
Channel Synthesis for Finite Transducers∗

Gilles Benattar1 Béatrice Bérard2 Didier Lime1

John Mullins3 Olivier H. Roux1 Mathieu Sassolas2

1École Centrale de Nantes, IRCCyN, CNRS UMR 6597
2Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606

3École Polytechnique de Montréal

Email: Gilles.Benattar@irccyn.ec-nantes.fr,
mathieu.sassolas@lip6.fr

Abstract

We investigate how two agents can communicate through a noisy
medium modeled as a finite transducer. The sender and the receiver
are also described by finite transducers which can respectively en-
code and decode binary messages. When the communication is re-
liable, modulo some transmission delay, we call the encoder/decoder
pair a channel. We study the channel synthesis problem, which asks
whether, given a system, such sender and receiver exist and builds
them if the answer is positive.

We prove that the problem is undecidable. However, we obtain a
synthesis procedure when the transducer is a finite union of functions.
We discuss these results in relation to security properties.

1 Introduction

Given an architecture defined by processes and communication links be-
tween them or with the environment, and a specification on the messages
transmitted over these links, distributed synthesis aims at deciding ex-
istence of local programs, one for each process, that together meet the
specification, whatever the environment does. In the case of synchronous

∗Work partially supported by project DOTS (ANR-06-SETI-003), project CoChaT
(Digiteo-2009-HD27), NSERC discovery grant 13321-2007 (Government of Canada).

1

communication, the problem was proved decidable (but non-elementary) for
LTL properties over pipeline architectures [14, 10], or more generally [5],
when the processes are sorted in a linear preorder related to the infor-
mation received from the environment. In the asynchronous setting, the
problem of synthesis of at least two processes is undecidable for general
LTL specifications [17].

Here, we consider a simpler setting with only two processes (sender and
receiver), respectively encoding and decoding binary messages, and a par-
ticular basic specification expressing faithful communication: the message
received is equal to the message emitted, possibly modulo some transmis-
sion delay. However, these processes communicate asynchronously through
a (non-deterministic) medium, acting as noise over the link between them.
The three processes (encoder, decoder and noise) are modeled by finite
transducers. The synthesis problem then asks if, given the noisy process,
the encoder and decoder can be synthesized. We call reliable channel (or
channel for short) such an encoder/decoder pair, and thus call this problem
the channel synthesis problem.

We prove that, even in this most simple setting, the channel synthesis
problem is undecidable (Section 4), except in a restricted case where the
noisy process is a finite union of functional transducers (Section 5). Then,
we discuss in Section 6 the possible relations of these results with security
properties.

2 Preliminaries

Notations. The set of words over a finite alphabet A is denoted by A∗,
with ε for the empty word. The length of a word u is written |u| and for
1 ≤ i ≤ |u|, the ith letter of u is denoted by u[i]. A language is a subset of
A∗.

For two words u and v, we write v 4 u when v is a prefix of u: there
is some word w such that u = vw. The set of k-bounded prefixes of u is
defined by Prefk(u) = {v ∈ A∗|v 4 u ∧ |u| − |v| ≤ k}, it contains the
prefixes v of u whose length differ from the length of u by at most k letters.

Finite automata. A finite automaton, or automaton for short, is a tuple
M = 〈S, s0, Lab,∆, F 〉, where S is a set of states, s0 is the initial state,
Lab is a set of labels, ∆ ⊆ S×Lab×S is the transition relation and F ⊆ S
is a subset of final states. Note that Lab can be an alphabet but also a
(part of a) monoid. A run from s ∈ S is a path starting from s in the

graph, written as ρ = s
a1−→ s1

a2−→ · · · an−→ sn, with ai ∈ Lab and si ∈ S,

2

for 1 ≤ i ≤ n. The trace of ρ is trace(ρ) = a1 · · · an. We write s
u
=⇒ s′ if

there is a run ρ from s to s′ with trace u. A run ρ as above is accepting if
s = s0 and sn ∈ F and the language of M is the set of traces of accepting
runs. A state s ∈ S is useful if it belongs to some accepting run. Since the
accepted language is the same when removing non useful states, we assume
in the sequel that the set S contains only useful states. A regular language
over an alphabet A is a subset of A∗ accepted by a finite automaton with
set of labels Lab = A.

