Fundamenta Informaticae 77 (2007) 1-28 1
IOS Press

Refinement, Decomposition, and Instantiation of Discrete Models:
Application to Event-B*

Jean-Raymond Abrial’, Stefan Hallerstede
ETH Zurich, Switzerland
jabrial@inf.ethz.ch; halstefa@inf.ethz.ch

Abstract. We argue that formal modeling should be the starting poinafty serious development
of computer systems. This claim poses a challenge for mugtelat first it must cope with the
constraints and scale of serious developments. Only theraituitable starting point. We present
three techniques, refinement, decomposition, and inat#orti that we consider indispensable for
modeling large and complex systems. The vehicle of our ptatien is Event-B, but the techniques
themselves do not depend on it.

Keywords: Refinement, Decomposition, Generic Instantiation, Event-B

1. Introduction

Itis our belief that the people in charge of the development of large amgles computer systems must
adopt a point of view shared by all mature engineering disciplines, namatythusing an artifact to
reason about their future system during its construction. In these disspjieople usblue-prints(in
the large sense of the term) which allows them to formally reason during thie€eoestruction process.

Most of the time, in our discipline, we do not use such artifacts. This resuitvary heavy testing
phase on the final product, which is well known to happen quite often topdageecially, to correct
design flaws. The blue-print drawing of our discipline consistsusliding modelf our future systems.
But in no way is the model of a program the program itself. For the simpl®neidst the model, like
the blue-print, must not be executable: you cannot drive the blue-piiatcar. But the model of a
program (and more generally of a complex computer system), althoughxeoitable, allows you to
clearly express and identify the properties of the future system ane finavit satisfies them.

*This work has been partly supported by IST FP6 Rigorous Open DewelapEnvironment for Complex Systems (RODIN,
IST-511599) Project.
f Address for correspondence: ETH Zurich, Switzerland

2 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

Building models of large systems however is not an easy task. First of allube, we lack expe-
rience in this activity. Such a discipline does not exist per se in Academierenduite often model
building is confused with using a very high level programming language eveeecution is thus still
present. Moreover, reasoning means ensuring that the propertids défine the future system can be
provedto be consistent in its model and kept while enhancing it until it reaches & stéiah is close
to the final product. As a matter of fact, doing a proof on a model replaee@rttpossible) execution
of a test with a technique of far more relevance at this stage. But agaimasiering of formal proving
techniques has not entered yet the standard curriculum of our disciplfna consequence, people are
quite reluctant to adopt such an approach, simply because they doavotknv to do it.

Another difficulty in model building, which is the one tackled in this paper, is tduthe fact that
modeling a large and complex computer system results in a large and complex Asgeofs will be
our preferred way to reason about models, it is thus clear that suofsprdl be more and more difficult
to perform as models become inevitably larger and larger.

The aim of this paper is to propose and stulsee techniquesvhich may be useful to solve this
difficulty while building large models. As we shall see, these techniquesaireew in that they are
already used in one way or another in certain programming methodologies, wimot very surprising.
The first onerefinementis already well known for many years in program design [24] althoud i
our opinion, not used as it would deserve to be. The seconddesempositioni25], is also well known
and quite natural in the programming activity: when a computer progranmieEtoo big, then cut it
into smaller pieces, which hopefully will be more tractable. In programmingekiewy decomposition
is often carried out in the reverse direction as composition. There is aetiffe in the way we think
about a system. By composing the system we create a system, whereasphpdsing the system is
already there including its properties. The third ogeneric instantiatiorj12], is also used in a limited
way in certain programming languages. We have chosen three refettenm®gramming texts to show
that these techniques are well-known outside formal methods. A discudsiorresponding techniques
in related formal methods can be found at the end of this article.

But, more interestingly, these techniques, although already presentony@rogramming method-
ologies, are customarily applied in mathematics for mastering the complexity ofttergges.Refine-
mentmeans that a proof in a certain domain is better first studied in a more absiraatrdwhere the
proof will be easier to perform. It is subsequently refined to the moreretsncase.Decomposition
means that a large proof is better decomposed into a series of smaller lemritaisarglreventually used
to get structured and readable main proof (lemmas, needless to say,ache adsised in other different
large proofs). Finallygeneric instantiationis the usual way mathematics “works”: a general theory pa-
rameterized by carrier sets and constants together with correspondimgsasay group theory, is later
used in another context where the sets and constants are instantiaeégtbe instantiated axioms are
themselves proved to be mere theorems in the new context. As a conseleresailts of the former
theory can be reused without being reproved. The mathematician hagatisddhat his specific prob-
lem, say a geometric problem, was justiagtanceof a more general well-known problem, say from
group theory.

Overview. In the first section to follow, we discuss the kind of system that is of intdoests and
what we consider appropriate for modelling such systems. We also paititeomnain difference of final
verification versus correct construction. The latter being the heanraihodeling approach. Section 3
introduces modeling in a rather informal way, explaining in more detail whaimean by modeling

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 3

and what to expect from its use. Section 4 defines modeling in a more forayahmd starts to make
precise the kind of proofs we want to perform on models. The next g@eons cover our three main
techniques: refinement (Section 5), decomposition (Section 6), andgerstantiation (Section 7).

2. On Modeling

We explain what we mean by complex and argue that usually such systerhe caodelled faithfully
with discrete techniques. Complex systems should be constructed to bet esrigthe standard in other
engineering disciplines.

2.1. Complex Systems

What is common to, say, an electronic circuit, a file transfer protocol, aneaiskat booking system,
a sorting program, a PC operating system, a network routing programeanptant control system,
a Smart-Card electronic purse, a launch vehicle flight controller? Does ¢ixésts any kind of unified
approach to study in-depth (and formally prove) the requirements, tloifispgon, the design and the
implementation obystemshat are so different in size and purpose?

We shall only give for the moment a very general answer. Almost all systems areomplexin
that they are made of many parts interacting with a highly evolving (and sometosglehenvironment.
They also quite often involve several concurrent agents. They equirigh degree of correctness.
Finally, most of them are the result of a construction process which isdpreer several years and
which requires a large and talented team of engineers and technicians.

2.2. Discrete Systems

Although their behavior is certainly ultimately continuous, the systems which gézd in the previous
section are most of the time operating irdiscrete fashion This means that their behavior can be
faithfully abstractedby a succession of steady states intermixed with “jumps” that cause sutdden s
changes. Of course, the number of possible changes is enormoubkegrzate occurring in a concurrent
fashion at an unthinkable frequency. But this number and this highdre;yudo not change the very
nature of the problem: these systems are intrinsically discrete. They fadr uhe generic name of
transition systemsHaving said this does not do much to move us towards a methodology, begstug
at leasta common point of departure

Some of the examples envisaged above are “pure programs”. In othds vtbeir transitions are
essentially concentrated ane mediunonly. The electronic circuit and the sorting program clearly fall
into this category. Most of the other examples however are far more cortii@eXust pure programs
because they involve many different agents and also a high amount efdtiderwith their environment.
This means that the transitions are “executed” by different kinds of en#tideg concurrently. But,
again, this does not change the discrete nature of the problem, it only cateplinatters.

