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Abstract12

A Multiplicative-Exponential Linear Logic (MELL) proof-structure can be expanded into a (infinite)13

set of resource proof-structures: its Taylor expansion. We introduce a new criterion characterizing14

those sets of resource proof-structures that are part of the Taylor expansion of some MELL proof-15

structure, through a rewriting system acting both on resource and MELL proof-structures.16
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1 Introduction20

Resource λ-calculus and the Taylor expansion Girard’s linear logic (LL, [15]) is a refine-21

ment of intuitionnistic and classical logic that isolates the infinitary parts of reasoning under22

two (dual) modalities: the exponentials ! and ?. They give a logical status to the operations23

of memory management such as copying and erasing: a linear proof corresponds—via Curry–24

Howard isomorphism—to a program that uses its argument linearly, i.e. exactly once, while25

an exponential proof corresponds to a program that can use its argument at will.26

The intuition that linear programs are analogous to linear functions (as studied in linear27

algebra) while exponential programs mirror a more general class of analytic functions got a28

technical incarnation in Ehrhard’s work [9, 10] on LL-based denotational semantics for the29

λ-calculus. This investigation has been then internalized in the syntax, yielding the resource30

λ-calculus [5, 11, 14]: there, copying and erasing are forbidden and replaced by the possibility31

to apply a function to a bag of resource λ-terms which specifies how many times an argument32

can be linearly passed to the function, so as to represent only bounded computations.33

The Taylor expansion associates with an ordinary λ-term a (generally infinite) set of34

resource λ-terms, recursively approximating the usual application: the Taylor expansion of35

the λ-term MN is made of resource λ-terms of the form t[u1, . . . , un], where t is a resource36

λ-term in the Taylor expansions of M , and [u1, . . . , un] is a bag of arbitrarily finitely many37

(possibly 0) resource λ-terms in the Taylor expansion of N . Roughly, the idea is to decompose38

a program into a set of purely “resource-sensitive programs”, all of them containing only39

bounded (although possibly non-linear) calls to inputs. The notion of Taylor expansion has40

many applications in the theory of the λ-calculus, e.g. in the study of linear head reduction41

[12], normalization [23, 26], Böhm trees [4, 18], λ-theories [19], intersection types [21]. More42

generally, understanding the relation between a program and its Taylor expansion renews the43

logical approach to the quantitative analysis of computation started with the inception of LL.44
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23:2 Glueability of resource proof-structures

A natural question is the inverse Taylor expansion problem: how to characterize which45

sets of resource λ-terms are contained in the Taylor expansion of a same λ-term? Ehrhard and46

Regnier [14] defined a simple coherence relation such that a finite set of resource λ-terms is47

included in the Taylor expansion of a λ-term if and only if the elements of this set are pairwise48

coherent. Coherence is crucial in many structural properties of the resource λ-calculus, such49

as in the proof that in the λ-calculus normalization and Taylor expansion commute [12, 14].50

We aim to solve the inverse Taylor expansion problem in the more general context of LL.51

Proof-nets, proof-structures and their Taylor expansion: seeing trees behind graphs In52

the multiplicative-exponential fragment of LL (MELL), linearity and the sharp analysis of53

computations naturally lead to represent proofs in a more general graph-like syntax instead54

of a term-like or tree-like one.1 Indeed, linear negation is involutive and classical duality55

can be interpreted as the possibility of juggling between different conclusions, without a56

distinguished output. Graphs representing proofs in MELL are called proof-nets: their syntax57

is richer and more expressive than the λ-calculus. Contrary to λ-terms, proof-nets are special58

inhabitants of the wider land of proof-structures: they can be characterized, among proof-59

structures, by abstract (geometric) conditions called correctness criteria [15]. The procedure60

of cut-elimination can be applied to proof-structures, and proof-nets can also be seen as the61

proof-structures with a good behavior with respect to cut-elimination [1]. Proof-structures62

can be interpreted in denotational models and proof-nets can be characterized among them63

by semantic means [24]. It is then natural to attack problems in the general framework of64

proof-structures. In this work, correctness plays no role at all, hence we will only consider65

proof-structures and not only proof-nets. Proof-structures are a particular kind of graphs,66

whose edges are labeled by MELL formulæ and vertices by MELL connectives, and for which67

special subgraphs are highlighted, the boxes, representing the parts of the proof-structure that68

can be copied and discarded (i.e. called an unbounded number of times). A box is delimited69

from the rest of a proof-structure by exponential modalities: its border is made of one !-cell,70

its principal door, and arbitrarily many ?-cells, its auxiliary doors. Boxes are nested or disjoint71

so as to add a tree-like structure to proof-structures aside from their graph-like nature.72

As in λ-calculus, we can define [13] box-free resource proof-structures2 where !-cells make73

resources available boundedly, and the Taylor expansion of MELL proof-structures into these74

resource proof-structures, that recursively copies the content of the boxes an arbitrary number75

of times. In fact, as somehow anticipated by Boudes [3], such a Taylor expansion operation can76

be carried on any tree-like structure. This primitive, abstract, notion of Taylor expansion can77

then be pulled back to the structure of interest, as shown in [17] and put forth again here.78

The question of coherence for proof-structures The inverse Taylor expansion problem79

has a natural counterpart in the world of MELL proof-structures: given a set of resource80

proof-structures, is there a MELL proof-structure the expansion of which contains the set?81

Pagani and Tasson [22] give the following answer: it is possible to decide whether a finite set of82

resource proof-structures is a subset of the Taylor expansion of a same MELL proof-structure83

(and even possible to do it in non-deterministic polynomial time); but unlike the λ-calculus,84

the structure of the relation “being part of the Taylor expansion of a same proof-structure”85

is much more complicated than a binary (or even n-ary) coherence. Indeed, for any n > 1, it86

is possible to find n+ 1 resource proof-structures such that any n of them are in the Taylor87

1 A term-like object is essentially a tree, with one output (its root) and many inputs (its other leaves).
2 Also known as differential proof-structures [6] or differential nets [13, 20, 7] or simple nets [22].
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expansion of some MELL proof-structure, but there is no MELL proof-structure whose Taylor88

expansion has all the n+1 as elements (see our Example 21 and [25, pp. 244-246]).89

In this work, we introduce a new combinatorial criterion, glueability, for deciding whether90

a set of resource proof-structures is a subset of the Taylor expansion of some MELL proof91

structure, based on a rewriting system on sequences of MELL formulæ. Our criterion is more92

general (and, we believe, simpler) than the one of [22], which is limited to the cut-free case with93

atomic axioms and characterizes only finite sets: we do not have these limitations. We believe94

that our criterion is a useful tool for studying proof-structures. We conjecture that it can be95

used to show that, for a suitable geometric restriction, a binary coherence relation does exist96

for resource proof-structures. It might also shed light on correctness and sequentialization.97

As the proof-structures we consider are typed, an unrelated difficulty arises: a resource98

proof-structure might not be in the Taylor expansion of any MELL proof-structure, not99

because it does not respect the structure imposed by the Taylor expansion, but because100

its type is impossible.3 To this means, we enrich the MELL proof-structures’ syntax with a101

“universal” proof-structure: a special z-cell (daimon) which can have any number of outputs102

and any type, and we allow it to appear inside a box, representing information plainly missing103

(see Section 8 for more details and the way this matter is handled by Pagani and Tasson [22]).104

2 Outline and technical issues105

The rewritings The essence of our rewriting system is not located on proof-structures but106

on lists of MELL formulæ (Definition 9). In a very down-to-earth way, this rewriting system is107

generated by elementary steps akin to rules of sequent calculus read from the bottom up: it acts108

on a list of conclusions, analogous to a monolaterous right-handed sequent. These steps are109

actually more sequentialized than sequent calculus rules, as they do not allow for commutation.110