Finite Transducers. A finite transducer (or transducer for short) is a
finite automaton M with set of labels Lab ⊆ A∗ × B∗ for two alphabets
A and B. A label (u, v) ∈ A∗ × B∗ is often written as u|v in the figures
(see examples in Figure 1). The subset of A∗ × B∗ containing the traces
of accepting runs of M is a rational relation [16] from A∗ to B∗. The
transducer M is said to realize the corresponding relation which is also
denoted by M. With this slight abuse of notation, for a word u ∈ A∗, we
write M(u) = {v ∈ B∗ | (u, v) ∈ M} for the image of u, M−1(v) = {u ∈
A∗ | (u, v) ∈M} for the inverse image of v, possibly extended to subsets of
A∗ or B∗ respectively, Dom(M) = {u ∈ A∗ | ∃v ∈ B∗, (u, v) ∈ M} for the
domain of M and Im(M) = {v ∈ B∗ | ∃u ∈ A∗, (u, v) ∈ M} for the image
of M. When M(w) is a singleton, it will also denote its only element,
again with a slight abuse of notation. If the domain of M is A∗, then M
is said to be complete. The transducer is functional if it realizes a partial
function: for each word w ∈ A∗, there is at most one word in M(w).

For a subset P of A∗, the identity relation {(w,w) | w ∈ P} on A∗×A∗
is denoted by Id(P) and Idk(P) is the relation between words and their
k-bounded prefixes in P : Idk(P) = {(u, v) ∈ P × P | v ∈ Prefk(u)}. Note
that Id0 = Id.

The composition of rational relationsM on A∗×B∗ andM′ on B∗×C∗,
denoted by M ·M′, is a rational relation on A∗ × C∗ ([4]). Moreover, the
image and inverse image of a regular language by a rational relation is a
regular language [16].

3 Channels

We consider communication between two processes, respectively called an
encoder and a decoder. The encoder E reads binary input and produces
an output in A∗, while the decoder D reads words over B and produces a
binary word. The intermediate noisy agent is modeled by a transducer over
A∗×B∗. The definition below states that a channel corresponds to reliable

3

communication: the binary message is correctly transmitted, modulo some
delay to take into account transmission time.

Definition 1. A channel with delay k for a transducer M = 〈S, s0, A∗ ×
B∗,∆, F 〉 is a pair (E ,D) such that E is a transducer on {0, 1}∗×A∗, D is
a transducer on B∗ × {0, 1}∗ and Id({0, 1}∗) ⊆ E ·M · D ⊆ Idk({0, 1}∗).

The first inclusion means that any binary words can be encoded, hence
it implies that encoder E is complete. This inclusion could be weakened
but it must ensure that the channel permits communication.

First recall some properties of channels from [2]. The first one shows
that verification is possible when the pair (E ,D) is given, for channels with
delay 0.

Proposition 2 ([2]). Let M be a transducer on A∗ ×B∗ and let E and D
be two transducers on {0, 1}∗×A∗ and B∗×{0, 1}∗, respectively. It can be
decided whether (E ,D) is a channel with delay 0 for M.

Also, by compacting together sequences of letters, it can be shown that
looking only for channels with no delay is sufficient.

Proposition 3 ([2]). If there is a channel with delay k for transducer M,
then there is also a channel with no delay for M.

We consider now the channel synthesis problem: “given a transducer
M, is there a channel for M ?” and prove the two following results in the
sections 4 and 5, respectively:

Theorem 4. The channel synthesis problem is Σ0
1-complete.

Theorem 5. The channel synthesis problem for a functional transducer
M is decidable in polynomial time. Moreover if there is a channel for M,
it can be computed.