2.3. Final Verification Versus Correct Construction

A very important activity (at least in terms of time and money) concerned withctimstruction of
discrete systems certainly consists of verifying that their implementations aratig in a, so called,

4 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

correctfashion. Most of the time nowadays, this activity is realized during a lengtbycastly testing
phase, which we shall call a “laboratory execution”.

The verification of a discrete system by means of “laboratory executiertgttainly far more com-
plicated to realize (if not impossible in practice) on the multiple medium case than géinie medium
case. We already know that program testing (used as a verificatioagzr@t almost all programming
projects) is by far incomplete. Not so much because of the impossibility to actueal coverage of all
execution cases. The incompleteness is rather, in our view, the consemqfaéhdack of oraclesvhich
would give,beforehandand independently of the tested objects, the expected results of a testimypses
Oracles themselves ought to be correct and may be difficult to get righb&tract properties expressed
on implementation level.

It is nevertheless the case that today the basic ingredients for comptersy@nstruction still are “a
very small design team of smart people, managing an army of implementemsya&hye concluding the
construction process with a long and heavy testing phase”. A classtoabés for testing cost relates
it to about fifty per cent of the total development cost [13] and even rworgafety critical systems. Is
this a reasonable attitude nowadays? Our opinion is that a technology usim@rs approach is still in
its infancy. This was the case at the beginning of the last century for satmediegies, which have now
reached a more mature state (e.g. avionics).

The technology we consider in this paper is that concerned with the cotistrof complex discrete
systemsAs long as the main verification method used is that of testing, we considéhithegchnology
will remain in an underdeveloped state. Testing does not involve any kisdpifisticated reasoning. It
rather consists adlways postponing any serious thinkidgring the specification and design phase. The
construction of the system will always be re-adapted and re-shapeddatg to the testing results (trial
and error). But, as one knows, it is quite often too late.

In conclusion, testing always gives a shortsighted operational viemtbgesystem under construc-
tion: that of executionln other technologies, say avionics, it is certainly the case that peoghtualy
do test what they are constructing, but the testing is jusidiiéne confirmatiorof a sophisticated design
process rather than a fundamental phase in it. As a matter of fact, mostre&#mning is donkeforethe
final object is ever constructed. It is performed on various “blue griimshe broad sense of the term)
by applying on them some well-defined practical theories. In our conterutined in Sections 2.1
and 2.2, the “blue prints” are calletiscrete models

The purpose of this study is to incorporate such a “blue print” approdotthie design of complex
discrete systems. It aims at presenting a theory able to facilitate the elabahtiiable reasoning
(usually by proof) on such blue prints. But it also points out specifibleras related to this approach
and tries to give possible solutions to them

3. Informal Overview of Discrete Models

In this section, we give an informal description of discrete models. It médly defined in Section 4. A

discrete model is made of a state space and a number of transitions (SectidfoBihe sake of easier
comprehension, we then give an operational interpretation of discretelsn(®ection 3.2). We then
present the kind of formal reasoning we want to express (SectionEr8lly, we address the problem
of mastering the complexity of models which is the main purpose of this paparid®8d).

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 5

3.1. State and Transitions

Roughly speaking, a discrete model [2, 6] is made staerepresented in terms of some significant
constants and variables (at a certain level of abstraction with regards t@ahsystem under study)
within which the system is supposed to behave. The variables are verythmisame as those used in
applied sciences (physics, biology, operational research) forisgidgtural systems. In these sciences,
people also build models. It helps them inferring some laws on reality by méaosne reasoning that
they undertake on these models.

Besides the state, the model also contains a numbamsitionsthat can occur under certain cir-
cumstances. We call these transitions “events”. An event consists ofawt& prhe first is composed
of its guards It is a set of predicates over the state constants and variables. dcegps theecessary
conditions for the event to occur. The second consists @fdtions It describes the way certain state
variables are modified as a consequence of an occurrence of thte even

3.2. Operational Interpretation

As can be seen, a discrete dynamical model thus indeed constitutes a kiatedfansition “machine”.
We can give such a machine an extremely sing@erational interpretation Notice that this interpre-
tation should not be considered as providing any “semantics” to our mdtiesa(ll be given later by
means of a proof system), it is just given here to support thesrmal understanding

First of all, the “execution” of an event, which describes a certain obbée transition of the state
variables, is considered to take time As an immediate consequence, no two events can occur simul-
taneously. The “execution” of an event corresponds to the following:

e When all event guards are false, then the model “execution” sibigssaid to have deadlocked

¢ When some event guards are true, then one of the correspondirtg eeerssarily occurs and the
state is modified accordingly, finally the guards are checked again, and so

This behavior clearly shows some possible non-determinism (called elxtenmaleterminism) as
several guards might be true simultaneously. We makessumptiorconcerning the specific event
which is indeed executed among those whose guards are true. If atngogtiard is true at a time, the
model is said to be deterministic.

Note that the fact that a model eventually deadlocksisat all mandatory As a matter of fact, most
of the systems we study never deadlock: they run forever.

3.3. Formal Reasoning

The very elementary “machine” we have described in the previous sedtimugh primitive is never-
theless sufficiently elaborate to allow us to undertake some interesting faasalning. In the following
we envisage two kinds of discrete model properties.

Invariance. The first kind of properties that we want to prove about our modelsliande ultimately
about our real systems) are, so calletjariant properties An invariant is a condition on the state
variables that must hold permanently. In order to achieve this, it is jusireebio provethat, under the
invariant in question and under the guard of each event, the invariartiadt after the variables have

6 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

been modified according to the transition associated with that event. This topbeviurther studied
and formalized in Section 4.5.

Reachability. We might also consider more complicated forms of reasoning [5, 17] involsamgli-
tions which, in contrast with the invariants, do not hold permanently. Thesponding statements are
calledmodalities In our approach we only consider a very special form of modality caéladhability.
What we would like to prove is that an event whose guard is not nedggsae now will nevertheless
certainly occur within a finite number of iterations. This topic will not be furtteidied in this paper.

3.4. Managing the Complexity of Closed Models

Note that the models we are going to construct will not just describe therdbdpart of our intended
system. It will also contain a certain representation of the environment withictvthe system we build
is supposed to behave. In fact, we shall quite often essentially constosetd modelable to exhibit
the actions and reactions which take place between some environment angsponding (possibly
distributed) controller, which we intend to construct.

In doing so, we shall be able to plunge the model of the controller within (atradtion of) its
environment (formalized as yet another model). The state of such a dgsesn thus contains “physi-
cal” variables (describing the environment state) as well as “logical” bkasa(describing the controller
state). And, in the same way, the transitions fall into two groups: those ofithement and those of
the controller. We shall also have to put into the model the way these two entitireauenicate.

But as we mentioned earlier, the number of transitions in the real systemssinde is certainly
enormous. In addition, the number of variables describing the state ofsygtdms is also extremely
large. How are we going to practically manage such a complexity? The atswes question lies in
three conceptstefinemen{section 5),decompositiorfsection 6), andjeneric instantiatior(section 7).
It is important to note that these concepts are linked. As a matter of factefines a model to later
decompose it, and, more importantly, one decomposes it to refine furtherfreele And finally, a
generic model development can be later instantiated, thus saving the ueéothef redoing “similar”
proofs.

