
Polynomial Interrupt Timed Automata

Béatrice Bérard1,4, Serge Haddad2,4,5, Claudine Picaronny2,4,5,
Mohab Safey El Din1,4,5, and Mathieu Sassolas3

1 Sorbonne Université, Université P. & M. Curie, LIP6, UMR 7606, Paris, France
2 École Normale Supérieure de Cachan, LSV, UMR 8643, INRIA, Cachan, France

3 Université Paris-Est, LACL, Créteil, France
4 CNRS
5 Inria

Abstract. Interrupt Timed Automata (ITA) form a subclass of stop-
watch automata where reachability and some variants of timed model
checking are decidable even in presence of parameters. They are well
suited to model and analyze real-time operating systems. Here we ex-
tend ITA with polynomial guards and updates, leading to the class of
polynomial ITA (PolITA). We prove that reachability is decidable in
2EXPTIME on PolITA, using an adaptation of the cylindrical decom-
position method for the first-order theory of reals. Compared to previous
approaches, our procedure handles parameters and clocks in a unified
way. We also obtain decidability for the model checking of a timed ver-
sion of CTL and for reachability in several extensions of PolITA.

1 Introduction

Hybrid Automata. Hybrid systems [14] combine continuous evolution of vari-
ables according to flow functions (described by differential inclusions) in con-
trol nodes, and discrete jumps between these nodes, where the variables can be
tested by guards and updated. This class of models is very expressive and all
relevant verification questions (e.g. reachability) are undecidable. For the last
twenty years, a large amount of research was devoted to identifying subclasses
with decidable properties, by restricting the continuous dynamics and/or the
discrete behavior of the systems. Among these classes lie the well known Timed
Automata (TA) [3], where all variables are clocks evolving with rate 1 w.r.t.
to global time, guards are comparisons of clocks with rational constants, and
updates are resets. It is proved in [15] that reachability becomes undecidable
when adding one stopwatch, i.e., a clock whose rate is either 0 or 1 depend-
ing on the state, to timed automata. Decidability results were also obtained for
larger classes (see [5,2,15,17,4]), usually by building from the associated tran-
sition system (with uncountable state space) a finite abstraction preserving a
specific class of properties, like reachability or those expressed by temporal logic
formulas. In all these abstractions, a state is a pair composed of a control node
and a polyhedron of variable values [15,17].
Interrupt Timed Automata. The class of Interrupt Timed Automata (ITA),
incomparable with TA, was introduced in [8,10] as another subclass of hybrid

automata with a (time-abstract) bisimulation providing a finite quotient, thus
leading to decidability of reachability and some variants of timed model checking.
In a basic n-dimensional ITA, control nodes are organized along n levels, with
n stopwatches (also called clocks hereafter), one per level. At a given level, the
associated clock is active, while clocks from lower levels are frozen and clocks
from higher levels are irrelevant. Guards are linear constraints and the clocks
can be updated by linear expressions (using only clocks from lower levels). The
hierarchical structure of ITA makes them particularly well suited for modeling
systems with interruptions, like real-time operating systems. ITA were extended
with parameters in [9], while preserving decidability.

Contribution. We define the class PolITA, of polynomial ITA, where linear
expressions on clocks are replaced by polynomials with rational coefficients both
for guards and updates. For instance, a guard at level 2 with clock x2 can be
of the form P1(x1)x22 + P2(x1) ≥ 0, where P1 and P2 are polynomials with
single variable x1, the clock of level 1. Thus, guards are more expressive than
in the whole class of linear hybrid automata and classical polyhedron-based
abstractions [1,12] are not sufficient to deal with these constraints. Since linear
constraints are not always sufficient for modeling purposes, such guards can be
useful. In addition, such guards can simulate irrational (algebraic) constraints,
a case that becomes undecidable in the setting of timed automata [19]. Similar
polynomials of variables for programs were considered in [20], although in an
untimed setting.

We establish that reachability is decidable in 2EXPTIME for PolITA by
adapting the cylindrical decomposition [13,6] related to the first order theory of
reals. Observe however that not any decision procedure would be appropriate
for our goal. Indeed this decomposition produces a finite partition of the state
space, which is the basis for the construction of a finite bisimulation quotient.
The first order theory of reals has already been used in several works on hybrid
automata [17,4] but it was restricted to the dynamical part, with discrete jumps
that must reinitialize the variables. Our adaptation consists in an on-the-fly
construction avoiding to build the whole decomposition.

The construction can also be adapted to model checking of a timed extension
of CTL. From an expressiveness point of view, we show that (contrary to ITA)
PolITA are incomparable with stopwatch automata (SWA). We also prove
that the decidability result still holds with several extensions: adding auxiliary
clocks and parameters, and enriching the possible updates. In particular, para-
metric ITA [9] can be seen as a subclass of PolITA, and the complexity of our
reachability algorithm is better than [9] (2EXPSPACE).