For instance, the rule corresponding to the introduction of a ⊗ on the i-th formula, is defined111

as ⊗i : (γ1, . . . , γi−1, A⊗B, γi+1, . . . , γn)→ (γ1, . . . , γi−1, A,B, γi+1, . . . , γn).112

A A⊥

ax

⊗

A⊗A⊥

⊗1
A A⊥

axThese rewrite steps then act on MELL proof-structures, coherently113

with their type, by modifying (most of the times, erasing) the cells114

directly connected to the conclusion of the proof-structure. Formally,115

this means that there is a functor qMELLz from the rewriting steps116

into the category Rel of sets and relations, associating with a list of formulæ the set of117

MELL proof-structures with these conclusions, and to a rewriting a relation implementing it118

(Definition 12). The rules deconstruct the proof-structure, starting from its conclusions. The119

rule ⊗1 acts by removing a ⊗-cell on the first conclusion, replacing it by two conclusions.120

These rules can only act on specific proof-structures, and indeed, capture a lot of their121

structure: ⊗i can be applied to a MELL proof-structure R if and only if R has a ⊗-cell in122

the conclusion i (as opposed to, say, an axiom). So, in particular, every proof-structure is123

completely characterized by any sequence rewriting it to the empty proof-structure.124

Naturality The same rules act also on sets of resource proof-structures, defining the functor125

PqDiLLz0 from the rewrite steps into the category Rel (Definition 17). When carefully126

defined, the Taylor expansion induces a natural transformation from PqDiLLz0 to qMELLz127

(Theorem 18). By applying this naturality repeatedly, we get our characterization (The-128

3 Similarly, in the λ-calculus, there is no closed λ-term of type X → Y with X 6= Y atomic, but the
resource λ-term (λf.f)[ ] can be given that type: the empty bag [ ] kills any information on the argument.

CVIT 2016



23:4 Glueability of resource proof-structures

orem 20): a set of resource proof-structures Π is a subset of the Taylor expansion of a MELL129

proof-structure iff there is a sequence rewriting Π to the singleton of the empty proof-structure.130

The naturality property is not only a mean to get our characterization, but also an131

interesting result in itself: natural transformations can often be used to express fundamental132

properties in a mathematical context. In this case, the Taylor expansion is natural with133

respect to the possibility to build a proof-structure (both MELL or resource) by adding a cell134

to its conclusions or boxing it. Said differently, naturality of the Taylor expansion roughly135

means that the rewrite rules that deconstruct a MELL proof-structure R and a set of resource136

proof-structures in the Taylor expansion of R mimic each other.137

Quasi-proof-structures: mix and stability under sub-structures Our rules consume proof-138

structures from their conclusions. The rule corresponding to boxes in MELL opens a box by139

deleting the principal door (a !-cell), while, for a resource proof-structure, it separates the140

different premises of a box. From the point of view of the Taylor expansion, this operation141

is problematic: indeed, the contents of the box are not to be treated as if they were at the142

same level as what is outside of the box: the content of a box can be copied many times or143

erased, while what is outside boxes cannot, and treating the content in the same way as the144

outside suppresses this distinction, which is crucial in LL.145

π

· · ·

We need to remember that the content of a box, even if it is at depth146

0 after erasing the box wrapping it by means of our rewrite rules, is not147

to be mixed with the rest of the structure at depth 0. So, in order for our148

sub-proof-structures to contain all the information we are interested in, we149

need to generalize them and consider that a proof-structure can have not just a tree of boxes,150

but a forest: this yields the notion of quasi-proof-structure (Definition 1).151

In this way, according to our rewrite rules, opening a box by deleting its principal door152

amounts to taking a box in the tree and disconnecting it from its root, creating a new tree.153

We draw this by surrounding elements having the same root with a dashed box, open from154

the bottom, remembering the phantom presence of the border of the box, below, even if it155

was erased. This allows one to open the box only when it is “alone” (see Definition 11).156

This is not merely a technical remark, as this generalization gives a status to the mix157

rule of LL: indeed, mixing two proofs amounts to taking two proofs and considering them158

one, without any other modifications. Here, it amounts to taking two proofs, each with159

its box-tree, and considering them as one by merging the roots of their trees (see the mix160

step of Definition 11). We embed this design decision up to the level of formulæ, which are161

segregated in different zones that have to be mixed before interacting (see the notion of162

partition of a finite sequence of formulas in Section 3).163

Geometric invariance and emptyness: the filled Taylor expansion The use of forests164

instead of trees for the nesting structure of boxes, where the different roots are thought of165

as the contents of long-gone boxes, has an interesting consequence in the Taylor expansion:166

indeed, an element of the Taylor expansion of a proof-structure contains an arbitrary number167

of copies of the contents of the boxes, in particular zero. If we think of the part at depth168

0 of a MELL proof-structure as inside an invisible box, its content can be deleted in some169

elements of the Taylor expansion just as any other box4. As erasing completely conclusions170

4 The dual case, of copying the contents of a box, poses no problem in our approach: indeed, if everything
is thought of as inside a box, there is no conceptual difference between a multiset of resource proof-
structures and a single resource proof-structure.
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A A⊥ A B A B A · · · A A · · · A

X X⊥ 1 ⊥ A1 . . . Ap

ax
cut

1 ⊥
⊗

A⊗B

`
A`B

?

?A

!

!A

zp

Figure 1 Cells, with their labels and their typed inputs and outputs (ordered from left to right).

would cause the Taylor expansion not preserve the conclusions (which would lead to technical171

complications), we introduce the filled Taylor expansion (Definition 8), which contains not172

only the elements of the usual Taylor expansion, but also elements of the Taylor expansion173

where one component has been erased and replaced by a z-cell (daimon), representing a174

lack of information, apart from the number and types of the conclusions.175

Atomic axioms Our paper first focuses on the case where proof-structures are restricted to176

atomic axioms. In Section 7 we sketch how to adapt our method to the non-atomic case.177

3 Proof-structures and the Taylor expansion178

MELL formulæ and (quasi-)proof-structures Given a countably infinite set of propositional179

variables X,Y, Z, . . . , MELL formulæ are defined by the following inductive grammar:180

A,B ::= X | X⊥ | 1 | ⊥ | A⊗B | A`B | !A | ?A181

The linear negation is defined via De Morgan laws 1⊥ = ⊥, (A⊗B)⊥ = A⊥ `B⊥ and182

(!A)⊥ = ?A, so as to be involutive, i.e. A⊥⊥ = A.183

Given a list Γ = (A1, . . . , Am) of MELL formulas, a partition of Γ is a list (Γ1, . . . ,Γn) of184

lists of MELL formulas such that there are 0 = i0 < · · · < in = m with Γj = (Aij−1+1, . . . , Aij )185

for all 1 6 j 6 n; such a partition of Γ is also denoted by (A1, . . . , Ai1 ; · · · ;Ain−1+1, . . . , Am),186

where the lists are separated by semi-colons.187

We reuse the syntax of proof-structures given in [17] and sketch here its main features.188

We suppose known definitions of graphs, rooted trees, and morphisms of these structures. In189

what follows we will speak of tails in a graph: “hanging” edges with only one vertex. This190

can be implemented either by adding special vertices or using [2]’s graphs.191

If an edge e is incoming in (resp. outgoing from) a vertex v, we say that e is a input192

(resp. output) of v. The reflexive-transitive closure of a tree τ is denoted by τ	: the operator193

(·)	 lifts to a functor from the category of trees to the category of directed graphs.194

I Definition 1. A module M is a (finite) directed graph with:195

vertices v labeled by `(v) ∈ {ax, cut,1,⊥,⊗,`, ?, !} ∪ {zp | p ∈ N}, the type of v;196

edges e labeled by a MELL formula c(e), the type of e;197

an order <M that is total on the tails of |M | and on the inputs of each vertex of type `,⊗.198

Moreover, all the vertices verify the conditions of Figure 1.5199

A quasi-proof-structure is a triple R = (|R|,F , box) where:200

|R| is a module with no input tails, called the module of R;201

F is a forest of rooted trees with no input tails, called the box-forest of R;202

box : |R| → F	 is a morphism of directed graphs, the box-function of R, which induces a203

partial bijection from the inputs of the vertices of type ! and the edges in F , and such that:204

5 Note that there are no conditions on the types of the outputs of vertices of type z (i.e. of type zp for
some p ∈ N); and the outputs of vertices of type ax must have atomic types.