4. Machines and Contexts

When modeling a system we structure the formal model such that constémtipd variable parts are
kept in distinct entitiesgontextaandmachinegespectively. In this section we describe these entities and
present an invariant property as described in Section 3.3.

4.1. State and Events

A formal discrete machines made of three distinct elements: (1) a set of state variables collectively
denoted byv, (2) a conjoined list of predicates, the invariants, collectively denotedi(by*, and (3)
some transitions (called events). This is illustrated in Fig. 1.

1The invariant predicates are expressed using first order predaateus and set theory

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 7

Variables

Invariants

Events

Figure 1. Machine

An event, namedt, has one of the following two forms:

E = when G(v) then S(v) end

whereS(v) is anassignmenfsee next subsection) defining the transition associated with the event, and
G(v) denotes a conjoined list of predicates definingdheard of the event, which states the necessary
condition for the event to occur. They are both parameterized by théviesia

The second form describes an event which has some local variathlasare constrained by some
guardG(t, v):

E = any ¢ where G(t,v) then S(¢,v) end

4.2. Assignments

We have three kinds of assignments for expressing the actions assavitdiesh event: (1) the deter-
ministic multiple assignment, (2) the empty assignmeitp), and (3) the non-deterministic multiple
assignment.

Kind Assignment
deterministic x = E(t,v)
empty skip

non-deterministic x:| P(t,v,a)

In the deterministic assignment,denotes a list of variables (from), and E (¢, v) denotes a list of set
theoretic expressions corresponding to each of the variables in the non-deterministic assignment
P(t,v,2") denotes a predicate, wheredenote the new values of the variablesAs can be seen, not all
variables inv are necessarily “assigned” in an assignment.

8 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

4.3. Before-After Predicates Associated with an Assignment

The before-after predicate is supposed to denote the relationship hblelinwgen the state variables
of the machine just before (denoted byand after (denoted by’) “applying” an assignment. More
generally, ifz denotes a list of state variables of the machine, we collectively denatéthgir values
just after applying a assignment. The before-after predicate is definfedl@wvs for the three kinds of
assignments:

Kind Assignment Before-after Predicate
deterministic x:= E(t,v) ¥ =E(t,v) ANy =y
empty skip v =w
non-deterministic x:| P(t,v,) P(t,v, ') Ny =y

In this table, the letteg denotes the set of variables drawn frorwhich are distinct from those in. As
can be seen, these variables are not modified by the assignment, assshibverpredicate’ = y in the
before-after predicate. It is thus important to note that the beforefaielicate of an assignment of an
event isnot a universal propertpf that assignment: it depends on the variables of the machine where the
event resides. The most obvious case is that of the empty assignmenbriFdeterministic assignment
is the most general form of assignment. For instance, a deterministic assignme E(t,v) can be
represented as: | 2’ = E(t,v).

Often the predicaté’ (¢, v, 2’) of a non-deterministic assignment | P(¢, v, z’) is of the particular
form3¢- Q(¢,t,v) N &' = F({,t,v), whereF(¢,t,v) denotes a list of expressions matching the list of
variablesz’. In this case it is convenient to use an alternative notation:

var ¢ where Q(¢,t,v) then z:= F({t,v) end

to stand forx :| (3¢-Q(¢,t,v) A 2’ = F(¢,t,v)). Events are not structured further. This way we
obtain simple proof obligations involving events, that can be efficiently condpute

4.4. Contexts

In the previous sections, we have assumed that a discrete model wasfraz@¢ af variables, invariants,
and events. There is a need for a second kind component beside thimesatientioned so far, called
contexts As we shall see in Section 7, contexts play a very importalet in the generic instantiation
mechanism. In fact, the contexts associated with a given machine defineytlieisvenachine igara-
meterizedand can subsequently be instantiated. Each machine may referencexd. dbitien this is the
case, the machine is said to “see” that context.

A context may contain two kinds of objectsarrier setsandconstants Carrier sets (globally denoted
here bys) are just represented by their name. The different carrier sets ofte@xtcare completely

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 9

Variables Sets

sees
Invariants —— | Constants

Events Axioms

MACHINE CONTEXT

Figure 2. Machine and Context

independent. The only requirement we have concerning these sets thdalare non-empty. The
constants (here globally denoted byare defined (usually indeterminately) by means of a number of
axiomsP (s, c) also depending on the carrier set€€ontexts (as well as machines) may contain theorems
that can be proved from axioms (resp. invariants and axioms of se¢ext®)n This allows for sharing
of the corresponding proofs as usual in mathematical theories. We dures#nt context or machine
theorems in this article as their use and benefits are well-known. Theoram&mavn as assertions in
the B-Method [1].

When a machin@l sees a context, then all sets and constants definecCircan be used iM. In
Fig.2, you can see the contents of machines and contexts and their relgtionsh

4.5. Invariant Preservation

We present an invariant property corresponding to the descriptionciio8e8.3. LetM be a machine
with variablesv, seeing a context with setss and constants. The axioms of the sets and constants
of C are denoted byP(s, ¢) and the invariant oM by I(s,c,v). Let E be an event oM with guard
G(s, c,v) and before-after predicat®(s, ¢, v, v’). The statement to prove in order to guarantee Ehat
maintains invarianf (s, ¢, v) is the following:

P(s,c) N I(s,c,v) N G(s,c,v) A R(s,e,v,v") = I(s,c,v") INV

Note, that each proof obligation presented in this article are assumedvtajlentified over all carrier
sets, constants, and variables occurring free in the proof obligation.

5. Refinement

Refinement allows us to build a modghduallyby making it more and more precise (that is, expressing
more relevant properties of reality). In other words, we are not goibgitd a single model representing
once and for all the future system in a flat manner: this is clearly impossikeléodine size of the state
and the number of its transitions. It would also make the resulting model vdiguttito master (if
not just to read). We are rather going to construct an ordered seg@émodels, where each model is
supposed to be a refinement of the one preceding it in the sequencemddnis that a refined (more

10 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

Variables Sets
sees
MACHINE CONTEXT
M Events Axioms C
refines extends
Variables Sets
CONCRETE sees c ant CONCRETE
i — onstants
MACHINE Invariants CONTEXT
N D
Events Axioms

Figure 3. Machine Refinement and Context Extension

concrete) model usually has more variables than its abstraction: the niellearesult from having a
closer, i.e. more detailed, look at our system.

A useful analogy is that of the scientist looking through a microscope.oingdso, the reality is
the same, the microscope does not changmuityview of reality is just more accuratsome previously
invisible details of the reality are now revealed by the microscope. An evea pmverful microscope
will reveal more details, etc. A refined model is thus one which is spatially Hatgm its previous
abstractions.

In correlation to thisspatial extensionthere is a correspondirtgmporal extensianthis is because
the new variables can be modified by some transitions, which could not banegibesent in the previous
abstractions, simply, because the concerned variables did not existrin®actically this is realized by
means ohew eventsvolving the new variables only (they refine some implicit events doing “nothimg
the abstraction). Refinement will thus result in a discrete observatiomlitfr@vhich is now performed
using afiner time granularity

We distinguish two principal uses of refinemestiperposition[6] refinement andlata-refinement
[7]. Superposition refinement corresponds solely to a spatial and tafrepdension of a model. Data-
refinement is used in order to modify the state so that it can be implemented arpateo by means of
some programming language.