Outline. We describe the model of polynomial ITA in Section 2, with an example
and the presentation of the verification problems. In Section 3 we informally
present the cylindrical decomposition and the decision procedures for PolITA.
Then in section 4, we detail these constructions with a special focus on the data
structures and algorithmic schemes. Finally, we discuss expressiveness, describe
extensions and conclude in Section 5. All missing proofs and constructions can
be found in [11].

2 Polynomial ITA

We denote respectively by N, Z, Q and R the sets of natural numbers, integers,
rational and real numbers, with R≥0 for the set of non negative real numbers.
Let X = {x1, . . . , xn} be a finite set of n variables called clocks. We write
Q[x1, . . . , xn] for the set of polynomials with n variables and rational coefficients.

A polynomial constraint is a conjunction of constraints of the form P ./ 0
where P ∈ Q[x1, . . . , xn] and ./∈ {<,≤,=,≥, >}, and we denote by C(X) the
set of polynomial constraints. We also define U(X), the set of polynomial updates
over X, by: U(X) = {∧x∈Xx := Px | ∀x Px ∈ Q[x1, . . . , xn]}.

A valuation for X is a mapping v ∈ RX , also identified to the n-dimensional
vector (v(x1), . . . , v(xn)) ∈ Rn. The valuation where v(x) = 0 for all x ∈ X is
denoted by 0. For P ∈ Q[x1, . . . , xn] and v a valuation, the value of P at v is
P (v) = P (v(x1), . . . , v(xn)). A valuation v satisfies the constraint P ./ 0, written
v |= P ./ 0, if P (v) ./ 0. The notation is extended to a polynomial constraint:
v |= ϕ with ϕ =

∧
i Pi ./i 0 if v |= Pi ./i 0 for every i.

An update of valuation v by u = ∧x∈Xx := Px in U(X) is the valuation
v[u] defined by v[u](x) = Px(v) for each x ∈ X. Hence an update is atomic in
the sense that all variables are assigned simultaneously. For valuation v, delay
d ∈ R≥0 and k ∈ [1..n], the valuation v′ = v+k d, corresponding to time elapsing
of d for xk, is defined by v′(xk) = v(xk) + d and v′(x) = v(x) for x 6= xk.

Definition 1 (PolITA). A polynomial interrupt timed automaton (PolITA)
is a tuple A = 〈Σ,Q, q0, F,X, λ,∆〉, where:

– Σ is a finite alphabet, with ε the empty word in Σ∗, the set of words over Σ;
– Q is a finite set of states, q0 is the initial state, F ⊆ Q is the set of final

states;
– X = {x1, . . . , xn} consists of n interrupt clocks;
– the mapping λ : Q→ {1, . . . , n} associates with each state its level and xλ(q)

is called the active clock in state q;

– ∆ ⊆ Q×C(X)×(Σ∪{ε})×U(X)×Q is the set of transitions. Let q
ϕ,a,u−−−→ q′ in

∆ be a transition with k = λ(q) and k′ = λ(q′). The guard ϕ is a conjunction
of constraints P ./ 0 with P ∈ Q[x1, . . . , xk] (P is a polynomial over clocks
from levels less than or equal to k). The update u is of the form ∧ni=1xi := Ci
with:
• if k > k′, i.e. the transition decreases the level, then for 1 ≤ i ≤ k′,
Ci = xi and for i > k′, Ci = 0;

• if k ≤ k′ then for 1 ≤ i < k, Ci = xi, Ck = P for some P ∈
Q[x1, . . . , xk−1] or Ck = xk, and for i > k, Ci = 0.

Example 1. PolITA A0 of Fig. 1a has alphabet {a, a′, b, c}, two levels, with q0
at level 1 and q1, q2 at level 2. The single final state is q2. At level 1, only x1
appears in guards and updates (here the only update is the reset of x1 by action
a′), while at level 2 guards use polynomials in both x1 and x2. In the sequel, the
polynomials of A0 are denoted by A = x21 − x1 − 1, B = (2x1 − 1)x22 − 1 and
C = x2 + x21 − 5.

q0, 1

q1, 2 q2, 2

x2
1 ≤ x1 + 1, a

x2
1 > x1 + 1, a′, x1 := 0

(2x1 − 1)x2
2 > 1, b

x2 ≤ 5− x2
1, c

(a) A sample PolITA A0.

x1

x2

(2x1 − 1)x2
2 − 1 = 0

x2 + x2
1 − 5 = 0

x2
1 − x1 − 1 = 0

a

b

b

b

c

c

c0

c1
c2

c3

c4

c5
c6

c7

c8 c9
c10

c11

c5,−3

c5,−2

c5,−1

c5,1

c5,2

c5,3

c5,4

c5,5

(b) Sample trajectory of A0 in R2.
The axes are not orthonormal.