CVIT 2016



23:6 Glueability of resource proof-structures

for any vertices v, v′ with an edge from v′ to v, if box(v) 6= box(v′) then `(v) ∈ {!, ?}.6205

Moreover, for any output tails e1, e2, e3 in |R| which are outputs of the vertices v1, v2, v3,206

respectively, if e1 <|R| e2 <|R| e3 then it is impossible that box(v1) = box(v3) 6= box(v2).7207

A quasi-proof-structure R = (|R|,F , box) is:208

1. MELLz if all vertices in |R| of type ! have exactly one input, and the partial bijection209

induced by box from the inputs of the vertices of type ! in |R| and the edges in F is total.210

2. MELL if it is MELLz and, for every vertex v in |R| of type z, one has box−1(box(v)) = {v}211

and box(v) is not a root of the box-forest F of R.212

3. DiLLz0 if the box-forest F of R is just a juxtaposition of roots.213

4. DiLL0 (or resource) if it is DiLLz0 and there is no vertex in |R| of type z.214

For the previous systems, a proof-structure is a quasi-proof-structure whose box-forest is a tree.215

Our MELL proof-structure (i.e. a MELL quasi-proof-structure that is also a proof-structure)216

corresponds to the usual notion of MELL proof-structure (as in [8]) except that we also allow217

the presence of a box filled only by a daimon (i.e. a vertex of type z). The empty (DiLL0 and218

MELL) proof-structure—whose module and box-forest are empty graphs—is denoted by ε.219

Given a quasi-proof-structure R = (|R|,F , box), the output tails of |R| are the conclusions220

of R. So, the pre-images of the roots of F via box partition the conclusions of R in a list of221

lists of such conclusions. The type of R is the list of lists of the types of these conclusions.222

We often identify the conclusions of R with a finite initial segment of N.223

By definition of graph morphism, two conclusions in two distinct lists in the type of a224

quasi-proof-structure R are in two distinct connected components of |R|; so, if R is not a225

proof-structure then |R| contains several connected components. Thus, R can be seen as a226

list of proof-structures, its components, one for each root in its box-forest.227

A non-root vertex v in the box-forest F induces a subgraph of F	 of all vertices above it228

and edges connecting them. The pre-image of this subgraph through box is the box of v and229

the conditions on box in Definition 1 translate the usual nesting condition for LL boxes.230

In quasi-proof-structures, we speak of cells instead of vertices, and, for a cell of type l, of231

a `-cell. A z-cell is a zp-cell for some p ∈ N. An hypothesis cell is a cell without inputs.232

I Example 2. The graph in Figure 2 is a MELL quasi-proof-structure. The colored areas233

represent the pre-images of boxes, and the dashed boxes represent the pre-images of roots.234

⊥ 1 Y Y ⊥

⊥ 1

X 1

X⊥

ax

ax

ax

!

!1

!
⊥ 1

!

!1

!
?

?⊥
?

?!1

⊗

X ⊗ ?⊥

?

?Y
`

?Y ` Y ⊥

!

!(?Y ` Y ⊥)

!

1

!

!1

!

•

•

•

•

• •

Figure 2 A MELL quasi-proof-structure R, its box-forest FR (without dotted lines) and the
reflexive-transitive closure F	R of FR (with also dotted lines).

6 Roughly, it says that the border of a box is made of (inputs of) vertices of type ! or ?.
7 This is a technical condition that simplifies the definition of the rewrite rules in Section 4. Note that

box(v1), box(v2), box(v3) are necessarily roots in F , since box is a morphism of directed graphs.



G. Guerrieri and L. Pellissier and L. Tortora de Falco 23:7

The Taylor expansion Proof-structures have a tree structure made explicit by their box-235

function. Following [17], the definition of the Taylor expansion uses this tree structure: first,236

we define how to “expand” a tree—and more generally a forest—via a generalization of the237

notion of thick subtree [3] (Definition 3; roughly, a thick subforest of a box-forest says the238

number of copies of each box to be taken, iteratively), we then take all the expansions of the239

tree structure of a proof-structure and we pull the approximations back to the underlying240

graphs (Definition 5), finally we forget the tree structures associated with them (Definition 6).241

I Definition 3 (thick subforest). Let τ be a forest of rooted trees. A thick subforest of τ is a242

pair (σ, h) of a forest σ of rooted trees and a graph morphism h : σ → τ whose restriction to243

the roots of σ is bijective.244

I Example 4. The following is a graphical presentation of a thick subforest (τ, h) of the245

box-forest F of the quasi-proof-structure in Figure 2, where the graph morphism h : τ → F246

is depicted chromatically (same color means same image via h).247

τ =

•

•

•

• •

• •

•

• • • • •
h−→

•

•

•

•

• • = F

248
249

Intuitively, it means that τ is obtained from F by taking 3 copies of the blue box, 1 copy of250

the red box and 4 copies of the orange box; in the first (resp. second; third) copy of the blue251

box, 1 copy (resp. 0 copies; 2 copies) of the purple box has been taken.252

I Definition 5 (proto-Taylor expansion). Let R = (|R|,FR, boxR) be a quasi-proof-structure.253

The proto-Taylor expansion of R is the set T proto(R) of thick subforests of FR.254

Let t = (τt, ht) ∈ T proto(R). The t-expansion of R is the pullback (Rt, pt, pR) below,255

computed in the category of directed graphs and graph morphisms.256

Rt τ	t

|R| F	R

pt

pR h	t

boxR
257

Given a quasi-proof-structure R and t = (τt, ht) ∈ T proto(R), the directed graph Rt258

inherits labels on vertices and edges by composition with the graph morphism pR : Rt → |R|.259

Let [τt] be the forest made up of the roots of τt and ι : τt → [τt] be the graph morphism260

sending each vertex of τt to the root below it; ι	 induces by post-composition a morphism261

ht = ι	 ◦ pt : Rt → [τt]	. The triple (Rt, [τt], ht) is a DiLL0 quasi-proof-structure, and it is a262

DiLL0 proof-structure if R is a proof-structure. We can then define the Taylor expansion T (R)263

of a quasi-proof-structure R (an example of an element of a Taylor expansion is in Figure 3).264

I Definition 6 (Taylor expansion). Let R be a quasi-proof-structure. The Taylor expansion of265

R is the set of DiLL0 quasi-proof-structures T (R) = {(Rt, [τt], ht) | t = (τt, ht) ∈ T proto(R)}.266

An element (Rt, [τt], ht) of the Taylor expansion of a quasi-proof-structure R has much267

less structure than the pullback (Rt, pt, pR): the latter indeed is a DiLL0 quasi-proof-structure268

Rt coming with its projections |R| pR←− Rt
pt−→ τ	t , which establish a precise correspondence269

between cells and edges of Rt and cells and edges of R: a cell in Rt is labeled (via the270

projections) by both the cell of |R| and the branch of the box-forest of R it arose from. But271

(Rt, [τt], ht) where Rt is without its projections pt and pR loses the correspondence with R.272

CVIT 2016



23:8 Glueability of resource proof-structures

⊥ 1 ⊥ 1 ⊥ 1 Y Y ⊥

⊥ 1 1 1

X 1 1 1 1

X⊥ !1

ax

ax

ax ax ax

!