5.1. Machine Refinement and Context Extension

From a given machin®1, a new machin®& can be built and asserted to be a refinememfloMachine
M is said to be ambstractionof N and machinéN is said to be aefinemenbf M or aconcrete version
of it. Likewise, contexiC, seen by a machin®, can beextendedo a contexD, which is then seen by
N. This is represented in Fig. 3.

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 11

Variables Sets
sees
MACHINE CONTEXT
M Events Axioms C
refines
sees
Variables
CONCRETE
| .
MACHINE nvariants
N
Events

Figure 4. Special Case of Machine Refinement Only

Note that it is not necessary to extend cont@xivhen refining machin®. In this restricted case,
machineN just sees contex@ as does its abstractidv. This is illustrated in Fig. 4.

The sets and constants of an abstract context are kept in its extensimthel words, the extension
of a context just consists of adding new setsd new constanis. These are defined by means of new
axiomsQ(s, t,c,d). Consequently, no specific proof obligations are associated with caxestision.

In this article we present singleton context extension and context nefete achieve conceptual sim-
plicity. The generalization to multiple context extension and reference isifficutt and particularly
useful in conjunction with decomposition as presented in Section 6.

The situation is not the same when refining machines. The concrete matkigch supposedly
“sees” concrete conteXl) has a collection of state variables which must becompletely distinétfrom
the collectionv of variables in the abstractiad. MachineN also has an invariant dealing with these
variablesw. But contrarily to the case of abstract machiMevhere the invariant exclusively depended
on the local variables of this machine, this time it is possible to have the invafiddilgo depending on
the variables of its abstractiorM. This is the reason why we collectively name this invariandhe
gluing invariant.J (s, t, c, d, v, w): it “glues” the state of the concrete machiNeo that of its abstraction
M. In Section 5.2 and Section 5.3 we present invariant preservation phdigations for events. To
simplify the presentation we only consider events without local variables.

5.2. Refinement of Existing Events

The new machin® has a number of events that have a corresponding event in the absactdheM.
Suppose the abstract event has the gtdrd ¢, v) and the before-after predicas, ¢, v, v") and the co-
rresponding concrete event has the gudrd, ¢, ¢, d, w) and the before-after predica$és, ¢, ¢, d, w, w').

2\We place this constraint in this paper to achieve conceptual simplicity. Bysimgsimple naming rules and using a sophisti-
cated renaming scheme, we actually allow transparent reuse of varialiigent-B.

12 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

The latter is said toefinethe former if the following holds:

P(s,c) N I(s,c,v) N Q(s,t,e,d) N J(s,t,e,d,v,w) A
H(s,t,e,d,w) N S(s,t,c,d,w,w)

=

G(s,c,v) A V- (R(s,c,v,0") N J(s,t,c,d, v, w'))

REF1

5.3. Introducing New Events in a Refinement

New events can be introduced in a refinement. In this case, the refinenaramism is slightly different
from the refinement of existing events. It contains three constraintshvainécthe following:

1. Each new event must refine amplicit eventwhich does nothingskip).

2. Taken together the new events muist diverge(run for ever) because divergence would mean that
previously enabled abstract events could effectively be disabled.

3. The concrete machine must not deadlock before its abstraatibverwise the concrete machine
might not achieve what the abstract machine had previously required.

We now formalize the three constraints we have just mentioned. Supposave/@uh abstract ma-
chineM seeing a context as above. This machine is refined to a more concrete mabhseeing the
refinementD of contextC, again as above. In the refined machiewe supposedly have a new event
with guard H (s, t, ¢, d,w) and before-after predicaté(s, ¢, ¢, d, w,w’). Constraint 1 (refiningkip)
leads to the following statement to prove:

P(s,c) AN I(s,c,v) AN Q(s,t,c,d) N J(s,t,c,d,v,w) A
H(s,t,c,d,w) N S(s,t,c,d,w,w)

=

J(s,t,e,d,v,w')

REF2

In order to prove that the new events do not diverge as required figtrednt 2, it is necessary to
exhibit a variantl’ (s, t, ¢, d,w) in form of a natural-number expressionAnd it is then necessary to
prove that each new event decreasesghatevariant. Here is the corresponding statement to be proved:

P(s,c) N I(s,c,v) N Q(s,t,e,d) N J(s,t,e,d,v,w) A
H(s,t,e,d,w) N S(s,t,c,d,w,w)

=

V(s t,e,d,w) €N N V(s t,e,d,w') <V(s,t,e,d,w)

REF3

3More generally, we require the variant to be an expression over a sgided set.

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 13

sees
ML —| C1

refines T T extends

M2 | — = C2

Mn | »| Cn

Figure 5. Machine Refinements and Context Extensions

Finally, constraint 3 about the relative deadlock-freeness of theskfimachine with respect to the
abstract machine, can be formalized as follows (wher&thdenote the abstract guards, whereasihe
denote the concrete ones):

P(s,c) N I(s,c,v) AN Q(s,t,c,d) N J(s,t,c,d,v,w) A
(Gi(s,c,v) V-V Gp(s,c,v))

- REF4
(Hyi(s,t,e,d,w)V -V Hy(s, t,e,d,w))

5.4. More Refinements

The development process we have seen so far was limited to two levelssteacéibn and its refinement.
Of course, this process can be enlarged to more refinements as shoign f Note that, by the way

we prove refinement relationships, we accumulate invariants across mugfipienent steps rather than
establishing separate simulations in each step.

6. Decomposition

The process of developing an event machine by successive refinst@ps usually starts with very few
events (sometimes even a single event) dealing with very few state variablesually ends with a
machine containing many events and many variables. This is because orenudshimportant mech-
anisms of this approach consists in introducimeyv events during refinement steps. Refinement also
significantly enlarges the number of state variables. The new events,rktalk are manifestations of
the refinement of théme grainwithin which we may, more and more accurately, observe and analyze
the discrete system.

14 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

sees
M1 ——| C1

) \ A
refines extends

M2 — C2

i i

Mn —| Cn

decomposes decomposes

sees sees
D1 |-<—7 N1 P1 ——»| E1

Textends Trefines refinesT extendsT

D2 |<«— N2 P2 ——»| E2
t ! t t
Dr |<«— Nr Ps —| Es

Figure 6. Decomposition

At some point, we may have so many events and so many state variables tiedintiment process
may become difficult to manage. And we may also figure out that the refinestepd we are trying
to undertake do not involve the totality of our system anymore (as was theatéise beginning of the
development): only a few variables and events are concerned, thes athigrplaying a passivejut
obfuscatingrole.

The idea ofmachine decompositida thus clearly very attractive: it consists of cutting a large event
system intasmaller piecesvhich can be handled more comfortably than the whole. More precisely, eac
piece should be able to be refinedependentlpf the others. This process is illustrated in Fig. 6. As can
be seen, the initial machindl and contexC1 are refined, resp. extended, until we redbdmandCn.

At this point, machindvin is decomposed into machinBd andP1 working respectively with contexts

D1 andE1. Note that this is a simplification: as a matter of famintexts can be shareéor example,
“sees” pointers to contex®1 andE1 from machinedN1 andP1 could be both replaced by pointers
pointing toCn. MachinesN1 andP1 are then independently refined together with their contexts, and so
on.