Fig. 1: A PolITA and an example of a trajectory.

A configuration (q, v) of A consists of a state q and a clock valuation v.

Definition 2. The semantics of a PolITA A is defined by the (timed) tran-
sition system TA = (S, s0,→), where S =

{
(q, v) | q ∈ Q, v ∈ RX

}
is the set

of configurations, with initial configuration s0 = (q0,0). The relation → on S
consists of two types of steps:
Time steps: Only the active clock in a state can evolve, all other clocks are
frozen. For a state q with active clock xλ(q), a time step of duration d ∈ R≥0 is

defined by (q, v)
d−→ (q, v′) with v′ = v +λ(q) d.

Discrete steps: There is a discrete step (q, v)
a−→ (q′, v′) if there exists a tran-

sition q
ϕ,a,u−−−→ q′ in ∆ such that v |= ϕ and v′ = v[u].

A run of a PolITA A is a path in the graph TA alternating time and discrete
steps. For a given run ρ, the trace of ρ is the sequence of letters (or word)
appearing in the path and the timed word of ρ is the sequence of letters along
with the absolute time of the occurrence, i.e. the sum of all delays appearing
before the letter. A run is accepting if it ends in a state of F . The language (resp.
timed language) of A is the set of traces (resp. timed words) of accepting runs.

Example 2. In A0, the transition from q0 to q1 can only be fired before (or when)

x1 reaches 1+
√
5

2 , i.e. at the point labeled c6 on Fig. 1b. Then, transition b from
q1 to q2 can only be taken once x2 reaches the grey areas. Transition c cannot
be taken once the green curve has been crossed. Hence the loop bc can occur as
long as the clock values remain in the dark gray area c5,3, or on the green curve
c5,4. In the sequel, we show how to symbolically compute these sets, called cells.
Since q2 ∈ F , the run depicted in Fig. 1b is accepted by A. The associated timed
word (resp. trace) is (a, 1.2)(b, 2.3)(c, 2.6)(b, 3.3)(c, 3.9)(b, 5.1) (resp. abcbcb).

Given a PolITA A, the reachability problem asks, given a state q, whether
there exists a valuation v and a path from (q0,0) to (q, v) in TA.

The reachability procedure given in Section 3 relies on a finite abstraction
of TA. This abstraction needs to be refined enough to capture time elapsing,
discrete jumps through the crossing of a transition, and keep constant the truth
value of constraints P ./ 0. In the resulting model, a state will consist of an
automaton state coupled with a cell of an appropriate cylindrical decomposition.

3 Cylindrical decomposition and reachability

3.1 Definition

The cylindrical decomposition is the basis of the first elementary decision pro-
cedure (more precisely 2EXPTIME) for the satisfiability of the first-order logic
over reals [13]6. A cylindrical decomposition of Rn consists of finite partitions
of R,R2, . . . ,Rn into cells such that the cells for R are open intervals or points
and cells of Rk+1 are obtained by lifting cells of Rk on the k+ 1th axis and then
partitioning this axis with intervals and points in a “similar” way for all the
points of the original cell.

Example 3. Fig. 1b partly depicts a cylindrical decomposition of R2. The cells
of R≥0 are denoted by c0, . . . , c11 (those of the negative part of the x1 axis are
not represented). The lifting of cell c5 is c5 × R and is partitioned into cells
c5,−3, c5,−2, . . . , c5,5. Given any z ∈ c5, {z}×R is partitioned in an open interval
c5,−3∩{z}×R followed by a point c5,−2∩{z}×R, etc. Observe that the mapping
z 7→ c5,−2 ∩ {z} × R is continuous.

Definition 3. A cell of level k is a subset of Rk inductively defined as follows.
– When k = 1, it is either a point or an open interval.
– A cell C of level k + 1 is based on a cell C ′ of level k. It has one of the

following shapes.
1. C = {(x, f(x)) | x ∈ C ′} with f a continuous function from C ′ to R;
2. C = {(x, y) | x ∈ C ′ ∧ l(x) < y < u(x)} with l < u continuous functions

from C ′ to R, possibly with l = −∞ and/or u = +∞.

We are interested in a cylindrical decomposition adapted to finite families of
polynomials P = {P1, . . . ,Pn} with Pk ⊆ Q[x1, . . . , xk]: in a cell of level k, the
sign (−, 0,+) of each polynomial in Pk is constant. Due to the definition of cells,
a cylindrical decomposition is appropriately represented by a tree.