Both proofs partly rely on a structural necessary condition for the ex-
istence of a channel, based on the following notion of encoding state.

Definition 6. LetM = 〈S, s0, A∗×B∗,∆, F 〉 be a transducer. An encoding
state is a state s ∈ S such that there exist four words u0, u1 ∈ A∗ and

v0, v1 ∈ B∗ such that (i) s
u0|v0
===⇒ s and s

u1|v1
===⇒ s and (ii) u1 · u0 6= u0 · u1

and v1 · v0 6= v0 · v1.

4

Note that condition (i) means that there are two cycles on state s while
condition (ii) expresses the fact that the pair {u0, u1} (resp. {v0, v1}) is a
code ([12, 7]). For tuples U = (u, u0, u1, u

′) and V = (v, v0, v1, v
′) of words

in A∗ and B∗ respectively, we define the relations

E(U) = (ε, u) · {(0, u0), (1, u1)}∗ · (ε, u′)
and D(V) = (v, ε) · {(v0, 0), (v1, 1)}∗ · (v′, ε),

which correspond to the transducers in Figure 1. Combinatorial arguments
then yield the following result:

Theorem 7 ([2]). Let M = 〈S, s0, A∗×B∗,∆, F 〉 be a transducer. If there
is a channel for M then:
1. There exist tuple of words U = (u, u0, u1, u

′) in A∗ and V = (v, v0, v1, v
′)

in B∗, such that u0 · u1 6= u1 · u0 and v0 · v1 6= v1 · v0, and (E(U),D(V)) is
a channel for M.
2. there is an encoding state.

p0 p1 p2
ε|u

1|u1

0|u0

ε|u′

(a) Transducer E(u, u0, u1, u
′)

q0 q1 q2
v|ε

v1|1

v0|0

v′|ε

(b) Transducer D(v, v0, v1, v
′)

Figure 1: General form of encoder and decoder.

The condition is not sufficient as shown by the example of the (non
functional) system N of Figure 2. State s4 is an encoding state, but an u
can also lead to s3, which simulates s4, but where no word can be encoded:
indeed, after u0 or u1, both v0 and v1 can be produced. In this case, the
non-functionality of N breaks the locality of the encoding state property.

4 Channel synthesis is undecidable

This section is devoted to a sketch of the proof of Theorem 4. Proposition 2
states that the channel synthesis problem is in Σ0

1. The proof of Σ0
1-hardness

is done by a reduction from Post’s Correspondence Problem (PCP) [15].

5

s0s1 s2

s3 s4

s5 s6 s7 s8

u|ε ε|v

ε|v u|ε

ε|v0 ε|v1

u0|ε u1|ε
u1|ε

ε|v1

ε|v0
u0|ε

ε|v0

ε|v1

Figure 2: Transducer N with an encoding state s4 but no channel

Recall that an instance of PCP is a tuple I = 〈(x1, y1), . . . , (xn, yn)〉 of
pairs of words over an alphabet A. A (non trivial) solution is a (non
empty) sequence of indexes i1, . . . , ik such that xi1 · · ·xik = yi1 · · · yik . The
problem of existence of a solution is undecidable.

Starting from an instance I = 〈(x1, y1) . . . , (xn, yn)〉 of PCP, we build
a transducer MI such that:

I has a solution if and only if there is a channel for MI .

The construction extends the undecidability proof for transducer equal-
ity [6] with an additional construction to obtain the channel property. The
main idea is the following: the transducer MI reads a bit followed by a
sequence of indexes. If the sequence is a non-trivial solution of the instance
I, then the bit is transmitted. Otherwise,MI may flip the input bit. More
precisely, given an input sequence bi1, . . . , ik such that i1, . . . , ik is a solution
of I and b a bit, MI will output anything except xi1 · · ·xik = yi1 · · · yik
followed by b the complement of the input bit. Detecting this “missing
word” will allow to deduce the input bit, and hence to transmit a message.