The constraint that must be satisfied by this decomposition is that such imeply refined pieces
could always (in principle) be easitg-composedThis process should then result in a system that could
have been obtained directly without the decomposition, that thus appeaggustla kind of “divide-
and-conquer” artifact. This is illustrated in Fig. 7.

6.1. The Main Difficulty: Variable Splitting

Suppose that we have a certain macHhihavith four eventsel, e2, e3 ande4. We would like to
decompos# into two separate machines: (1) machiihdealing with eventel ande2, and (2) machine
P dealing with evente3 ande4. We are interested in doing this decomposition because we “know” that

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 15

sees
M1 ——| C1

A A

Mn —| Cn

decomposes A decomposes
sees sees
D1 |<=—7 N1 P1 ——>| E1
refines? extends
Dr |<—1 Nr Ps —| Es

recompose recomposes

sees
>

Figure 7. Decomposition and Recomposition

there are some nice refinements that can be performed ande2 (possibly adding some new events)
and also ore3 ande4 in the same way.

variables events

machine events
vl el, e2
N el,e2
v2 e2,e3
P e3,ed
v3 e3,e4

But when doing thigvent splittingve must also perform a certain correspondiagable splitting
Suppose that we have three variabids v2 andv3 in M, and suppose that the events work with the
variables as indicated on the table above:is used inel ande2, v2 in e2 ande3, andv3 in e2 and
e3. Now it is obvious that variablel goes in machin& and variables3 goes in machin®. But clearly
variablev2 has to go in both machines. This seems unfortunate since it appears nopdsdiele to
refine independently the two machirfésndN.

The problem seems unsolvable since apparently there will always be Swrel variables As a
matter of fact, we have the very strong impression that the splitting of the ewdhtdways conflict
with that of the variables. Suppose it is not the case. In other wordppsaghat, in our examplel
ande?2 only work withv1 andv2, while e3 ande4 only works withv3. Clearly thenM is made of two
completely separated groups of everts énde2 in one hand, and3 ande4 in the other) which do not

16 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

communicate in any way with each other. In this cddes obviously made of two distinct machines,
which could have been handled separately to begin with.

So, in all interesting cases, the problem of shared variab®sis, our example, is unavoidable. How
are we going to solve this difficulty?

6.2. The Solution: Variable Sharing

We have no choice: the shared variables must clearlsepkcatedin the various components of our
decomposition. Notice that the shared variables in question can be modiféet/ lof the components:
we do not want to make any “specialization” of the components, some of tieémg bnly allowed to
“read”, and some other to “write” these variables. We know that this is ossiple in general.

As said before, the difficulty that arises immediately at this point concerns tiidem of refinement.
In principle, each component can freely data-refine its state spaceaSthélsamereplicated variable
could, in principle, be refined in one way in one component and differamtéyother: this is obviously
not acceptable.

6.3. A Notion of External Variable

The price to pay in order to solve this difficulty is to give the replicated varahblgpecial statusn
the components where they reside. Let us call this staxt&rnal An external variable has a simple
limitation: it must always be present in the state space of any refinement obthgonent. In other
words, an external variabteannot be data-refined

6.4. A Notion of External Event

But this is not sufficient. Suppose that in a certain component an extemable is only read, not writ-
ten. The trouble with that external variable is that it has suddenly becomestant in that component,
which is certainly not what we want.

What we need thus in each component, is a number of extra esiemifatingthe way our external
variables are handled in the machine we had before the decompositione&anth are calledxternal
events Each of them “mimics” the use of the external variables by a correspgredient of the ini-
tial machine (before decomposition), that was modifying the external Vasiab question. The reader
should understand that “mimic” simply means “is an abstraction of”. Of causk external events can-
not be refined in their component. Supp6sgv1, v2) is the guard of everg2 and E»(v1, v1’, v2,v2")
is its before-after predicate. Then eveds with guardGa, (v2) and before-after predicatg,, (v2, v2’)
is an external event (fa2 in sub-machiné), provided the following can be proved:

Ga(vl,v2) A Es(vl,vl’ v2,v2")
= DCMP
Gaq(v2) N Eaq(v2,v2)

In comparison, being an internal event of sub-macthpevente2 of N is the same as eveaf of M.
This means no proof obligation is needed for internal events.

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 17

variables
vl, v2, v3

invariant MACHINE M

events
el,e2,e3,e4

decomposes decomposes
internal t | t | internal
variable | &Xt€ma external | yariaple

vl variable variable v3

v2 v2
MACHINE N | invariant invariant | MACHINE P

internal external external internal
events event events event
el e2 e3a e2a e3, e4

Figure 8. External variables and events

Notice that there is a distinction to be made between an external variable aadeanal event.
An external variable is external in all sub-machines where it can bedfonhereas an external event
always has a non-external counterpart somewhere else. An emenhawever, be external in several
sub-machines.

All this is illustrated in Fig. 8, you can see that variabi2 is an external variable in both sub-
machinesN andP. Evente2 in internal in machindN whereas it has an external fom2a in machine
P. Symmetrically, eveng3 is internal in machin® while it has an external forra3a in machineN.

6.5. Final Recomposition

The recomposition of the initial machine by means of refinements of the var@mupanents is now
extremely simple. We put together all the variables of the individual compgsrftde-replicating” the
various shared variables) and throw away all the external eventglfoeaponent.

It remains for us to prove that the re-composed machine is indeed a refinehtiee initial machine.
Notice again that this recomposition is usually not done explicitly. Itis just sdnggthat could be done,
and which must then yield a refinement of the initial machine. The conditiore ¢orrect recomposi-
tion are extremely simple although the proof (given in the Appendix) is more koaigd: each of the
decomposed sub-machines mustéfaed by the original machin@vhich is achieved by the additional
proof obligationDCMP in Section 6.4). The proof also explains why the stated conditions are imdispe
able for establishing that the recomposed machine indeed refines the lamgicizine. Recomposition
is illustrated in Fig. 9.

6.6. Refinement of External Variables

One problem of the decomposition method as presented above is that desrttoe use of implementation-
level data types too early in the development: we would like to decompose atlgdevelopment stage

18 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

MACHINE N MACHINE P
internal t | t | internal
variables| €*t€rna external | yariables
vl variables variables v3
V2 v2
invariant invariant
: external external —
internal internal
event event
event 2 event
el, e2 e3a €za e3, e4
MACHINE M
refin‘e\ variables /re(fines
refines vl, v2, v3 refines
MACHINE NR invariant MACHINE PR
internal t | " t | internal
variables & grna events ex 'erna variables
wl variables el, e2, e3, e4 variables w3
v2 A v2
invariant invariant
. external o external —;
internal refines internal
event event
event 2 event
elr, e2r e3a eza e3r, edr
wl, v2, w3

recomposes invariant recomposes

events
elr, e2r, e3r

MACHINE MR

Figure 9. Recomposition

but without being forced to use concrete types. With the techniques glitaolduced we continue de-
composing in order to introduce new external variables (of more cortyye® These external variables
are part of the design and remain as interfaces between the compomatésidyy decompaosition in the

implementation.

