extend our
results to CMCs or Parametric IMCs from [12], [14].
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