!1

!

!1

!

⊥ 1 1 1

!

!1?

?⊥

?

?!1

⊗

X ⊗ ?⊥

?

?Y
`

?Y ` Y ⊥

!

!(?Y ` Y ⊥)

1 1 1 1

!

!1

• •

Figure 3 The element of the Taylor expansion of the MELL quasi-proof-structure R in Figure 2,
obtained from the element of T proto(R) depicted in Example 4.

I Remark 7. By definition, the Taylor expansion preserves conclusions: there is a bijection ϕ273

from the conclusions of a quasi-proof-structure R to the ones in each element ρ of T (R) such274

that i and ϕ(i) have the same type; and the types of R and ρ are the same (as a list of lists).275

The filled Taylor expansion As discussed in Section 2 (p. 4), our method needs to “represent”276

the emptyness introduced by the Taylor expansion (taking 0 copies of a box) so as to preserve277

the conclusions. So, an element of the filled Taylor expansion T z(R) of a quasi-proof-structure278

R (an example is in Figure 4) is obtained from an element of T (R) where a whole component279

can be erased and replaced by a z-cell with the same conclusions (hence T (R) ⊆ T z(R)).280

I Definition 8 (filled Taylor expansion). The emptying of a DiLL0 quasi-proof-structure281

ρ = (|ρ|,F , box) relatively to some roots r1, . . . , rn of F is the same as ρ but with the282

components of r1, . . . , rn replaced by a z-cell with the same conclusions as in ρ.283

The filled Taylor expansion T z(R) of a quasi-proof-structure R is the set of all the284

emptyings of the elements of its Taylor expansion T (R).285

1 1

X⊥ X ⊗ ?⊥ ?!1 !(?Y ` Y ⊥)

z !

1 1

!

!1

• •

Figure 4 An element of the filled Taylor expansion of the MELL quasi-proof-structure in Figure 2.

4 Means of destruction: unwinding MELL quasi-proof-structures286

Our aim is to deconstruct proof-structures (be they MELLz or DiLL0) from their conclusions.287

To do that, we introduce a category of rules of deconstruction. The morphisms of this category288

are sequences of deconstructing rules, acting on lists of lists of formulæ. These morphisms289

act through functors on quasi-proof-structures, exhibiting their sequential structure.290

I Definition 9 (the category Path). Let Path be the category whose291

objects are lists Γ = (Γ1; . . . ; Γn) of lists of MELL formulæ;292

arrows are freely generated by the elementary paths in Figure 5.293

We call a path any arrow ξ : Γ→ Γ′. We write the composition of paths without symbols and294

in the diagramatic order, so, if ξ : Γ→ Γ′ and ξ′ : Γ′ → Γ′′, ξξ′ : Γ→ Γ′′.295
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(Γ1; · · · ; Γk, c(i), c(i+1),Γ′k; · · · ; Γn) exci−−→ (Γ1; · · · ; Γk, c(i+1), c(i),Γ′k; · · · ; Γn)
(Γ1; · · · ; Γk, c(i), c(i+1),Γ′k; · · · ; Γn) mixi−−→ (Γ1; · · · ; Γk, c(i); c(i+1),Γ′k; · · · ; Γn)

(Γ1; · · · ; Γk; c(i), c(i+1); Γk+2; · · · ; Γn) axi−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = A = c(i+1)⊥

(Γ1; · · · ; Γk; · · · ; Γn) cuti

−−→ (Γ1; · · · ; Γk, c(i), c(i+1); · · · ; Γn) with c(i) = A = c(i+1)⊥

(Γ1; · · · ; Γk; Γk+1, c(i); Γk+2; · · · ; Γn) zi−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn)
(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) 1i−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = 1
(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) ⊥i−−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = ⊥

(Γ1; · · · ; Γk, c(i); · · · ; Γn) ⊗i−−→ (Γ1; · · · ; Γk, A,B; · · · ; Γn) with c(i) = A⊗B
(Γ1; · · · ; Γk, c(i); · · · ; Γn) `i−−→ (Γ1; · · · ; Γk, A,B; · · · ; Γn) with c(i) = A`B

(Γ1; · · · ; Γk, c(i); · · · ; Γn) ?ci−→ (Γ1; · · · ; Γk, ?A, ?A; · · · ,Γn) with c(i) = ?A
(Γ1; · · · ; Γk, c(i); · · · ; Γn) ?di−→ (Γ1; · · · ; Γk, A; · · · ; Γn) with c(i) = ?A

(Γ1; · · · ; Γk; c(i); Γk+2; · · · ; Γn) ?wi−→ (Γ1; · · · ; Γk; Γk+2; · · · ; Γn) with c(i) = ?A
(Γ1; · · · ; ?Γk, c(i); · · · ; Γn) Boxi−−−→ (Γ1; · · · ; ?Γk, A; · · · ; Γn) with c(i) = !A

Figure 5 The generators of Path. In the source Γ = (A1, . . . , Ai1 ; · · · ;Aim−1+1, . . . , Ain ) of each
arrow, c(i) denotes the ith formula in the flattening (A1, . . . , Ai1 , . . . , Aim−1+1, . . . , Ain ) of Γ.

I Example 10. `1 `2 `3 ⊗1 ⊗3 exc1 exc2 mix2 ax1 exc2 mix2 ax1 ax1 is a path of type296 (
(X ⊗ Y ⊥) ` ((Y ⊗ Z⊥) ` (X⊥ ` Z))

)
−→ ε.297

We will tend to forget about exchanges and perform them silently (as it is customary, for298

instance, in most presentations of sequent calculi).299

The category Path acts on MELLz quasi-proof-structures, exhibiting a sequential struc-300

ture in their construction. For Γ a list of list of MELL formulæ, qMELLz(Γ) is the set of301

MELLz quasi-proof-structures of type Γ. To ease the reading of the rewrite rules acting on a302

MELLz quasi-proof-structures R, we will only draw the parts of R belonging to the relevant303

component; so, for instance, if we are interested in an ax-cell rooted in the conclusions i and304

i+1, which is the only cell in a component, we will write i i+1

ax

ignoring the rest.305

I Definition 11 (action of paths on MELL quasi-proof-structures). An elementary path a : Γ→306

Γ′ defines a relation a ⊆ qMELLz(Γ)× qMELLz(Γ′) (the action of a) as the smallest307

relation containing all the cases in Figure 6, with the following remarks:308

mix read in reverse, a quasi-proof-structure with two components is in relation with a proof-309

structure with the same module but the two roots of said components merged.310

hypothesis if a ∈ {axi,zi,1i,⊥i, ?wi}, the rules have all in common to act by deleting a cell311

without inputs that is the only cell in its component. We have drawn the axiom case in312

Figure 6c, the others vary only by their number of conclusions.313

cut read in reverse, a quasi-proof-structure with two conclusions i and i+ 1 is in relation314

with the quasi-proof-structure where these two conclusions are cut. This rule, from left to315

right, is non-deterministic (as there are many possible cuts).316

binary multiplicatives these rules delete a binary connective. We have only drawn the ⊗317

case in Figure 6e, the ` case is similar.318

contraction splits a ?-cell with h+k+2 inputs into two ?-cells with h+1 and k+1 inputs,319

respectively.320

dereliction only applies if the ?-cell (with 1 input) does not shift a level in the box-forest.321

box only applies if a box (and its frontier) is alone in its component.322

This definition of the rewrite system is extended to define a relation ξ ⊆ qMELLz(Γ)×323

qMELLz(Γ′) (the action of any path ξ : Γ→ Γ′) by composition of relations.324
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Γk i i+1 Γ′
k

exci

Γk i+1 i Γ′
k

(a) Exchange

Γk i i+1 Γ′
k

mixi

Γk i i+1 Γ′
k

(b) Mix
· · · i i+1 · · ·

ax
axi

· · · · · ·

(c) Hypothesis (ax,z,1,⊥, ?w)

Γk

cut

cuti

i+1iΓk

(d) Cut

Γk

⊗

i

⊗i

Γk i i+1

(e) Binary multiplicative (⊗,`)

Γk · · · · · ·

?

i

?ci

Γk · · ·

?

i

· · ·

?

i+1

(f) Contraction

Γk

?

i

?di

Γk i

(g) Dereliction

!

i

?