Definition 4. A cylindrical decomposition of Rn adapted to P = {Pk}k≤n such
that Pk ⊆ Q[x1, . . . , xk], is a tree of cells inductively defined as follows:
– The root of the tree is the only cell of level 0, that is R0;
– Let C be a cell of level k < n in the tree. There exists some r ∈ N and

continuous functions fi, for 1 ≤ i ≤ r, with −∞ = f0 < f1 < . . . <
fr < fr+1 = +∞, such that the (ordered) children of C at level k + 1 in
the tree are the cells C0 = {(x, y) | x ∈ C ∧ f0(x) < y < f1(x)}, C1 =

6 Later on, an EXPSPACE procedure was proposed in [7].

{(x, f1(x)) | x ∈ C}, C2 = {(x, y) | x ∈ C ∧ f1(x) < y < f2(x)}, . . . ,
C2r = {(x, y) | x ∈ C ∧ fr(x) < y < fr+1(x)}.
For all P ∈ Pk+1, for all i ∈ {0, . . . , 2r}, for all z, z′ ∈ Ci, sign(P (z)) =
sign(P (z′)).

Example 4. For the PolITA of Fig. 1a, the relevant polynomials in Q[x1] are
those related to level 1: the clock x1 itself and the polynomial A = x21 − x1 − 1
used in both guards from q0, hence P1 = {x1, A}. The relevant polynomials in
Q[x1, x2] are those from level 2: x2 and B = (2x1 − 1)x22 − 1, C = x2 + x21 − 5
associated with the guards from q1 and q2, so P2 = {x2, B,C}. For the cells of
level 1, c4, c8, c10 correspond to intersection points of graphs B = 0 and C = 0
projected on the x1 axis, while c2 corresponds to 1

2 , the root of the coefficient
2x1− 1 of B. Other cells like c1, c3 correspond to intervals between roots. In cell
c5,3 of level 2, the guards of the transitions between q1 and q2 are satisfied.

The main elements for the effective construction of a cylindrical decomposi-
tion are given in Section 4. For the moment, we recall the result of [13]:

Theorem 1 ([13]). For any family P = {Pk}k≤n such that Pk is a finite subset
of Q[x1, . . . , xk], one can build a cylindrical decomposition of Rn adapted to P
in 2EXPTIME, more precisely in (|P| · d)2

O(n)

where d is the maximal degree of
a polynomial of P.

3.2 Reachability for PolITA

We now use this decomposition to build a finite abstraction of the set of configu-
rations of a PolITA, which leads to the decidability of the reachability problem.

Theorem 2. Reachability for PolITA is decidable in time (d|A|)2O(n)

where n
is the number of clocks in A and d the maximal degree of polynomials appearing
in A; thus in polynomial time when the number of clocks is fixed.

Let A = 〈Σ,Q, q0, F,X, λ,∆〉 be a PolITA with X = {x1, . . . , xn}. We
define Poly(A) as the set of all polynomials appearing in guards and updates of
A (including all clocks) as follows: P belongs to Poly(A) iff (1) P is a clock, (2)
P occurs in a guard P ./ 0, or (3) P = xi − Pi where xi := Pi is an update.

We denote by DA a cylindrical decomposition adapted to Poly(A), with
D1
A, . . . ,DnA for the set of cells at the respective levels 1, . . . , n so that for

1 ≤ k ≤ n, DkA is a decomposition of R{x1,...,xk}.
We define a finite transition system RA with states in Q × DA. The states

can also be partitioned according to levels as
⋃n
k=1 λ

−1(k)×DkA. Indeed, given
a configuration (q, v) with λ(q) = k, the clocks of level i > k are irrelevant and
so v can be identified as a point in R{x1,...,xk}. We now define the transitions of
RA as follows.
Time successors. Let succ /∈ Σ be a letter representing time elapsing. Let
(q, C) be a state of RA, with λ(q) = k, and let C ∈ Dk−1A be the projection of
C onto Rk−1 and −∞ = f0 < · · · < fr+1 = +∞ be the functions dividing C as
in Definition 4. The succ transitions are defined as follows:

– if C = {(x, fi(x)) | x ∈ C} for some i ∈ {1, . . . , r}, then there is a transition

(q, C)
succ−−−→ (q, C ′) where C ′ = {(x, y) | x ∈ C, fi(x) < y < fi+1(x)};

– if C = {(x, y) | x ∈ C, fi−1(x) < y < fi(x)} for some i ∈ {1, . . . , r}, then

there is a transition (q, C)
succ−−−→ (q, C ′) where C ′ = {(x, fi(x)) | x ∈ C};

– otherwise, C = {(x, y) | x ∈ C, fr(x) < y < fr+1(x)}, and there is a self-loop

labeled by succ: (q, C)
succ−−−→ (q, C).