Another possibility to avoid the introduction of implementation-level externabiées too early is
to refine external variables. We mention this here without giving detailsusedhe principle of decom-
position is untouched but the proofs are more intricate and longer. Theskecfound in [3] together
with a corresponding correctness proof for decomposition taking reéne of external variables into

account.

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 19

sees
ML ——| C1

refinesT T extends

sees
N —— D

refines ? ? extends

Mn L »| Cn

Figure 10. A Generic Development Together with Another Ong®evelopment

7. Generic Instantiation

Generic instantiation is our third proposal for solving the difficulties raigethb construction of large
machines. Suppose we have done an abstract development with madhit@®dn and corresponding
contextsC1 to Cn as shown in the left hand part of Fig. 10.

This development is in fact parameterized by the carrier seisd the constants that have been
accumulated in contextS1 to Cn. This development is said to lgeenericwith regard to these carrier
sets and constants. Remember that these sets are completely indeperdeht ather and their only
property is that they are not empty. The constants are defined by mesmasefaxioms(s, ¢), which
stands here for all axioms accumulated in cont&go Cn. In fact, in all our proof obligations of this
developments andc appeaifree. Moreover, the constants axion®s, c) appear as assumptions in all
statements to be proved, which are thus of the following form as can bdrspeoof obligationsINV
(Section 4.5)REF1 (Section 5.2)REF2, REF3, andREF4 (Section 5.3):

P(s,c) N A(s,c,...) = B(s,c,...)

Suppose now that in another development, we reach a situation with mad¢tgeeing a certain
contextD (after some machine and context refinements), as shown on the rightphandf figure
10. The accumulated sets and constants in corideate denoted by and d respectively. And the
accumulated axioms in conteRtare denoted by (¢, d).

We might figure out at this point that a nice continuation of the second dawelot would simply
consist inreusingthe first development with somsight changesonsisting of instantiating setsand
constants: of the former with expressionS(¢, d) andC(¢, d) depending on sets and constantndd
of the latter.

LetM1(t,d), ...Mn(t, d) be the machines of the first development after performing the instantiations
on the various invariants which can be foundi to Mn. The effective reuse is that shown in Figure 11.
As can be seen, instantiated machibK¢, d), ...Mn(t, d) implicitly “see” contextD. It remains of
course to prove now that machil (¢, d) refines machin&l. Once this is successfully done, we would
like to resume the development afidn(¢, d). For doing so, is then necessary to prove that all refinement
proofs performed in the first development are still valid after the instantiatiororder to be able to
reuse the proofsf the first developmenwithout redoing themit is just necessary to prove that the sets
and constants axiom®(s, c) of the first development are mere theorems after the instantiation. This

20 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

refinesT T extends
N sees b
refines T see
M1(t,d) sees
refines T
Mn(t,d)

Figure 11. Generic Instantiation

corresponds to the following statement to prove:

Q(t,d) = P(S(t,d),C(t,d)) INS

The explanation is very simple. Remember that all statements proved in the fereopment where
of the following form:

P(s,c) N A(s,c,...) = B(s,c,...)
As a consequence, the following holds sisandc arefree variabledn this statement:
P(5(t,d),C(t,d)) N A(S(t,d),C(t,d),...) = B(S(t,d),C(t,d),...)

We have now to prove that we can remadveS(t, d), C(t,d)) (since context€1 to Cn have disap-
peared as shown on figure 11) and replace it by the new set and mioastamsQ (¢, d), namely:

Qt,d) A A(S(t,d),C(t,d),...) = B(S(t,d),C(t,d),...)

This is trivial according tdNS.

8. Related Work

Except for the references given in the introduction from the programiit@rgture the three concepts of
refinement, decomposition, and generic instantiation, or similar concepttsargeated in the formal
methods literature. We discuss each of the topics separately.

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 21

Refinement. Refinement has been studied in many contexts, the most prominent beirgsaiquro-
gram development and reactive systems modelling. The formalism and me#dsah{ed in this article,
called Event-B , is most strongly influenced by the action system formalisiw6¢h itself was inspired
by a refinement method for sequential programs [8, 18]. All of thesbased on predicate transformers.
By contrast, Event-B uses first-order predicate calculus and seythidus difference is only superficial,
though, because Event-B refinement is isomorphic to predicate transfifimement [22]. Insofar, the
approach presented here is faithful to its roots, the B-Method [1] andx(distantly) Z [26]. The VDM
method [16] is similar to the B-Method but uses three-valued logic. Absttatet miachines (ASM) [11]
do not fix a priori the logic to be used in reasoning but state algebraiepiep that it must satisfy.
The used notion of refinement is compared to that of action systems, i.eeflatment, in [23]. ASM
refinement is slightly more general, e.g., by allowing removal of events (caliéek”) in a refinement
[10]. Theorems encountered in the predicative approach to progranjtdhgometimes appear sim-
ilar to those encountered in Event-B; the underlying theory of the predicatiproach is based on an
algebraic logic that has a set-theoretical interpretation. A fairly completevieveand comparison of
various refinement methods can be found in [22].

All the approaches just mentioned are accompanied by refinement metabdsthased on notions
of formal proof. This is where TLA+ [17] differs from them. TLA+ is bedson temporal logic (although
one usually only uses a fragment of it in specifications) and set theodyalh properties including
refinement are verified by model checking: in fact, TLA+ comes with a taliéd TLC [17]. It has been
designed with tool support in mind. This is where it is similar to Event-B. As aequence of designing
a modelling formalism that allows for efficient tool-support, usually someesgiveness is lost.

Approaches like ASM and action systems are accompanied by more geataals of refinement.
But it is difficult (perhaps even impossible) to implement tools to support theadi generality that are
also efficient and easy to use. We believe that the tool developed fot-Bveould be used with most of
them to verify refinements, at least those that can be expressed in Evexriten refinement is presented
in form of backward and forward refinement. At present Event-B osdy forward refinement, similarly
to the B-Method. There are also tools for the B-Method [4] and VDM [BExjth are most suitable for
sequential program development. Support of [4] for Event-B is incotmpl&é new tool for Event-B is
under development [21]. Note, that VDM only supports functional egfiant, a decision which is also
justified by the requirement for appropriate tool-support for the method.

Decomposition. Instead of decomposition, development methods usually employ compositibh, [6,
17]. The difference in the terminology embodies a shift in how the problenppsoached. When
composing subsystems we focus on the evolving behavior, whereasdelecemposing a system we
focus on how properties are distributed across the subsystems. Inufzartmn more abstract levels
of modelling the Event-B method advocates decomposition. Composition andhgesition do not
exclude each other but they are not the same thing. Similarly to refinemeamgesition in Event-B is
intended to be backed by a tool.

Generic Instantiation. Some form of generic instantiation is known in other formal methods as well,
e.g. [1]. These are closer to polymorphism [19] and less general tieaapiproach presented in this
article, which is much closer to mathematical practice. A similar concept of indiantia found in al-
gebraic specification, e.g. [20]. In fact, also Isabelle [19] containsdheept of type classes resembling
generic instantiation in Event-B. In a more mathematical setting this technique isysdptoreuse the-

22 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

orems. In Event-B instantiation is mostly used to parameterize machines in omgeiserefinements,
the ultimate aim being efficient tool support for modeling by refinement.