?Γk

Boxi

i

?

?Γk

(h) Box

Figure 6 Actions of elementary paths on MELLz quasi-proof-structures.

Given two MELLz quasi-proof-structures R and R′, we say that a rule a applies to R if325

there is a finite sequence of exchanges exci1 · · · excin such that R exci1 ···excina R′.326

I Definition 12 (the functor qMELLz). We define a functor qMELLz : Path→ Rel by:327

on objects: qMELLz(Γ) is the set of MELLz quasi-proof-structures of type Γ;328

on morphisms: for ξ : Γ→ Γ′, qMELLz(ξ) = ξ (see Definition 11).329

Our rewrite rules enjoy two useful properties, expressed by Propositions 13 and 15.330

I Proposition 13 (co-functionality). Let ξ : Γ→ Γ′ be a path. The relation ξ is a co-function331

on the sets of underlying graphs, that is, a function ξ
op

: qMELLz(Γ′)→ qMELLz(Γ).332

I Lemma 14 (applicability of rules). Let R be a non-empty MELLz quasi-proof-structure.333

There exists a conclusion i such that:334

either a rule in {axi,1i,⊥i,⊗i,`i, ?c i, ?d i, ?wi, cuti,zi,Boxi} applies to R;335

or R mixi R′ (where the conclusions affected by mixi are i−k, . . . , i, i+1, . . . , i+`) and336

i−k, . . . , i are all the conclusions of either a box or an hypothesis cell, and one of the337

components of R′ coincides with this cell or box (and its border).338

Proposition 13 and Lemma 14 are proven by simple inspection of the rewrite rules of Figure 6.339

I Proposition 15 (termination). Let R be a MELLz quasi-proof-structure of type Γ. There340

exists a path ξ : Γ→ ε such that R ξ ε341

To prove Proposition 15, it is enough to apply Lemma 14 and show that the size of MELLz342

quasi-proof-structures decreases for each application of the rules in Figure 6, according to343

the following definition of size. The size of a proof-structure R is the couple (p, q) where344

p is the multiset of the number of inputs of each ?-cell in R;345

q is the number of cells not labeled by z in R.346

The size of a quasi-proof-structure R is the (finite) multiset of the sizes of its components.347

Multisets are ordered as usual, couples are ordered lexicographically.348
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Γk i i+1 Γ′
k

z
mixi

{
Γk i i+1 Γ′

k

z z
}

(a) Mix

. . . i i+1 . . .

z
axi

{
. . . . . .

}
(b) Hypothesis (ax,z,1,⊥, ?w)

Γk

z
cuti

{
Γk i i+1

z
}

(c) Cut

Γk i

z ?ci

{
Γk i i+1

z
}

(d) Binary rule (⊗,`, ?c )
Γk i

z ?di

{
Γk i

z
}

(e) Dereliction

?Γk i

z
Boxi

{
?Γk i

z
}

(f) Daimoned box

?Γk i

? !
Boxi

{
?Γk i

z
}

(g) Empty box

. . .

ρn

ρ1

!

i

?

?Γk

Boxi


. . .ρj

i?

?Γk


16j6n

(h) Non-empty box

Figure 7 Actions of elementary paths on z-cells and on a box in qDiLLz0 .

5 Naturality of unwinding DiLLz
0 quasi-proof-structures349

For Γ a list of lists of MELL formulæ, qDiLLz0 (Γ) is the set of DiLLz0 quasi-proof-structures350

of type Γ. For any set X, its powerset is denoted by P(X).351

I Definition 16 (action of paths on DiLLz0 quasi-proof-structures). An elementary path352

a : Γ → Γ′ defines a relation a ⊆ qDiLLz0 (Γ) ×P(qDiLLz0 (Γ′)) (the action of a) by the353

rules in Figure 6 (except Figure 6h, and with all the already remarked notes) and in Figure 7.354

We extend this relation on P(qDiLLz0 (Γ))×P(qDiLLz0 (Γ′)) by the monad multiplication355

of X 7→ P(X) and define ξ (the action of any path ξ : Γ→ Γ′) by composition of relations.356

Roughly, all the rewrite rules in Figure 7—except Figure 7h—mimic the behavior of the357

corresponding rule in Figure 6 using a z-cell. Note that in Figure 7g a z-cell is created.358

The rule for the non-empty box in Figure 7h, read in reverse, associates with a non-empty359

finite set of DiLL0 quasi-proof-structures {ρ1, . . . , ρn} the merging of ρ1, . . . , ρn, that is the360

DiLL0 quasi-proof-structure depicted on Figure 7h on the left of Boxi .361

I Definition 17 (the functor PqDiLLz0 ). We define a functor PqDiLLz0 : Path→ Rel by:362

on objects: for Γ a list of lists of MELL formulæ, PqDiLLz0 (Γ) = P(qDiLLz0 (Γ)), the363

set of sets of DiLLz0 proof-structures of type Γ;364

on morphisms: for ξ : Γ→ Γ′, PqDiLLz0 (ξ) = ξ (see Definition 16).365

I Theorem 18 (naturality). The filled Taylor expansion defines a natural transformation Proof in
Appendix A, p. 17

366

Tz : PqDiLLz0 ⇒qMELLz : Path→Rel by: (Π, R)∈TzΓ iff Π⊆T z(R) and the type of367

R is Γ. Moreover, if Π is a set of DiLL0 proof-structures with Π ξ Π′ and Π′ ⊆ T (R′), then368

R is a MELL proof-structure and Π ⊆ T (R), where R is such that R ξ R′.369

In other words, the following diagram commutes for every path ξ : Γ→ Γ′.370
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PqDiLLz0 (Γ) PqDiLLz0 (Γ′)

qMELLz(Γ) qMELLz(Γ′)

PqDiLLz0 (ξ)

TzΓ

qMELLz(ξ)
TzΓ′

371

It means that given Π Π′, where Π′ ⊆ T z(R′), we can simulate backwards the rewrit-372

ing to R (this is where the co-functionality of the rewriting steps expressed by Proposition 13373

comes handy); and given R R′, we can simulate the rewriting for any Π ⊆ T z(R).374

6 Glueability of DiLL0 quasi-proof-structures375

Naturality (Theorem 18) allows us to characterize the sets of DiLL0 proof-structures that are376

in the Taylor expansion of some MELL proof-structure (Theorem 20 below).377

I Definition 19 (glueability). We say that a set Π of DiLLz0 quasi-proof-structures is glueable,378

if there exists a path ξ such that Π ξ {ε}.379

I Theorem 20 (gluing criterion). Let Π be a set of DiLL0 proof-structures: Π is glueable if380

and only if Π ⊆ T (R) for some MELL proof-structure R.381

Proof. If Π ⊆ T (R) for some MELL proof-structure R, then by termination (Proposition 15)382

R ξ ε for some path ξ, and so Π ξ {ε} by naturality (Theorem 18, as T z(ε) = {ε}).383

Conversely, if Π ξ {ε} for some path ξ, then by naturality (Theorem 18, as T (ε) = {ε}384

and Π is a set of DiLL0 proof-structures) Π ⊆ T (R) for some MELL proof-structure R. J385

I Example 21. The three DiLL0 proof-structures ρ1, ρ2, ρ3 below are not glueable as a386

whole, but are glueable two by two. In fact, there is no MELL proof-structure whose Taylor387

expansion contains ρ1, ρ2, ρ3, but any pair of them is in the Taylor expansion of some MELL388

proof-structure. This is a slight variant of an example in [25, pp. 244-246].389

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

1 1 1 1 ⊥ ⊥ ⊥ ⊥ ⊥

!