In all the above cases, C ′ is called the time successor of C (in the last case, C
is its own time successor). Since the decomposition is cylindrical, time elapsing
according to the current clock corresponds to moving to the “next” cell.

Proposition 1 (Correctness w.r.t. time elapsing). Let v be a valuation
belonging to a cell C of level k.

– There exists d > 0 such that the elapsing of d time units for xk yields a
valuation v +k d ∈ C ′, the time successor of C.

– For any 0 < d′ < d, the elapsing of d′ time units for xk yields a valuation
v +k d that is either in C or in C ′.

Discrete successors. Since DA is adapted to Poly(A) which contains all guards
and updates we can write C |= ϕ whenever v |= ϕ for some v ∈ C and C[u]
for the unique cell C ′ ∈ DkA such that for any valuation v ∈ C, v[u] ∈ C ′.
Discrete transitions of A are translated as follows into RA: if (q, ϕ, a, u, q′) ∈ ∆
and C |= ϕ, there is a transition (q, C)

a−→ (q′, C[u]). Since the decomposition
provides sign-invariant cells with respect to the polynomials of A, we have:

Proposition 2 (Correctness w.r.t. discrete steps).

– If (q, v)
a−→ (q′, v′) ∈ TA, then (q, C)

a−→ (q′, C ′) ∈ RA with v ∈ C and
v′ ∈ C ′.

– If (q, C)
a−→ (q′, C ′) ∈ RA then for all v ∈ C there exists v′ ∈ C ′ such that

(q, v)
a−→ (q′, v′) ∈ TA.

Since the number of cells in a cylindrical decomposition is doubly exponential
in the number of clocks and polynomial in the number and maximal degree
of polynomials to which it is adapted [6], we obtain the complexity stated in
Theorem 2. By setting {(q, C) | q ∈ F} as the set of final states of RA,ψ, this
construction establishes that the untimed language of a PolITA is regular.

4 Effective construction and on-the-fly algorithm

4.1 Construction of a cylindrical decomposition

Building a cylindrical decomposition consists in two stages: the elimination stage
that enlarges P and the lifting stage that builds the cylindrical decomposition
using symbolic representations of sample points (one per cell).
Elimination stage. Starting from a cell C at level k, in order to get a partition
at level k+ 1 adapted to Pk+1, any two points z, z′ ∈ C should trigger a similar
bevahiour for polynomials of Pk+1, that we consider for our discussion as uni-
variate polynomials of Q[x1, . . . , xk][xk+1] with variable xk+1. More precisely,
the properties we are looking for are:

– For all P ∈ Pk+1 and for all z, z′ in C, the number of real roots (counted
with multiplicities) of the polynomials P (z) and P (z′) in R[xk+1] are equal
(say µP). For 1 ≤ i ≤ µP and z ∈ C, we denote by rP,i(z) the ith real root
of polynomial P (z) (in increasing order) ;

– For all P,Q ∈ Pk+1, for all 1 ≤ i ≤ µP and 1 ≤ j ≤ µQ, for all z, z′ in C,
rP,i(z) ≤ rQ,j(z) implies rP,i(z

′) ≤ rQ,j(z′).
These properties are analytical and do not provide insights on how to en-

sure them. Fortunately, it turns out that a simple effective sufficient condi-
tion exists: there is a finite subset of polynomials of Q[x1, . . . , xk] denoted by
Elimxk+1

(Pk+1) such that if z, z′ satisfy sign(R(z)) = sign(R(z′)) for all R ∈
Elimxk+1

(Pk+1), then the above properties are satisfied.
To define Elimxk+1

(Pk+1), we need some notations. For P =
∑
i≤p aix

i
k+1

with ai ∈ Q[x1, . . . , xk] for all i, lcof(P) denotes the leading coefficient ap.
Since this leading coefficient is a polynomial and could be null for some P (z),
the set of truncations of P contains the possible “realizations” of P : Tru(P) =
{
∑
i≤h aix

i
k+1 | ∀i > h ai /∈ R \ {0} ∧ ah 6= 0}. For instance, if P = x1x

3
2 +

(3x1 + 1)x22 + 5x2− 2, then Tru(P) = {P, (3x1 + 1)x22 + 5x2− 2, 5x2− 2}. Given
another polynomial, Q =

∑
i≤q bix

i
k+1 ∈ Q[x1, . . . , xk][xk+1], the subresultants

(sResi(P,Q))i≤max(p,q) are polynomials of Q[x1, . . . , xk] obtained as determi-
nants of matrices whose items are coefficients of P and Q (see [6,11] for a formal
definition of subresultants, a polynomial time computation and their properties).