We give an intuition of the construction of transducerMI ; the detailed
proof can be found in [3].

Construction. We consider the alphabets B = {>,⊥}, N = {1, . . . , n},
AB = A ∪ B, and NB = N ∪ B. For b ∈ B, we define b by > = ⊥
and ⊥ = >. Recall that an instance I can also be seen as a pair of
morphisms x and y, with x(σ) = xi1 · · ·xik and y(σ) = yi1 · · · yik for any
word σ = i1 · · · ik ∈ N∗. Hence PCP can be reformulated as the existence
of a sequence σ, with |σ| > 0, such that x(σ) = y(σ).

TransducerMI = 〈Q, q0, N∗B ×A∗B,∆, {q0}〉 realizes a relation in N∗B ×

6

A∗B such that for b ∈ B and σ ∈ N+:

MI(b · σ) = (A∗ · b) ∪
(
(A∗ \ {x(σ)}) · b

)
∪
(
(A∗ \ {y(σ)}) · b

)
and MI(b) = A+ · {b, b}

This means that this transducer taking as input a bit and a sequence of
indexes, outputs:

• either any word followed by the same bit,

• or a word which is not the image of the sequence by x followed by
the opposite of the input bit,

• or a word which is not the image of the sequence by y followed by the
opposite of the input bit.

The case of an empty sequence of indexes is treated separately: the word
followed by the input bit has to be non-empty. This relation is extended to
N∗B by MI(ε) = {ε} and for b1, . . . , bp ∈ B and σ1, . . . , σp ∈ N∗: MI(b1 ·
σ1 · · · bp ·σp) =MI(b1 ·σ1) · · ·MI(bp ·σp) whileMI(v) = ∅ if v /∈ (B ·N∗)∗.

Transducer MI is composed of two symmetrical parts that keep in
memory one bit b of information (see Figure 3(a)). The part of MI con-
sisting of state q∗ and q′∗ does not look at its input and generates any word
of A∗ (or a non empty word if no input was read), appending b after it. On
the other hand, on input b · σ, the other states (which will be called the
diff-part in the sequel) generate either a word which is not x(σ), or a word
which is not y(σ), appending b after it (see Figure 3(b)). This is achieved
by introducing errors in x(σ) (or y(σ), without loss of generality), by either
outputting a strict prefix of x(σ) (reaching q<), or appending letters after
x(σ) (reaching q>), or by introducing an error in x(σ) (reaching q 6=). This
part is depicted in Figure 5 in the case of an example.

Sketch of correctness proof. If, for an input b · σ with |σ| > 0, the
sequence σ is a solution of I, then w = x(σ) = y(σ) will not be generated
by the diff-part ofMI , hence w · b will be an output whereas w · b will not1.
Conversely, if the sequence σ is not a solution of I, then w = x(σ) 6= y(σ)
will be generated by the diff-part ofMI (in this case in the “y part” of the
transducer), hence both w · b and w · b will be outputs. Note that in both
cases, there will be other outputs: all u · b and u · b for u ∈ A∗ \ {w}. When
|σ| = 0, which is always a trivial solution of I, the empty word ε cannot

1We can assume that there is no index i such that xi = yi = ε, hence w 6= ε.

7

q0 >⊥ >|ε⊥|ε

ε|>

ε|⊥ε|>

ε|⊥

(a) Symmetry of > and ⊥ in MI

q0(>, q∗)

(>, q′∗)

(>, q>) (>, q6=) (>, q<)

>, x

>, y

>|ε

{(ε|a · >)|a ∈ A}

{(ε|a)|a ∈ A}

{(i|ε)|i ∈ N}

{(i|ε)|i ∈ N}
{(ε|a)|a ∈ A}

ε|>
>|ε

>|ε

ε|⊥

ε|⊥

ε|⊥

(b) Structure of the > part of MI

Figure 3: Global structure of MI .

be produced in the q∗ part of M. Hence neither b nor b will be produced
(alone). The case above, with an input in B · N∗, can be generalized to
an input in (B · N∗)∗. Indeed, q0 is the only initial and final state and
the structure of MI ensures that q0 is left reading a letter of B, reached
producing a (possibly different) letter of B, and that no other transition
either reads or outputs a letter of B.