!1

!

!1

!

!1

?

?⊥

?

?⊥

?

?⊥

390

An example of the action of a path starting from a DiLL0 proof-structure ρ and ending in391

{ε} can be found in Figures 8 and 9. Note that it is by no means the shortest possible path.392

When replayed backwards, it induces a MELL proof-structure R such that ρ ∈ T (R).393

7 Non-atomic axioms394

From now on, we relax the definition of quasi-proof-structure (Definition 1 and Figure 1) so395

that the outputs of any ax-cell are labeled by dual MELL formulæ, not necessarily atomic. We396

can extend our results to this more general setting, with some technical complications. Indeed,397

the rewrite rule for contraction has to be modified. Consider a set of DiLL0 proof-structures398

consisting of just a singleton which is a daimon. The contraction rule rewrites it as:399

!A⊥ !A⊥ ?A

z ?c3

{
!A⊥ !A⊥ ?A ?A

z
}

which is then in the Taylor expansion of !A⊥ !A⊥ ?A ?A

ax
ax

400

401
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ρ =
{

??⊥ !!(A⊥`A)

? ! }
Box2

{
??⊥ !(A⊥`A)

z
}

Box2

{
??⊥ (A⊥ `A)

z
}

R = A⊥ A

⊥ ⊥

ax

`
A⊥`A

!

!(A⊥ `A)

⊥ ⊥

?

?⊥

?

??⊥

!

!!(A⊥ `A)

!

Box2
A⊥ A

⊥ ⊥

ax

`
A⊥`A

⊥ ⊥

?

?⊥

!

!(A⊥`A)

!

?

??⊥

Box2
⊥ ⊥ A⊥ A

ax

`
A⊥`A

⊥ ⊥

?

?⊥

?

??⊥

`2

{
??⊥ A⊥ A

z
}

?d1

{
?⊥ A⊥ A

z
}

mix1

{
?⊥ A⊥ A

z z
}

`2
⊥ ⊥ A⊥ A

ax⊥ ⊥

?

?⊥

?

??⊥

?d1
⊥ ⊥ A⊥ A

ax⊥ ⊥

?

?⊥

mix1
⊥ ⊥ A⊥ A

ax⊥ ⊥

?

?⊥

Figure 8 The path Box2 Box2 `2?d1 mix1 ax2,3?c 1?d2 mix1 ⊥2?d1⊥1 witnessing that ρ ∈ T (R) (to be
continued on Figure 9).

on which no contraction rule can be applied backwards, breaking the naturality. The failure402

of the naturality is actually due to the failure of Proposition 13 in the case of the rule ?c : ?c
op

403

is functional but not total.404

The solution to this conundrum lies in changing the contraction rule for DiLL0 proof-405

structures, by explicitly adding ?-cells. Hence, the application of a contraction step in the406

DiLL0 proof-structures precludes the possibility of anything else but a ?-cell on the MELL407

side, which allows the contraction step to be applied backwards.408

In turns, this forces us to change the definition of the filled Taylor expansion into a η-filled409

Taylor expansion, which has to include elements where a daimon (representing an empty410

component) has some of its outputs connected to ?-cells.411

I Definition 22 (η-filled Taylor expansion). The η-emptying of DiLL0 quasi-proof-structure412

ρ = (|ρ|,F , box) relatively to some roots r1, . . . , rn of F it is the same as ρ but with the413

components of r1, . . . , rn replaced by a z-cell with the same conclusions as in ρ with its414

outputs possibly connected to a ?-cell in conclusion i, if there is a ?-cell in conclusion i in R.415

The η-filled Taylor expansion T zη (R) of a quasi-proof-structure R is the set of all the416

emptyings of the elements of its Taylor expansion T (R), relatively to all components, and all417

possible choices of ?-cells conclusions of R.418

Note that the η-filled Taylor expansion contains all the elements of the filled Taylor419
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ax2,3

{
?⊥

z
}

?c1

{
?⊥ ?⊥

z
}

?d2

{
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z z
}
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z z
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?
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?⊥
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⊥ ⊥

?

?⊥

⊥2

{
?⊥

z
}

?d1

{
⊥

z
}

⊥1 { ε }

⊥2
⊥

⊥

?

?⊥

?d1
⊥

⊥
⊥1 { ε }

Figure 9 The path Box2Box2`2?d1mix1ax2,3?c 1?d2mix1⊥2?d1⊥1 witnessing that ρ ∈ T (R) (continued
from Figure 8).

X⊥ X ⊗ ?⊥ !1 !(?Y ` Y ⊥) 1 1

z

?

?!1

! 1 1

!

!1

• •

Figure 10 An element of the η-filled Taylor expansion of the MELL quasi-proof-structure in Fig. 2.

expansion and some more, such as the one in Figure 10.420

Functors qMELLz and PqDiLLz0 are defined as before (Def. 12 and 17, respectively),8421

except that the image of PqDiLLz0 on the generator ?c i (Figure 7d) is changed to422

?[Γk] i

z ?ci

{
?[Γk]

z

?

i

?

i+1

}
423

424

where ?[Γk] signifies that some of the conclusions of Γk might be connected to the z-cell425

through a ?-cell (see Appendix B for details). We can prove similarly our main results.426

I Theorem 23 (naturality with η). The η-filled Taylor expansion defines a natural transform-427

ation Tzη : PqDiLLz0 ⇒ qMELLz : Path→Rel by: (Π, R)∈Tzη Γ iff Π⊆T zη (R) and the428

type of R is Γ. Moreover, if Π is a set of DiLL0 proof-structures with Π ξ Π′ and Π′ ⊆ T (R′),429

then R is a MELL proof-structure and Π ⊆ T (R), where R is such that R ξ R′.430

I Theorem 24 (gluing criterion with η). Let Π be a set of DiLL0 proof-structures, not431

necessarily with atomic axioms: Π is glueable iff Π ⊆ T (R) for some MELL proof-structure R.432

8 Remember that now, for Γ a list of list of MELL formulæ, qMELLz(Γ) (resp. qDiLLz
0 (Γ)) is the set

of MELLz (resp. DiLLz
0 ) quasi-proof-structures of type Γ, possibly with non-atomic axioms.
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8 Conclusions and perspectives433

z-cells inside boxes Our gluing criterion (Theorem 20) solves the inverse Taylor expansion434

problem in a “asymmetric” way: we characterize the sets of DiLL0 proof-structures that are435

included in the Taylor expansion of some MELL proof-structure, but DiLL0 proof-structures436

have no occurrences of z-cells, while a MELL proof-structure possibly contains z-cells inside437

boxes (see Definition 1). Not only this asymmetry is technically inevitable, but it reflects on438

the fact that some glueable set of DiLL0 proof-structure might not contain any information439

on the content of some box (which is reified in MELL by a z-cell), or worse that, given the440

types, no content can fill that box. Think of the DiLL0 proof-structure ρ made only of a !-cell441

with no inputs and one output of type !X, where X is atomic: {ρ} is glueable but the only442