Definition 5. Let Pk be a finite subset of Q[x1, . . . , xk−1][xk] for k > 1. Then
Elimxk

(Pk) is the subset of Q[x1, . . . , xk−1] defined for all P,Q ∈ Pk, R ∈
Tru(P), T ∈ Tru(Q) by:

– If lcof(R) does not belong to Q then lcof(R) ∈ Elimxk
(Pk);

– If deg(R) ≥ 2 then for all sResj(R,
∂R
∂xk

) that are defined and do not belong

to Q, sResj(R,
∂R
∂xk

) ∈ Elimxk
(Pk);

– for all sResj(R, T) that are defined and do not belong to Q, sResj(R, T) ∈
Elimxk

(P).

Using the properties of subresultants, one gets the following theorem whose
implementation is the elimination stage of the cylindrical decomposition. Due to
the quadratic blow up at each level of elimination the final number of polynomials
is doubly exponential w.r.t. the original number.

Theorem 3. Let P = {Pk}k≤n be a family of finite set of polynomials such that
Pk ⊆ Q[x1, . . . , xk]. Define Qn = Pn and inductively Qk−1 = Pk−1∪Elimxk

(Qk)
for k > 1. Then there exists a cylindrical decomposition adapted to Q (and thus
to P).

Example 5. Consider again the polynomials B = (2x1 − 1)x22 − 1 and C =
x2 + x21 − 5 from the PolITA of Fig. 1a. Their subresultant of index 0 is F =
−2x51+x41+20x31−10x21−50x1+26 which has precisely three real roots c4, c8, c10:
the x1-coordinates of intersection points of graphs B = 0 and C = 0 mentioned
previously.

Lifting stage. The starting point of the lifting stage is the family P appropri-
ately enlarged by the elimination stage. In the cylindrical decomposition that
we build, every cell C of level k is represented by a sample point inside the cell
and the values of signs of all polynomials of set Pk on this point.

We consider representations of real subrings of the form D = Q[α1, . . . , αk]
where the αi’s are algebraic numbers, i.e., roots of polynomials in Q[x]. Any
real algebraic number α can be represented by a pair (n, P) where P is a non
null polynomial in Q[x] such that P (α) = 0 and n is the index of α in the
ordered set of real roots of P . This representation is extended for real algebraic
points (α1, . . . , αk) with the notion of triangular systems: α1 is the nth1 root of
P1 ∈ Q[x1], α2 is the nth2 root of P2(α1) with P2 ∈ Q[x1][x2], etc.

Definition 6 (Triangular system). For k ≥ 1, let (α1, . . . , αk) be a sequence
of reals and let {(ni, Pi)}ki=1 be such that for all i, ni is a positive integer and
Pi ∈ Q[x1, . . . , xi−1][xi]. Then {(ni, Pi)}ki=1 is a triangular system of level k for
(α1, . . . , αk) if:

– P1 is non null and α1 is its nth1 real root;
– For 1 ≤ i < k, Pi+1(α1, . . . , αi) is a non null polynomial of Q[α1, . . . , αi][xi+1]

and αi+1 is its nthi+1 real root.

Example 6. Let us consider the point (α1, α2) depicted as a circle in Fig. 1b. This
point is represented by the triangular system ((2, A), (2, B)) where A = x21−x1−2
and B = (2x1 − 1)x22 − 1. This means that α1 is the 2nd root of A and α2 is the
2nd root of B(α1).

The interest of such a representation is its effectiveness: in a ring D =
Q[α1, . . . , αk] associated with a triangular system one can compute (1) the sign
of an item of Q[α1, . . . , αk], (2) the number of real roots of P (α1, . . . , αk) with
P ∈ Q[x1, . . . , xk][xk+1], (3) the sign realizations of a polynomial Q(α1, . . . , αk)
on the real roots of a polynomial P (α1, . . . , αk), and one can order (with merge)
the roots of P (α1, . . . , αk) and Q(α1, . . . , αk). All these procedures are performed
in polynomial time (see for instance [11]).