9. Conclusion

Due to the lack of space, we regret that it was not be possible to givepdes of these techniques at
work. These will appear in subsequent papers.

We have presented a framework for modeling complex systems in a mathemigiicalis way.
Refinement is already used today to solve complex modeling problems [9]othbetwo techniques
are commonplace in programming and other disciplines, in particular mathemascdyedifficulties
arising from the modeling of complex problems. We are confident that thieypasthe application of
formal modeling to ever larger systems. Decomposition and instantiation comlgresknt a great
opportunity for reuse of sub-models that have been developed béfaseonly necessary to prove the
axioms that have been specified for contexts of the sub-model to reudevlepment of the sub-model.
This is a well-established technique in mathematics for the same purpose.nrafiries at the heart of
the development method, dealing with the complexity of single models and seoritiiefdefinition of
decomposition.

We want to emphasize that in the long term there is no alternative to model builkiingomputer
systems grow and get more and more complex, it seems futile to attempt to undevkt these systems
actually do without having a model of them.

Acknowledgments

The work presented in this paper has been patrtially done with DominiquesiCand Dominique Mery,
whom we would like to thank very much. We also greatly appreciated the comuofdrasirent \Voisin.

References

[1] J.-R. Abrial. The B Book - Assigning Programs to Meanin@ambridge University Press, 1996.

[2] J.-R. Abrial and L. Mussat. Introducing dynamic consttaiin B. In D. Bert, editorB’98 :Recent Advances
in the Development and Use of the B Methealume 1393 of_ecture Notes in Computer Scien&pringer
Verlag, 1998.

[3] Jean-Raymond Abrial. Event-B: Mathematical Model.eimal Report, April 2005.

[4] Jean-Raymond Abrial and Dominique Cansell. Click'mpe: Interactive proofs within set theory. In
David Basin et Burkhart Wolff, editor]6th International Conference on Theorem Proving in Higber
der Logics - TPHOLs'2003, Rome, Italyolume 2758 olecture notes in Computer Sciengages 1-24.
Springer, Sep 2003.

[5] Jean-Raymond Abrial, Dominique Cansell, and Dominitfléry. Refinement and Reachability in Event-B.
In H. Treharne et al., editogB 2005: Formal Specification and Development in Z andd@ume 3544 of
LNCS pages 222-241, 2005.

[6] R. J. R. Back. Refinement calculus, part Il: Parallel aedctive programs. In J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg, edit@&pwise Refinement of Distributed Systermkime 430 ofLecture
Notes in Computer Scienggages 67-93. Springer-Verlag, 1990.

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 23

R. J. R. Back and J. von Wright. Refinement calculus, pa&thuential nondeterministic programs. In J. W.
de Bakker, W.-P. de Roever, and G. Rozenberg, ediBiepwise Refinement of Distributed Systeoisime
430 ofLecture Notes in Computer Scienpages 42—66. Springer-Verlag, 1990.

Ralph-Johan Back and Joakim von WrigRefinement Calculus: A Systematic IntroductiGnaduate Texts
in Computer Science. Springer Verlag, 1998.

Fréderic Badeau and Arnaud Amelot. Using B as a High Level Progmarg Language in an Industrial
Project: Roissy VAL. In H. Treharne et al., edit@B 2005: Formal Specification and Development in Z and
B, volume 3544 o NCS pages 334-354, 2005.

Egon Birger. The ASM refinement methoBHormal Aspects of Computing5(2-3):237-257, 2003.

Egon Borger and Robert &tk. Abstract State Machines: A Method for High-Level Systenigbeand
Analysis Springer-Verlag, 2003.

J. Gosling, B. Joy, G. Steele, and G. Brachhe Java Language Specificatiohddison-Wesley, 3rd edition,
2005.

Mary Jean Harrold. Testing: a roadmap. I®SE '00: Proceedings of the Conference on The Future of
Software Engineeringpages 61-72, New York, NY, USA, 2000. ACM Press.

Eric C. R. Hehner. A Practical Theory of Programming Texts and Monographs in Computer Science.
Springer-Verlag, 1993.

C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Mookéural: A Formal Development Support System
Springer-Verlag, 1991.

Cliff B. Jones.Systematic Software Development Using V/ventice Hall, 2nd edition, 1990.

Leslie Lamport.Specifying Systems, The TLA+ Language and Tools for Harlasad Software Engineers
Addison-Wesley, 2002.

Carroll Morgan.Programming from Specification®rentice Hall, 1990.

Lawrence C. Paulsonlsabelle: A Generic Theorem Proyevolume 828 ofLecture Notes in Computer
Science Springer Verlag, 1994.

W. Reif and G. Schellhorn. Theorem Proving in Large Tiees» In W. Bibel and P. Schmitt, editors,
Automated Deduction—A Basis for Applicatiprslume IlI, 2. Kluwer Academic Publishers, Dordrecht,
1998.

RODIN project homepage. http://rodin.cs.ncl.ac.uk/.

W. P. de Roever and K. Engelharfitata Refinement: Model-Oriented Proof Methods and their ganison
Cambridge Tracts in Theoretical Computer Science 47. CiaigdditUniversity Press, 1998.

Gerhard Schellhorn. ASM refinement and generalizatiofiforward simulation in data refinement: a com-
parison.Theoretical Compututer Sciencg36(2-3):403-435, 2005.

Niklaus Wirth. Program development by stepwise refieatn CACM: Communications of the ACM4,
1971.

Niklaus Wirth. MODULA : A language for modular multipgpamming.Software Practice and Experience
7:3-35, 1977.

J. Woodcock and J. Davieblsing Z. Specification, Refinement, and Prdafentice-Hall, 1996.

24 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

APPENDIX: Proof of Correct Decomposition/Recomposition

We shall make the proof on our example. It can then be easily generdimppose that the usage of the
variablesvl, v2 andv3 in machineM is as follows:

events variables
variable events
el vl
vl el, e2
e2 vl, v2
v2 e2, e3
e3 v2, v3
v3 e3, e4
el v3

MachineN uses variable1 as a normal variable and variahl2 as anexternalvariable. It has events
el ande2 plus an extraxternal events3a (for e3 abstracted) dealing with variabl€ only. Evente3a
is supposed to be refined by evedt In other words, everdg3a simulates in machin® the behavior of
evente3 in machineP. Similarly, machineP uses variable3 as a normal variable and variahl2 as an
externalvariable. It has events3 ande4 plus an extraexternal evene2a (for e2 abstracted) dealing
with variablev2 only. Evente2a is supposed to be refined by eves#. In other words, event2a
simulates in machinB the behavior of everg2 in machineN. This can be summarized in the following
table:

machine variables events external variables external events

N vl el, e2 v2 e3a

P v3 e3,ed v2 e2a

It can easily be seen that machiriéandP are both refined by machiréd. This is so because events
el ande2 of N are clearly refined by eventsl ande2 of M (they are the same); eveeBa of N is
refinedby constructiorby evente3 of M; finally evente4 of M clearly refinesskip in N since it deals
with variablesy3 which does not exist iiN. And similarly forP.