MELL proof-structure R such that {ρ} ⊆ T (R) is made of a box containing a z-cell.443

This asymmetry is also present in Pagani’s and Tasson’s characterization [22], even if444

not particularly emphasized: their Theorem 2 (analogous to the left-to-right part of our445

Theorem 20) assumes not only that the rewriting starting from a finite set of DiLL0 proof-446

structures terminates but also that it ends on a MELL proof-structure (without z-cells, which447

ensures that there exists a MELL proof-structure without z-cells filling all the empty boxes).448

The λ-calculus, connection and coherence Our rewriting system and glueability criterion449

should help to prove the existence of a binary coherence for elements of the Taylor expansion450

of a fragment of MELL-proof-structures, extending the one that exists for resource λ-terms.451

We can remark that the glueability criterion is actually an extension of the criterion for452

resource λ-terms: indeed, in the case of the λ-calculus, there are three rewriting steps,453

corresponding to the abstraction, the application and the variable (which can be encoded454

in our rewriting steps), and coherence is defined inductively: if a set of resource λ-terms is455

coherent, then any set of resource λ-term that rewrites to it is also coherent.456

Presented in this way, the main difference lies not in the rewriting system but in that,457

in the λ-terms’ case, the structure of any resource λ-term determines the rewriting path,458

while, for DiLL0 proof-structures, we have to quantify existentially over all possible paths.459

This can not be avoided and is a consequence of the fact that proof-structures do not have a460

tree-structure, contrary to λ-terms.461

Moreover, it is possible to match and mix different sequences of rewritings. Indeed,462

consider three DiLL0 proof-structures pairwise glueable. Proving that they are glueable as a463

whole amounts to computing a rewriting path from the rewriting paths witnessing the three464

glueabilities. Our paths were designed with that mixing-and-matching operation in mind, in465

the particular case where the boxes are connected. This is reminiscent of [16], where we also466

showed that a certain property enjoyed by the λ-calculus can be extended to proof-structures,467

provided they are connected inside boxes. We leave that work to a subsequent article.468

Functoriality and naturality Our functorial point of view on proof-structures can unify469

many results. Let us cite two:470

a sequent calculus proof of ` Γ can be translated into a path from the empty sequence471

into Γ. The action of all such paths on proof-structures can then be seen as preserving a472

certain geometric criterion, and actually be the ones that do so: this could be the starting473

point for the formulation of a new correctness criterion;474

the category Path can be extended with higher structure, allowing to represent cut-475

elimination. The functors qMELLz and PqDiLLz0 can also be extended to such higher476

functors, proving the commutation of cut-elimination and the Taylor expansion.477
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Technical Appendix530

A Proof of naturality (Theorem 18, p. 11)531

Tz is a family of morphisms of Rel indexed by the objects in Path. In the first part of the532

statement (before “Moreover”), the only thing to show is that the naturality squares533

PqDiLLz0 (Γ) PqDiLLz0 (Γ′)

qMELLz(Γ) qMELLz(Γ′)

PqDiLLz0 (ξ)

TzΓ

qMELLz(ξ)

TzΓ′

534

commute for every path ξ : Γ → Γ′, and actually, it is enough to show that such squares535

commute for all elementary paths. Let a : Γ→ Γ′ be an elementary path.536

1. qMELLz(a) ◦ TzΓ ⊆ TzΓ′ ◦PqDiLLz0 (a).537

Let (Π, R′) ∈ qMELLz(a) ◦ TzΓ . Let R ∈ qMELLz(Γ) be a witness of composition,538

that is an element such that (Π, R) ∈ TzΓ and R a R′.539

Let p : t → F be a thick subforest of F , let r1, . . . , rn be some roots of F , and let540

ρr1...rn
∈ Π be the element of the filled Taylor expansion of R associated with p and541

r1, . . . , rn.542

If a = mixi, then, in R, the conclusions 1, . . . , i, i+ 1, . . . k are exactly the conclusions543

of a root in the box-forest of R, and the connected components in R of i and i + 1544

are disjoint. By Definitions 6 and 8, since ρr1...rn ∈ Π ⊆ T z(R), we have that the545

conclusions 1, . . . , i, i+ 1, . . . k are exactly the conclusions of a root r in the box-forest546

of ρr1...rn , and we have two possibilities:547

the connected components of i and i+ 1 are disjoint in ρr1...rn
;548

i and i+ 1 belong to the same connected component, in which case r ∈ {r1, . . . , rn}549

and ρr1...rn
is a z-cell with conclusion 1, . . . , i, i+ 1, . . . k.550

In both cases the rule mixi is also applicable in ρr1...rn
, yielding a DiLL0 proof-structure551

ρ′. The box-forest F ′ of R′ is obtained from the box-forest F of R by replacing a552

root b by two roots b1, b2. Let p′ : t′ → F ′ be such that all the boxes d 6= b1, b2 have553

the same inverse image than by p: p′−1(d) = p−1(d), and, p′−1(b1) = p−1(b) × {1},554

p−1(b2) = p−1(b)× {2}. We verify that ρ′ is the filled Taylor expansion of R′ through555

p′.556

If a ∈ {axi,zi,1i,⊥i, ?wi}, let k be such that the rule a acts on the conclusions557

i, . . . , i+ k in R, and let ` be the type of the cell in R connected to the conclusions558

i, . . . , i+ k. In ρr1...rn there is a cell of type ` or z connected to the same conclusions.559

Clearly a is applicable to ρr1...rn
, which yields a DiLL0 proof-structure ρ′.560

The box-forest F ′ of R′ is obtained from the box-forest F of R by erasing a root b.561

Let p′ : t′ → F ′ be such that all the boxes d 6= b have the same inverse image than by562

p: p′−1(d) = p−1(d). We verify that ρ′ is the filled Taylor expansion of R′ through p′.563

If a ∈ {⊗i,`i, ?d i, ?c i}, let k be such that the rule a acts on the conclusions i, . . . , i+ k564

in R, and let ` be the type of the cell in R connected to the conclusions i, . . . , i+ k.565

In ρr1...rn there is a cell of type ` or z connected to the same conclusions. Clearly a is566

applicable to ρr1...rn
, which yields a DiLL0 proof-structure ρ′.567
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R′ has the same box-forest F as R. We verify that ρ′ is the expansion of R′ through p.568

If a = cuti, let c be the cut-cell in R to which the rule is applied. The cut-cell c569

has either one image in ρr1...rn
or is represented by a z cell. In both cases, cuti is570

applicable to ρr1...rn
, yielding ρ′.571

R′ has the same box-forest F as R. We verify that ρ′ is the expansion of R′ through p.572

If a = Boxi, let k be such that the rule a acts on the conclusions i, . . . , i+ k in R. In573

ρr1...rn
we have one of the following possibilities:574

ρr1...rn consists of a unique z-cell with the same conclusions i, . . . , i+ k;575

ρr1...rn
consists of a !-cell in i with no premises and k ?-cells with no premises above576

the other k conclusions;577

there is a !-cell above the conclusion i and a ?-cell above each of the other k578

conclusions; and the other cells of this root can be identified by their image 1, . . . , `579

in t: we have ` pairwise disconnected sub-proof-structures π1, . . . , π`.580

In any case, the rule Boxi can be applied, yielding either a family ρ′1, . . . , ρ′` of DiLLz0581

proof-structures or a DiLLz0 proof-structure ρ′1. More precisely, in the first (resp.582

second, third) case, we apply the Daimonded (resp. Empty, Non-empty) box rule (see583