The key point in the proof is to build the channel for MI when I has
a solution. Let σ = i1 · · · ik be this solution, with k > 0, and w = x(σ) =
y(σ). Then the pair (Mσ,Mw) of transducers depicted in Figure 4 are a
channel for MI .

Example 1. Consider the instance I0 = 〈(abb, a), (b, abb), (a, bb)〉 of PCP.
The corresponding transducer MI0 is partly depicted (only the >, x part)
in Figure 5.This instance has a solution σ = 1311322 which yields the
word w = abbaabbabbabb. On input >1311322, MI0 can output any string
followed by a >, along a run looping through states q∗ and q′∗. In particular,
w> is a possible output. On the same input, some other strings followed

8

s0 s1

0|>, 1|⊥

ε|σ

(a) Transducer Mσ from {0, 1}∗ to N∗B

r0 r1

w|ε

>|0,⊥|1

(b) Transducer Mw from A∗B to {0, 1}∗

Figure 4: Encoder and decodersMσ andMw, where σ is a solution of the
instance I of PCP and w the corresponding word.

by a ⊥ may be an output, e.g. abbaabbabaa⊥, produced by a run

q0
>|ε−−→ qx

1|ε−−→ q1,1x

ε|a−−→ q1,2x

ε|b−−→ q1,3x

ε|b−−→ qx
3|ε−−→ q3,1x

ε|a−−→ qx
1|ε−−→ q1,1x

ε|a−−→ · · ·

· · · ε|a−−→ q1,2x

ε|b−−→ q1,3x

ε|b−−→ qx
1|ε−−→ q1,1x

ε|a−−→ q1,2x

ε|b−−→ q1,3x

ε|a−−→ q6=
ε|a−−→ q 6=

ε|⊥−−→ q0.

However, w⊥ is not an output, since after reading >1311322 and producing
w, the run ends in state qx (or qy) which is not accepting and cannot reach
q0 without reading more input. Hence encoding 0 with >1311322 and 1 with
⊥1311322, while decoding 0 with w> and 1 with w⊥ yields a channel for
MI0.

The converse is proved by contradiction: if I has no solution, and if
there is a channel for MI , then, using theorem 7, we can find two words
u and u′ such that (E ·MI · D)(u) = (E ·MI · D)(u′) while u 6= u′, thus a
contradiction.

5 Decidability for functional transducers

Theorem 5 is proved by establishing that the necessary condition from
Theorem 7 is in fact sufficient for a functional transducer, and building the
channel. The proof of Theorem 5 is based on lemmata 8, 9 and 10.

Lemma 8. Let M = 〈S, s0, A∗ × B∗,∆, F 〉 be a functional transducer.
There is a channel for M if and only if there exists an encoding state.

Proof. Let s be an encoding state in M, with s
u0|v0
===⇒ s and s

u1|v1
===⇒ s,

u1·u0 6= u0·u1 and v1·v0 6= v0·v1. We denote by E0(u0, u1) and D0(v0, v1) re-
spectively the transducers in Figure 6. Then the pair (E0(u0, u1),D0(v0, v1))
is a channel for Ms = 〈S, s,A∗ × B∗,∆, {s}〉, which differs from M only

9

q0

qx

q> q< q 6=
ε|⊥

ε|⊥

ε|⊥
ε|a,
ε|b

1|ε,
2|ε,
3|ε

1|ε, 2|ε, 3|ε,
ε|a, ε|b

q∗ q′∗

>|ε

ε|a>,
ε|b>

ε|a, ε|b 1|ε, 2|ε, 3|ε,
ε|a, ε|b1|ε, 2|ε, 3|ε

ε|>

q1,1x

q1,2x

q1,3x

q2,1x

q3,1x

>|ε

ε|a,
ε|b

1|ε

ε|a

ε|b
ε|b

2|ε

ε|b

3|ε

ε|a

ε|ε

ε|ε

ε|ε

ε|ε

ε|ε

ε|b

ε|a

ε|a

ε|a

ε|b

Figure 5: Part of transducer MI0 encoding PCP instance I0. Only the
>-x quarter has been represented.