More precisely, let the before-after predicates of the four eventseoliowing in machineM:

events guards in M before-after predicates inM
el G1(vl) Eq(vl,v]")
e2 Ga(vl,v2) Es(vl, vl v2,v2")
e3 G3(v2,v3) E5(v2,v2',v3,0v3)
e4 G4(v3) E4(v3,0v3)

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 25

And they are the following itN andP

events guards inN BA predicates inN
el G1(vl) Ey(vl,01")
e2 Ga(vl,v2) Es(vl, vl v2,v2")
e3a G3q(v2) Es,(v2,v2")

events | guardsinP BA predicates inP
e2a Gy (v2) Esy(v2,v2")
e3 G3(v2,v3) Es(v2,v2",v3,v3")
e4 G4(v3) E4(v3,v3)

Suppose that we now refieto NR. MachineNR has variabless1 andv2 together with the gluing
invariant.J(v1,wl,v2). MachineNR has eventglr ande2r which are supposed to be refinements of
el ande2 respectively, and also eveeBa, which is not refined by convention. Similarly, we refiRe
to PR. MachinePR has variables3 andv2 together with the gluing invariarit’ (v3, w3, v2). Machine
PR has event&3r ande4r which are supposed to be refinemente8fande4 respectively, and also
evente2a, which is not refined by convention. Notice that both gluing invarianésd X’ depend on the
“external” variablev2. All this can be summarized in the following table:

machine variables events external variables external events | gluing invariant
NR wl elr,e2r v2 e3a J(vl,wl, v2)
PR w3 e3r, edr v2 e2a K (v3,w3,v2)
The before-after predicates NR andPR are as follows
events | guardsinNR BA pred. in NR events | guardsinPR BA pred. in PR
elr Gir(wl) By (wl,wl’)
e2r Gor(wl, v2) By (wl,wl’ v2,0v2) e2a Goa(v2) Esq(v2,v2")
e3a G3q(v2) Es3q(v2,v2') e3r G3(v2,w3) Es,. (v2,v2", w3, w3")
edr G4 (w3) Ey (w3, w3")

The state oMR is made up of the state &R and the state oPR, where the external variables
form the “common” state. The state space is described by the conjunctioa ofvdriants ofNR and
PR. Because we assume they hold in the respective sub-machines, we tivgmeto hold also in the
recomposed machin®IR . The events oMR areelr, e2r, e3r ande4r. Notice thate2a ande3a have

26 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

been thrown away. This can be summarized in the following table:

machine variables events gluing invariant

MR wl, v2, w3 elr,e2r,e3r, edr Jwl,wl,v2) A K(v3,w3,v2)

The before-after predicates MR are as follows:

events guards in MR before-after predicates inMR
elr G1ir(wl) E1p(wl, wl’)
e2r Gop(wl, v2) Es (w1, wl’,v2,v2")
e3r Gsr(v2,w3) Es,. (v2,v2", w3, w3")
edr Gyr(w3) Eyr (w3, w3’)

ClearlyNR andPR are refined byMR, but it is not obvious thatl is refined byMR, this is precisely
what we have to prove. The situation is illustrated in the following diagram, evier arrows indicates
a refinement relationship:

N P
AN /!

1 M 1
NR 17 PR
AN /

MR

In what follows we shall prove that, providedr ande2r are refinements adl ande2 respectively
in NR, then they also are correct refinementebfande2 in MR. Similar proofs can be conducted for
the other events d¥IR. We first treat the casel. We have to show thatlr is also a refinement @f1 in

J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitiestian of Discrete Models 27

MR. The correct refinement conditidREF1 (Section 5.2) ok1 to elr within NR is the following:

Jwl,wl,v2) A Gir(wl) A Epp(wl,wl’)
=
Gi(vl) A Fol'- (Ey(vl,0l") A J(0l,wl’ v2))

Under this hypothesis, the following correct refinement conditioeloto elr within MR clearly
holds:

Jwl,wl,v2) A K(v3,w3,v2) A Gip(wl) A Ep(wl,wl’)
=
Gi(vl) A Fol’- (Ey(vl,0l") A J(vl',wl’ jv2) A K(v3,w3,v2))

As can be seen, conditioli (v3, w3, v2) can be extracted from the existential quantification in the
consequent of this implication (this is so because variabl@&loes not occur free in it). It is then easily
discharged because it is already present in the antecedent of the implicatio

The situation is a bit different in the case of the ewveit this is because this event modifies variable
v2. We have to prove tha?2r is a refinement o€2 in MR. Next is the correct refinement condition
REF1 (Section 5.2) o2 into e2r within NR:

Jwl,wl,v2) A Gop(wl,v2) A Eap(wl,wl’ v2,v2")
=
Ga(vl,v2) A Fol’- (Ez(vl,vl’,v2,02") A J(wl’',wl’, v2"))

The correct refinement condition e into e2r within MR is:

Jwl,wl,v2) A K(v3,w3,v2) A Gop(wl,v2) A Eap(wl,wl’,v2,v2)

=
Ga(v1,v2) A Fol’- (E2(vl, vl v2,02") A J(wl,wl’;v2") A K(v3,w3,v2'))

As above withK (v3,w3,v2), the conditionK (v3,w3,v2’) can be extracted from the existential
guantification in the consequent of this implication. But this time the situation is eliffdrom the
previous one as we still have the conditifr{v3, w3, v2) in the antecedent, ndt (v3, w3, v2'), so that
the proof is not trivial. Again, the presencewd in the consequent is due to the fact thatis modified
by e2 ande2r. Fortunately, we have not yet exploited the fact that ee@ndf machineM is abstracted
within machineP by evente2a. This is provided by proof obligatioDCMP (Section 6.4), expressing

28 J.-R. Abrial and S. Hallerstede / Refinement, Decomposition, anchitistian of Discrete Models

that evene2a of machineP is refined toe2 of machineM:

Vol (G2 (vl,v2) A Eo(vl,v2,01",02") = Goa(v2) A Ea,(v2,v2"))

By exploiting thatv1’ does not occur free i¥y, (v2) A Ea,(v2,v2"), we can move the quantifier in the
antecedent. This yields:

Gao(v1,v2) A Foul'- Ea(vl,v2,0v1",v2") = Gaq(v2) A E2q(v2,v2)

Finally, we also have not exploited the fact that eve2d of P is not refinedn PR. As a consequence,
it is clearly part of the “normal” refinement conditions PR to prove that conditior (v3, w3, v2) is
left invariant undee2a. This yields:

K(v3,w3,v2) A Gaq(v2) N Egq(v2,v2") = K(v3,w3,v2)

Putting all these conditions together yields the following to prove, which nddsHtrivially”:

K3, w3,v2) A G2q(v2) N Eaq(v2,v2") = K(v3,w3,v2")
Ga2(v1,v2) A Fol’- Ea(vl,v2,v1",02") = Gau(v2) N E24(v2,v2)

J(wl,wl,v2) A Gop(wl,v2) A Eap(wl,wl’ v2,0v2") =
Ga(v1,v2) A Joul’ (E2(vl,v2,vl",02") A J(vl’ ,wl’ v2"))

Jwl,wl,v2) A K(v3,w3,v2) A Gop(wl,v2) A Eap(wl,wl’,v2,v2)
=

Ga(v1,v2) A Fovl’- (Ea(vl,v2,v1,02") A J(vl',wl’ jv2") A K(v3,w3,v2'))