The tree corresponding to the cylindrical decomposition is built top-down so
that a triangular system is associated with a sample point of every cell and its
sign realizations on the appropriate polynomials. Let us describe how, given a
sample point (α1, . . . , αk), the partition over axis xk+1 can be built w.r.t. Pk+1.
First for all P ∈ Pk+1, the number of roots of P (α1, . . . , αk) is determined. Then
the roots of these polynomials are sorted and merged; their triangular system is
the one associated with (α1, . . . , αk) extended by the polynomial for which they
are roots. Then the open intervals between these roots or beyond these roots must
be specified, to yield the completed line partitioning. Let (r, P) and (s,Q) be the

borders of an open interval, then one selects as sample point, a root of ∂(PQ)
∂xk+1

located in the interval. Let (r, P) and +∞ (resp. −∞ and (1, P)) be the borders
of the last (resp. first) open interval, then one selects (r, P [xk+1 := xk+1 − 1])
(resp. (r, P [xk+1 := xk+1 + 1])) as sample point. To achieve this step it remains
to compute the sign realizations of P (α1, . . . , αk) for all P ∈ Pk+1 on these
sample points. Theorem 1 results from these two construction steps.

4.2 On-the-fly algorithm

The abstraction from Section 3 provides decidability of the reachability problem,
by the algorithm that builds the finite graphRA. However, building the complete
graph is not efficient in practice, since it requires to build the set of all cells
beforehand, even though usually most of them are unreachable. In the sequel,
we show an on-the-fly construction of RA that reduces complexity in practice.

The key to the on-the-fly algorithm is to store only the part of the tree corre-
sponding to the current sample point and its time successors. This construction
relies on executing the lifting phase only when the level is increased and then
only for the current sample point. As an illustration, in Fig. 1b, only the lifting
for x2 above c5 has been represented, since it is the only relevant one with re-
spect to the given trajectory. Note that liftings over sample points c0 to c6 have
to be computed in order to build the reachable part of RA0

. On the other hand,
liftings over c7 to c11 and over unrepresented cells to the left of c0, need not,
since level 2 is not reachable from these cells. As a result, we do not keep the
whole tree but only part of it.

We show that this information is sufficient to compute the successors through
time elapsing and transition firing. Although this pruning yields better perfor-
mances in practice, the computational complexity in the worst case is not im-
proved.

Definition 7 (Pruned tree). Let {Pk}k≤n be the polynomials obtained by the
elimination phase. The pruned tree for sample point (α1, . . . , αk) is the sequence
of completed line partitionings for sample points {(α1, . . . , αi)}1≤i≤k. The pruned
tree for the empty sample point (k = 0) is the line partitioning at level 1.

A valuation (v1, . . . , vk, 0, . . . , 0) at level k is represented by a sample point
(α1, . . . , αk), or, equivalently, by a pruned tree for sample point (α1, . . . , αk−1)
and the index m of αk in the line partitioning for (α1, . . . , αk−1). In this rep-
resentation, computing the time successors of (α1, . . . , αk) is simply done by
incrementing m (if it is not the maximal index in the line partitioning).

The set of enabled discrete transitions can be generated by computing the

signs of polynomials appearing in guards. When a discrete transition q
g,a,u−−−→ q′

is chosen, there are three cases w.r.t. the level of states q and q′.

– The level decreases, i.e. λ(q′) < λ(q). Then the pruned tree corresponding
to the new configuration is the truncation of the original pruned tree up to
height λ(q′). Otherwise said, we “forget” line partitionings for levels above
λ(q′); however, the partitionings are kept in memory to avoid redundant
computations. The new index is the index of αλ(q′) in the partitioned line
for this level.

– The level is unchanged, i.e. λ(q′) = λ(q) = k. The only possible change of
clock values is through an update xk := P with P ∈ Q[x1, . . . , xk−1]. The
polynomial of degree 1 R = xk − P was added to Poly(A) and its unique
root α′k appears in the line partitioning of level k. Note that in the triangular
system representing (α1, . . . , α

′
k) it may appear as ((n1, P1), . . . , (nk, Pk))

with (nk, Pk) 6= (1, R). Hence to determine the index in the partitioned line

the algorithm must actually determine the sign of R for all sample points of
the line until 0 is found.

– The level increases, i.e. λ(q′) > λ(q). If there is an update of xk, the same
computations as above must be performed in order to find the new sample
point corresponding to the valuation of clocks up to λ(q). Then the pruned
tree of height λ(q′) has to be computed (or retrieved). This is done by λ(q′)−
λ(q) lifting steps. These lifting steps are applied on sample points of the form
(α1, . . . , αλ(q), 0, . . . , 0), since all clocks are null for levels above λ(q).

The on-the-fly algorithm builds the reachable part of RA as follows: the
elimination phase is computed and the line for x1 is partitioned. It starts with a
queue containing q0 with index corresponding to the root of x1 (i.e. 0). Then until
the queue is empty, it computes all (new) successors through time and discrete
transitions, building the pruned tree as described above. As noted above, a line
partitioning only needs to be computed once. In addition, and this also holds for
the complete construction of RA, the triangular structure of triangular systems
enables a sharing of line partitioning at lower levels.