by its initial and final states, and is also functional. Since s is a useful

state, there exist some runs s0
(u|v)
===⇒ s and s

(u′|v′)
====⇒ sf , with sf ∈ F ,

u, u′ ∈ A∗ and v, v′ ∈ B∗. Since both M and Ms are functional, for any
word w ∈ {u0, u1}∗, we haveM(u ·w · u′) = v ·Ms(w) · v′ . Hence the pair
(E(u, u0, u1, u

′),D(v, v0, v1, v
′)) is a channel for M.

10

q00|u0 1|u1

(a) Transducer E0(u0, u1)

q0v0|0 v1|1

(b) Transducer D0(v0, v1)

Figure 6: Encoder and decoder for Ms.

In order to find encoding states in a transducer M, for any word u ∈
Dom(M), we define the set NCI(u,M) = {u′ ∈ A∗ | M(u) · M(u′) 6=
M(u′) · M(u)} of words whose image by M do not commute with the
image of u. Then, we have:

Lemma 9. Given a functional transducer M and a word u ∈ Dom(M),
NCI(u,M) is a regular subset of A∗.

Proof. Let v = M(u). Consider the language C(v) = {v′ ∈ B∗|v · v′ =
v′ · v} of words commuting with v. Applying a classical result ([12] or
[7]) we obtain a word z ∈ B∗ such that C(v) = z∗ (z is the shortest
word which commute with v), hence C(v) is a regular language. Then
C(v) = {v′ ∈ Im(M) | v · v′ 6= v′ · v} = Im(M) \ C(v) is also regular, as
well as NCI(u,M) =M−1(C(v)).

We now prove that it can be decided whether a state is encoding.

Lemma 10. Let M = 〈S, s,A∗ × B∗,∆, {s}〉 be a functional transducer,
with s ∈ S the initial and only finite state. Then:

• If there exists w ∈M−1(Im(M)\{ε}) such that NCI(w,M) 6= ∅, then
s is an encoding state.

• On the other hand, if s is an encoding state, then for any word w ∈
M−1(Im(M)\{ε}), NCI(w,M) 6= ∅.

Proof. First suppose that there is a word w ∈M−1(Im(M)\{ε}) such that
NCI(w,M) 6= ∅. Then, since M is functional, w 6= ε and we can conclude
that s is an encoding state in M by choosing any u1 ∈ NCI(w,M), and
setting u0 = w, v0 =M(u0), and v1 =M(u1).

Conversely, suppose that s is an encoding state in M for some words
u0, u1, v0, v1, then for i ∈ {0, 1}, vi = M(ui). Consider now any w ∈
M−1(Im(M)\{ε}), again with w 6= ε, and define v =M(w). If NCI(w,M)
is empty, then u0 /∈ NCI(w,M) and u1 /∈ NCI(w,M), hence v · v0 = v0 · v

11

and v · v1 = v1 · v. Therefore, there exists z ∈ B∗ such that v, v0 and v1 all
belong to z∗ which is a contradiction.

Proof of Theorem 5. The decision and synthesis procedure is as follows: for
each state s ∈ S, consider transducer Ms (in which all states are assumed
to be useful). Then compute a word u whose image by Ms is not ε. This

can be done by looking if there is s1, s2 ∈ S, s.t. s1
ue|ve−−−→ s2 with ue ∈ A∗

and ve ∈ B+ and finding a run ρ = s ⇒ s1
ue|ve−−−→ s2 ⇒ s. If no such word

can be found, then Im(Ms) = {ε} and it is clear that there is no channel
for Ms. Pruning S (to remove unuseful states) can be done in O(|M|2).
The run ρ can be found from s1 and s2 in O(|M|2) too. So computing u
whose image by Ms is not ε can be done in O(|M|2).

