
Revisiting satisfiability and model-checking for

CTLK with synchrony and perfect recall

Cătălin Dima

LACL, Université Paris Est – Université Paris 12,
61 av. du Général de Gaulle, 94010 Créteil, France

Abstract. We show that CTL with knowledge modalities but without
common knowledge has an undecidable satisfiability problem in the syn-
chronous perfect recall semantics. We also present an adaptation of the
classical model-checking algorithm for CTL that handles knowledge op-
erators.

1 Introduction

Combinations of temporal logics and epistemic logics offer a useful setting for the
specification and analysis of multi-agent systems. They have been successfully
utilized for model-checking protocols like the Alternating Bit Protocol [RL05], or
the Chaum’s Dining Cryptographers Protocol [vdMS04,KLN+06], whose func-
tioning is related with participants’ knowledge of the system state.

Epistemic temporal logics have been studied since the mid-eighties, starting
with [HV86,HV89]. These two studies led to the identification of 96 different
logics, distinguished by semantics and/or the presence of common knowledge
operators, and concern a number of decidability and undecidability results for
the satisfiability problem in those logics. In particular, it is shown that Linear
Temporal Logic (LTL) with knowledge modalities and no common knowledge has
a decidable satisfiability problem in a synchronous and perfect recall semantics.
However, the results proved in [HV89,HV86] only concern extensions of LTL,
and though both studies mention also some results on branching logics, neither
of the two concentrates on proving (un-)decidability for the epistemic extensions
of branching time logics.

In this paper, we study the Computational Tree Logic with knowledge op-
erators and without common knowledge, a logic that we denote as CTLK. We
show that, contrary to the result on LTL, satisfiability within CTLK is undecid-
able under the synchronous and perfect recall semantics. This result contradicts
the claim in [HV86] following which this logic (denoted there KBn) would be
decidable in nonlinear time.

Our proof of the undecidability of CTLK satisfiability is somewhat classical,
in the sense that we code the computation of a Turing machine vertically in a
tree. This proof technique was utilized many times in the literature for proving
undecidability of various epistemic temporal logics, starting from [HV86] where it
is proved that LTL with common knowledge operators and with various semantics

has an undecidable satisfiability problem. We also cite the undecidability result
of [vdM98] for LTL with common knowledge, which utilizes the same type of
argument. Another paper which utilizes this argument is [vBP06], in which it
is shown that several variants of branching-time logics with common knowledge
operators1 have an undecidable satisfiability problem. But, to our knowledge,
this is the first time an epistemic temporal logic without a common knowledge
operator is shown to have an undecidable satisfiability problem.

We also investigate here the model-checking problem for CTL with knowl-
edge. The model-checking problem for (a generalized form of) a branching-time
logic with knowledge operators and without common knowledge has been stud-
ied in [SG02], where the approach is to code the model-checking problem as a
satisfiability problem in Chain Logic [ER66,Tho92].

We take here a direct approach, by adapting the classical model-checking
algorithm of [CES86]. The extra procedure that is needed is a state labeling with
knowledge formulas. This involves a subset construction on the given model, since
one needs to identify all histories which may be identically observed by agent i,
when one wants to label states with formulas involving the Ki modality. Note
also that our approach is similar to the model-checking algorithm for LTL with
knowledge from [vdMS99], which also involves a subset construction, optimized
for achieving better complexity.

Our approach does not improve the worst-case complexity of the algorithm,
since each nesting of knowledge operators induces an exponential explosion, thus
leading to a nonelementary complexity. But we believe that our approach could
be more practical for formulas with low nesting of knowledge operators. In the
approach of [SG02], the system is first translated into the Chain Logic, which
needs then to be coded into Monadic Second Order logic [Tho92], and then an
MSO-based tool like Mona [EKM98] has to be applied. In such an approach,
since the system coding creates some formula with quantifier alternation, some
unnecessary determinization steps for the resulting Büchi automata are then
needed. Our approach avoids this, as each non-knowledge operator requires only
state relabeling, and no state explosion.

It is interesting to note that CTLK is not the only logic extending CTL in
which satisfiability is undecidable but model-checking is decidable. The logic
TCTL, a dense-time extension of CTL, bears the same problem [DW99].

The model-checking problem for a branching-time logic with knowledge op-
erators has also been addressed in [LR06]. Their approach is to have state-based
observation, and not trace-based observation, and this induces a PSPACE com-
plexity of the model-checking problem. Note however that, in general, state-
based observation is not a sychronous and perfect recall semantics.

We have not investigated here the possibility to adapt these results to other
semantics, but we believe that our arguments can be extended to handle non-
synchronous and/or non-perfect recall semantics.

1 As stated in [vBP06] on page 5, LETL “contains all the [...] temporal and knowledge
operators”, that is, common knowledge is included too. Hence Theorem 24 refers to
this branching temporal logic with common knowledge.

The paper is organized as follows: the next section gives the syntax and
semantics of CTLKprs. We then present the undecidability result in the third
section, and the model-checking algorithm in the fourth section. We end with a
section of conclusions and comments.