Figure 7(g), 7(h), 7(i)).584

The box-forest F ′ of R′ is obtained from the box-forest F of R by erasing the root585

of the conclusions i, . . . , i+ k: the new root b′ of this tree of F ′ is the unique vertex586

connected to the root of F (its unique son). We have p−1(b′) = {b′1, . . . , b′`}, and `587

trees t′1, . . . , t′`, where b′i is the root of t′i. The morphisms p′i : t′i → F ′ are defined588

accordingly, and ρ′i is the filled Taylor expansion of R through p′i.589

2. TzΓ′ ◦PqDiLLz0 (a) ⊆ qMELLz(a) ◦ TzΓ .590

Let (Π, R′) ∈ TzΓ′ ◦PqDiLLz0 (a). Let Π′ be a witness of composition, that is a set of591

PqDiLLz0 (Γ′) such that (Π,Π′) ∈ PqDiLLz0 (a) and (Π′, R′) ∈ TzΓ′ .592

We want to exhibit a MELLz quasi-proof-structure R such that R a R′ and Π is a part593

of the filled Taylor expansion of R. By co-functionality of qMELLz(a) (Proposition 13),594

we have a candidate for such an R: the pre-image of R′ by this co-functional relation. We595

only have to check that R′ is in the image of the co-functional relation and that Π is a596

part of the filled Taylor expansion of the pre-image R of R′ by the co-functional relation.597

In other terms: if a : Γ→ Γ′ and R′ ∈ qMELLz(Γ′), then there exists R ∈ qMELLz(Γ)598

such that R a R′ and Π ⊆ T z(R).599

If a 6= ?c i, there exists (a unique) R ∈ qMELLz(Γ) such that R a R′. The case600

a = ?c i is a bit more delicate: in this case too there exists (a unique) R ∈ qMELLz(Γ)601

such that R a R′, but here we use the fact that the types of the axiom conclusions602

are atomic. Indeed, thanks to this choice every conclusion of R′ of type ?A is the603

conclusion of a ?-cell (or of a z-cell).604

Let R be the unique pre-image of R′ through qMELLz(a) (R = a op(R′)). We605

need to show that Π is a part of the filled Taylor expansion of R. Let ρ ∈ Π and606

{ρ′1, . . . , ρ′n} ⊆ Π′ such that ρ a {ρ′1, . . . , ρ′n}. In all cases except Box, this set is a607

singleton {ρ′1}. In that cases, let p′ : t′ → F ′ and r′1, . . . , r′k be the conclusions of R′608

such that ρ′1 = ρr′1...r′k is the element of the filled Taylor expansion of R′ associated609

with p′ and r′1, . . . , r′k.610

If a ∈ {axi,zi,1i,⊥i, ?wi}, let r be the root of the conclusion i in R and let s be the611

root of the conclusion i in ρ. F is the disjoint union of F ′ and the root r. Let t be the612

disjoint union of t′ and the root s, and p : t→ F be defined as p′ over t′ and p(s) = r.613

If the cell rooted in i in ρ is a z, then we check that ρ is the element of the filled614
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Taylor expansion of R associated with p and r, r′1, . . . , r′k, else associated with p and615

r′1, . . . , r
′
k.616

If a ∈ {cuti,⊗i,`i, ?d i, ?c i}, then F = F ′, p = p′ and we check that ρ is the element of617

the filled Taylor expansion of R associated with p and r′1, . . . , r′k.618

If a = mixi, let r′1 and r′2 be the respective roots of the conclusion i and i+ k in R′,619

and let r be the root of the conclusion i in R. Consider the roots s′1 and s′2 in t′ such620

that i is produced from s′1 and i+ k from s′2, let t be equal to t′ except that the two621

roots s′1 and s′2 are merged and change p′ into p accordingly. We check that ρ is the622

element of the filled Taylor expansion of R associated with p and r′1, . . . , r′k.623

If a = Boxi, we describe the case of the Non-empty box rule (Figure 7(i)), leaving624

the two easier cases of the Daimonded (resp. Empty) box rule of Figure 7(g) (resp.625

Figure 7(h)) to the reader.626

Let p′1 : t′1 → F ′, . . . , p′n : t′n → F ′ be such that ρ′1, . . . , ρ′n are the expansions of R′627

associated with, respectively, p′1, . . . , p′n. The forests t′1, . . . , t′n differ by only one tree.628

Consider the forest t which has all the trees on which the n forests do not differ and629

the union of the trees on which the forests differ, all connected with a root, and define630

p accordingly. We check that ρ is the element of the filled Taylor expansion of R631

associated with p and r′1, . . . , r′k.632

Concerning the second part of the statement of Theorem 18 (after “Moreover”), we prove633

the following stronger statement: given two sets Π and Π′ of DiLLz0 quasi-proof-structures634

and a MELLz quasi-proof-structure R′,635

1. if Π a Π′ and Π′ ⊆ T (R′), then Π ⊆ T (R) where R is such that R a R′;636

2. if moreover Π is a set of DiLL0 proof-structures, then R is a MELL proof-structure.637

Both points are proven by straightforward inspection of the rewrite rules defined in Figures638

6 and 7. The idea is that none of them, read from right to left, introduces a new z-cell,639

thus from Π′ ⊆ T (R′) it follows that Π ⊆ T (R); whereas the only rewrite rule, read640

from left to right, that introduces a new z-cell is the “empty box” one (Figure 7g), so if641

Π Boxi Π′ according to that and Π is a set of DiLL0 proof-structures (in particular, no z-cell642

occurs in any element of Π), then in R the only occurrence of a z-cell is necessarily the643

whole content of a box, hence R is a MELL quasi-proof-structure. Finally, R is a MELL644

proof-structure (without “quasi”) because Π ⊆ T (R) and the Taylor expansion preserves645

conclusions (Remark 7). J646

B The general case647

When representing a quasi-proof-structure ρ, we write ?[i1] . . . ?[ik] i

z

for a z-cell whose648

outputs i1, . . . , ik are either conclusions (as i) of ρ, or inputs of ?-cells whose outputs are649

conclusions of ρ.650

I Definition 25 (η-emptying). Let (R,FR, boxR) be a quasi proof-structure.651

A quasi-proof-structure R′ is an η-emptying of R relatively to some roots r1, . . . , rn of652

FR if is the same as R but with the components of r1, . . . , rn replaced by a z-cell with the653

same conclusions as in R with its outputs possibly connected to a ?-cell.654

The η-filled Taylor expansion T zη (R) of R is the union of the Taylor expansions of all655

the η-emptyings of R relatively to any subset of the roots of FR.656

Note that the η-filled Taylor expansion contains all the elements of the filled Taylor657

expansion and some more, such as the one in Figure 11.658
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1 1

X⊥ X ⊗ ?⊥ !1 !(?Y ` Y ⊥)
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• •

Figure 11 An element of the η-filled Taylor expansion of the proof-structure in Figure 2.
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Figure 12 Actions of rules on z-cells and on a box in qDiLLz0


	Introduction
	Outline and technical issues
	Proof-structures and the Taylor expansion
	Means of destruction: unwinding MELL quasi-proof-structures
	Naturality of unwinding DiLL  0"47A quasi-proof-structures
	Glueability of DiLL quasi-proof-structures
	Non-atomic axioms
	Conclusions and perspectives
	Proof of naturality (thm:projection-natural, p. 11)
	The general case