Let v =Ms(u). The subset C(v) of B∗ of words that commute with v is
of the form z∗ and a deterministic automaton Az of size O(|z|) accepts z∗.
An automaton AIm(Ms) of size O(|M|) recognizes Im(Ms). Therefore the
automaton B for the intersection of these languages, of size O(|z|×|M|) and
with a single initial state, recognizes C(v) = Im(Ms) \ z∗. The emptiness
problem for this automaton can be solved in linear time in the size of the
product, hence in O(|M|2). If C(v) is empty, then so is its preimage by
M, and therefore NCI(u,M) = ∅ and there is no channel (by Lemma 10).
Otherwise, since C(v) ⊆ Im(Ms), M−1s (C(v)) = NCI(u,Ms) 6= ∅, and
there is a channel in Ms, which can be synthesized by the construction in
the proof of Lemma 10. This construction implies computing a word w in
NCI(u,Ms) and its image byMs. The word w obtained as a witness of the
emptiness check and thus of size O(|Ms|2), and the computation ofMs(w)
takes O(|Ms| × |w|). Hence the whole synthesis part is in O(|Ms|3).

By Lemma 8, the existence of a channel for one transducerMs is equiva-
lent to the existence of a channel forM, and the construction of the encoder
and decoder for M from the ones for Ms can be done as in the proof of
Lemma 8, in linear time with respect to |Ms|.

Since |z| ≤ |v| ≤ |Ms| ≤ |M|, the whole procedure goes in O(|M|) ×
O(|M|2 + |M|2 + |M|3) = O(|M|4).

This result can be extended to the case of transducers built as a union
of n functional transducers:

M = F1 ∪ · · · ∪ Fn where ∀1 ≤ i ≤ n, Fi is functional.

By induction, the problem boils down to the fact that if a transducer M
has a covert channel, then so does M′ = M∪ F . Intuitively, either the

12

encoder can force M′ to be in the component M, or F itself contains a
channel. The full proof can be found in [1].

6 Security properties for transducer systems

The above technique allows to discover in a system ways to transmit in-
formation. Although this transmission can be legitimate and thus of no
worry, it may be the case that the channel is covert [11]. This decision has
to be made by the modeler, as pointed out by Millen [13]. Covert channels
comprise all protocols that bypass the intended behavior of the system in
order to transmit information. Practical examples have been shown in the
past, such as using TCP/IP headers [18]. Some models of such channels
have been devised [9, 8] although the authors define covert channels by the
existence of an encoding state while we obtain this feature as a necessary
condition.

The model of rational transducers offers a setting in which to study
a system seen as a black-box process reading actions of users with high
level of credentials (alphabet H), and outputting public or low-level actions
(alphabet L). Note that any transition system over an alphabet H]L] I
(where] stands for the disjoint union) with a set I of internal actions can
syntactically be transformed into a transducer over H∗ × L∗.

Typically, high-level actions are executed by a user inside the system,
while low-level actions are read from outside it. For instance, high-level
actions can be triggered by a Trojan horse in the system, trying to commu-
nicate a secret key to the exterior. The communication has to be stealthy
in order not to be detected by the system, hence cannot use obvious com-
munication channels which can be monitored. The communication also has
to be reliable in order for the key to be transmitted correctly. Our model is
well suited for the analysis of such threats. Future work should investigate
the relation between the absence of a covert channel and the validation of
some security policies.

Let us consider the following example, inspired from [9], where a packet
transmission device can transmit data in two ways (see Figure 7(a)). Upon
receiving a small amount of data, it can transmit it in a single (complete)
packet. However, upon receiving a large amount of data, it transmits an
incomplete packet followed by a complete one. An attacker can take advan-
tage of this discrepancy in order to transmit data not inside the packets,
but through the way complete and incomplete packets will be received, as
shown by the encoder/decoder pair of Figure 7(b)-(c).