5 Conclusion and discussion

We extend ITA with polynomial expressions on clocks, and prove that reach-
ability is decidable using the cylindrical decomposition. We also show that an
on-the-fly construction of a class automaton is possible during the lifting phase
of this decomposition.

We now mention several additional results proved in [11] but omitted here.
The first one concerns the decidability of the model checking of TCTLint, a
variant of TCTL [1], where only local clocks can be used in the formulas. The
PolITA is equipped with atomic propositions that hold in states. Another di-
rection was to investigate the expressive power of the model and try to extend
it while keeping decidability of reachability. We first established that stopwatch
automata and PolITA are incomparable. Then we proved that reachability is
still decidable when including parameters in the expressions of guards and up-
dates, with a better complexity than obtained in [9] (2EXPSPACE). We also
extend the model by adding at each level i, a set of auxiliary clocks Yi in addi-
tion to the main clock xi. With several restrictions, we still obtain a decidability
result for reachability. A last extension allows updates for clocks of levels lower
than the current one. Again with some restrictions, decidability for reachability
is preserved via a translation into a basic PolITA, similarly to [10] for ITA.
Finally, as also presented in [10] for ITA, it is possible to extend the model of
PolITA by adding timed automata at a lower level 0, producing a class that is
stricly more expressive than timed automata.

An implementation is in progress to experiment the practical efficiency of
the decision procedures. Since the construction still suffers from the doubly ex-
ponential complexity of the cylindrical decomposition, we plan to investigate if
recent methods [16] with a lower complexity could be used to achieve reacha-
bility, possibly for a restricted version of PolITA. Another direction would be
to enlarge the class of functions (like those studied in [18]) labelling guards and
updates, still ensuring a finite bisimulation quotient.

References

1. Alur, R., Courcoubetis, C., Dill, D.L.: Model-checking in dense real-time. Informa-
tion and Computation 104, 2–34 (1993)

2. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin,
X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems.
TCS 138, 3–34 (1995)

3. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183–235 (1994)
4. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of

hybrid systems. Proceedings of the IEEE 88(7), 971–984 (2000)
5. Asarin, E., Maler, O., Pnueli, A.: Reachability analysis of dynamical systems hav-

ing piecewise-constant derivatives. TCS 138(1), 35–65 (1995)
6. Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer

(2006)
7. Ben-Or, M., Kozen, D., Reif, J.: The complexity of elementary algebra and ge-

ometry. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing. pp. 457–464. STOC ’84, ACM (1984)

8. Bérard, B., Haddad, S.: Interrupt timed automata. In: Proc. of FoSSaCS’09. LNCS,
vol. 5504, pp. 197–211. Springer, York, UK (Mar 2009)

9. Bérard, B., Haddad, S., Jovanovič, A., Lime, D.: Parametric interrupt timed au-
tomata. In: Proceedings of the 7th Workshop on Reachability Problems in Com-
putational Models (RP’13). LNCS, vol. 8169, pp. 59–69. Springer (2013)

10. Bérard, B., Haddad, S., Sassolas, M.: Interrupt timed automata: Verification and
expressiveness. Formal Methods in System Design 40(1), 41–87 (Feb 2012)

11. Bérard, B., Haddad, S., Picaronny, C., Safey El Din, M., Sassolas, M.: Polynomial
interrupt timed automata. CoRR abs/1504.04541 (Apr 2015)

12. Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Proc. of CON-
CUR’00. LNCS, vol. 1877, pp. 138–152. Springer (Aug 2000)

13. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic
decompostion. In: Automata Theory and Formal Languages 2nd GI Conference,
LNCS, vol. 33, pp. 134–183. Springer Berlin Heidelberg (1975)

14. Grossman, R., Nerode, A., Ravn, A., Rischel, H. (eds.): Hybrid systems, LNCS,
vol. 736. Springer (1993)

15. Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hy-
brid automata? J. Comput. Syst. Sci. 57(1), 94–124 (1998)

16. Hong, H., Din, M.S.E.: Variant quantifier elimination. Journal of Symbolic Com-
putation 47(7), 883–901 (2012)

17. Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. MCSS 13(1),
1–21 (2000)

18. Miller, D.J.: Constructing o-minimal structures with decidable theories using
generic families of functions from quasianalytic classes. ArXiv e-prints 1008.2575
(Aug 2010)

19. Miller, J.S.: Decidability and complexity results for timed automata and semi-linear
hybrid automata. In: HSCC’00. LNCS, vol. 1790, pp. 296–309. Springer (2000)

20. Müller-Olm, M., Seidl, H.: Computing polynomial program invariants. Inf. Process.
Lett. 91(5), 233–244 (2004)