2 Syntax and semantics of CTLKprs

We recall here the syntax and the semantics of CTL, the Computational Tree
Logic, with knowledge modalities. Our semantics is a synchronous and perfect
recall semantics which is based on observability of atomic proposition values,
rather than on an “abstract” observability mapping on system states [FHV04].
We also give the semantics in a “tree-automata” flavor, as the models of a formula
are presented as trees – which are unfoldings of transition systems.

We first fix some notations to be used through the paper. Given any set A,
we denote by A∗ the set of finite sequences over A. Hence, N

∗ denotes the set of
finite sequences of natural numbers. The prefix order on A∗ is denoted �, hence
abcd � abcde � abcde. For a partial function f : A→◦ B, its support is the set of
elements of A on which f is defined, and is denoted supp(f). The first projection
of a partial function f : A→◦ B1 × . . .×Bn is denoted f

B1

; similar notations are

used for all the projections of f .
Given a set of symbols AP , which will denote in the sequel the set of atomic

propositions, an AP -labeled tree is a partial function t : N
∗→◦ 2AP that bears

some additional properties, that we detail in the following. First, note that an
element x in the support of t denotes a node of the tree, while t(x) denotes the
label of that node.

To be a tree, a mapping t : N
∗ →◦ 2AP has to satisfy the following properties:

1. The support of t is prefix-closed: for all x ∈ supp(t) and all y � x, y ∈ supp(t).
2. Trees are “full”: for all x ∈ supp(t), if xi ∈ supp(t) for some i ∈ N, then for

all 0 ≤ j ≤ i, xj ∈ supp(t).
3. Trees are infinite: for all x ∈ supp(t) there exists i ∈ N s.t. xi ∈ supp(t).

For example, the subset of integers {ε, 1∗, 121∗, 131∗, 2, 21∗} is the support
of a tree, whereas {ε, 1, 2, 221∗} is not, as it does not satisfy neither the fullness
property (for node 2) nor the infinity property (for node 1). Here, ε denotes the
empty sequence of integers, and 1∗ denotes the set 1∗ =

{

1n | n ≥ 0
}

.
We say that t1 is similar with a tree t2 and denote this t1 ≃ t2 if, intuitively,

t2 is a rearrangement of t1. Formally, t1 ≃ t2 if there exists a bijection ϕ :
supp(t1) → supp(t2) for which

– ϕ(ε) = ε.
– For all x ∈ supp(t1) and i ∈ N for which xi ∈ supp(t1) there exists j ∈ N

such that ϕ(x)j ∈ supp(t2) and ϕ(xi) = ϕ(x)j.
– For all x ∈ supp(t1), t1(x) = t2

(

ϕ(x)
)

A finite path in a tree t is a sequence of elements in the support of t, (xi)0≤i≤k
with xi+1 being the immediate successor of xi (0 ≤ i ≤ k − 1) w.r.t. the prefix

order. An infinite path is an infinite sequence (xk)k≥0 with xk+1 being the im-
mediate successor of xk for all k ≥ 0. A (finite or infinite) path is initial if it
starts with ε, the tree root.

Next we define the observability relations for each agent. These relations are
given by subsets APi ⊆ AP of atomic propositions. The values of atoms in APi
are supposed to be observable by agent i, and no other atoms are observable by
i. Informally, an agent i does not distinguish whether the current state of the
system is represented by the node x or by the node y in the tree if:

– x and y lie on the same level of the tree and
– The sequence of atomic propositions that agent i can observe along the initial

path that ends in x is the same as the sequence of atomic propositions i can
observe along the initial path that ends in y.

The first requirement makes this semantics synchronous, as it codes the fact that
any agent knows the current absolute time, and the second requirement gives
the perfect recall attribute of this semantics, as it encodes the fact that each
agent records all the observations he has made on the system state, and updates
his knowledge based on his recorded observations.

Formally, given an AP -labeled tree t, a subset APi ⊆ AP and two positions
x, y we denote x ∼APi

y if

1. x and y are on the same level in the tree, i.e., x, y ∈ supp(t), |x| = |y|,
2. For any pair of nodes x′, y′ ∈ supp(t) with x′ � x, y′ � y and |x′| = |y′| we

have that t(x′) ∩APi = t(y′) ∩APi.

Figure 1 gives an example of a (finite part of a) tree and some pairs of nodes
which are or are not related by the two observability relations ∼AP1

and ∼AP2
.