13

OpenServer|OpenClient
LongData|ε

ε|DataInc ε|Data

ShortData|ε

ε|Data

CloseServer|CloseClient

(a) Transducer for packet transmission medium.

ε|Op
enS

erv
er

0|LongData

1|ShortData

ε|CloseServer

(b) Encoder E1

Ope
nC
lien

t|ε
DataInc|ε Data|0

Data|1

CloseClient|ε

(c) Decoder D1

Figure 7: A channel of delay 0 for the packet transmission protocol.

7 Conclusion

The model presented in this paper can be used to specify reliable channels
in the simple framework of transducers. Although the problem of existence
of a channel is undecidable in general, it becomes polynomial in the case
of a functional transducer. This complexity gap seems to indicate that
decidability may be achieved for larger classes of transducers.

References

[1] Benattar, G.: Synthèse de systèmes informatiques temporisés non
interférents. PhD thesis, Université de Nantes (2011).

[2] Benattar, G., Bérard, B., Lime, D., Mullins, J., Roux, O.H., Sassolas,
M.: Covert channels with sequential transducers. In: Workshop on
Foundations of Computer Security. (August 2009).

[3] Benattar, G., Bérard, B., Lime, D., Mullins, J., Roux, O.H., Sasso-
las, M.: Covert channels synthesis for transducers. Technical report,
IRCCyN - LIP6 - École Polytechnique de Montréal (March 2010).

[4] Elgot, C.C., Mezei, J.E.: On relations defined by generalized finite
automata. IBM Journal Res. Develop. 9 (1965) 47–68.

[5] Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proc.
of LICS’05. (2005) 321–330.

14

[6] Gurari, E.: An introduction to the theory of computation. Computer
Science Press, New York (1989).

[7] Harrison, M.A.: Introduction to formal language theory. Addison-
Wesley (1978).

[8] Hélouët, L., Roumy, A.: Covert channel detection using information
theory. In Chatzikokolakis, K., Cortier, V., eds.: Proc. of the 8th Int.
Workshop on Security Issues in Concurrency. (August 2010).

[9] Hélouet, L., Zeitoun, M., Degorre, A.: Scenarios and Covert channels:
another game... In L. de Alfaro, ed.: Proc. of Games in Design and
Verification (GDV’04). Volume 119 of ENTCS, Elsevier (2005) 93–116.

[10] Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In
Halpern, J.Y., ed.: Proc. of LICS’01, Washington, DC, USA, IEEE
Computer Society (2001) 389.

[11] Lampson, B.: A note on the confinement problem. Commun. ACM
16(10) (1973) 613–615.

[12] Lothaire, M.: Combinatorics on words. Volume 17 of Encyclopedia of
Mathematics. Addison-Wesley, Reading, MA (1983).

[13] Millen, J.K.: 20 years of covert channel modeling and analysis. In:
Proc. of the 1999 IEEE Symposium on Security and Privacy. (May
1999) 113 –114.

[14] Pnueli, A., Rosner, R.: Distributed reactive systems are hard to syn-
thesize. In: Proc. of FOCS’90. Volume II, IEEE Computer Society
Press (1990) 746–757.

[15] Post, E.L.: A variant of a recursively unsolvable problem. Bulletin of
the American Mathematical Society 52(4) (April 1946) 264–268.

[16] Sakarovitch, J.: Éléments de théorie des automates. Vuibert Informa-
tique (2003).

[17] Schewe, S., Finkbeiner, B.: Synthesis of asynchronous systems. In:
Proc. of LOPSTR’06. Volume 4407 of LNCS, Springer (2006) 127–142.

[18] Trabelsi, Z., El Sayed, H., Frikha, L., Rabie, T.: A novel covert
channel based on the IP header record route option. Int. J. Adv.
Media Commun. 1(4) (2007) 328–350.

15