The logic we investigate here, which is the Computational Tree Logic with
knowledge operators and with a synchronous and perfect recall semantics, de-
noted in the following as CTLKprs, has the following syntax:

φ ::= p | φ ∧ φ | ¬φ | A©φ | φAU φ | φEU φ | Kiφ

The semantics of CTLKprs is given in terms of tuples (t, x) where t is an
AP -labeled tree, x ∈ supp(t) is a position in the tree, APi ⊆ AP are some fixed
subsets (1 ≤ i ≤ n), and ∼APi

are the above-defined observability relations:

(t, x) |= p if p ∈ t(x)

(t, x) |= φ1 ∧ φ2 if (t, x) |= φj for both j = 1, 2

(t, x) |= ¬φ if (t, x) 6|= φ

(t, x) |= A©φ if for all i ∈ N with xi ∈ supp(t), (t, xi) |= φ

(t, x) |= φ1 AU φ2 if for any infinite path (xk)k≥0 in t with x0 = x

there exists k0 ≥ 1 with (t, xk0) |= φ2

and (t, xj) |= φ1 for all 0 ≤ j ≤ k0 − 1

(t, x) |= φ1 EU φ2 if there exists a finite path (xj)1≤j≤k0 in t with x0 = x,

(t, xk0) |= φ2 and (t, xj) |= φ1 for all 0 ≤ j < k0

(t, x) |= Kiφ if for any y ∈ supp(t) with x ∼APi
y we have (t, y) |= φ

p2, q3

p1, q2

q2, q4

p4, q3

q2

p4

p1, p3, q2

p2

q3

p2, p4

p2, q2

p2

p1, q1

q4

∼AP2

∼AP1

∼AP2

not ∼AP1

p1, p2
AP1 = {p1, p2, p3, p4}

p1, p3

p1, q2 p1, q2

AP2 = {q1, q2, q3, q4}

Fig. 1. An AP -tree, with some of the ∼AP1
relations and ∼AP2

relations represented
as dashed lines. The dotted line shows two nodes that are not in ∼AP1

relation since
the history that can be observed by agent 1 in both nodes is not the same, though the
atomic propositions which are observed by 1 in each node is the same.

Remark 1. It is easy to note that for any pair of similar trees t1 ≃ t2, where
the similarity relation is given by the bijection ϕ : supp(t1) → supp(t2), for any
CTLK formula φ, and any position x ∈ supp(t1), we have that

(t1, x) |= φ if and only if (t2, ϕ(x))

The usual abbreviations apply here too, in particular

E3φ = true EU φ A2φ = ¬E3¬φ

A3φ = true AU φ E2φ = ¬A3¬φ

Piφ = ¬Ki¬φ E©φ = ¬A©¬φ

A formula φ is satisfiable if there exists a tree t and a position x ∈ supp(t)
such that (t, x) |= φ.

3 Undecidability of satisfiability

This section presents our undecidability result for the satisfiability problem in
CTLKprs. The undecidable problem that will be simulated is the following:

Problem 1 (Infinite Visiting Problem). Given a deterministic Turing machine,
once it starts with a blank tape, does it visit all the cells of its tape?

It is easy to see that this problem is co-r.e.: just construct a multi-tape TM
simulator, in which one of the tapes serves for memorizing all the previously
visited configurations. The simulator machine also fixes, at start, a marker at
some cell, as a “guess” that the R/W head will never go beyond that marker.
It also memorizes, for each reachable configuration, only the part of the input
tape up to the marker.

The simulator machine simulates one step of the given TM, and first checks
whether it has reached a final state, in which case it halts. If not, it checks
whether the new configuration has ever been reached by checking whether it is
present between the memorized configurations. If yes, then it goes into an error
state in which it fills all the input tape with an error symbol. If not, it appends
the current configuration to the memorized configurations and continues.

As it might be possible that the marker be reached during computation, that
is, that the simulator reaches more cells during its computation that the amount
that was initially guessed, then the simulator pushes the marker one cell to the
right, and appends one blank cell to each of the memorized configurations.

The first result of this paper is the following:

Theorem 1. Satisfiability of CTLKprs formulas is undecidable.

Proof. The main idea is to simulate the (complement of the) Infinite Visiting
Problem 1 by a CTLKprs formula φT . Similarly to [vdM98], a tree that would
satisfy φT would have configurations of the given TM coded as inital paths, and
the observability relations ∼AP1

and ∼AP2
would be used to code transitions

between configurations.
So take a deterministic Turing machine T = (Q,Σ, δ, q0, F) with δ : Q×Σ →

Q × Σ × {L,R}. Assume, without loss of generality, that the transitions in δ

always change state, and that δ is total – hence T may only visit all its tape
cells, or cycle through some configuration, or halt because trying to move the
head to the left when it points on the first tape cell.

The formula φT will be constructed over the set of atomic propositions con-
sisting of:

1. Four copies of Q, denoted Q, Q′, Q and Q
′
.

2. Two copies of Σ, denoted Σ and Σ′.
3. An extra symbol ⊥.

The symbol ⊥ will be used as a marker of the right end of the available
space on the input tape on which T will be simulated, and its position will be
“guessed” at the beginning of the simulation. The utility of the copies of Q
and Σ is explained in the following, along with the way computations of T are
simulated.

The computation steps of T are simulated by inital paths in the tree satisfying
φT , initial paths which can be of two types:

1. Type 1 paths, representing instantaneous configurations.
2. Type 2 paths, representing transitions between configurations.

In a type 1 path representing an instantaneous configuration (q, w, i) (where
w is the contents of the tape and i is the head position), the configuration is
coded using atomic propositions from Q and Σ in a straightforward way:

– The first node of the path (i.e. the tree root) bears no symbol – it is used as
the “tape left marker”.

– If we consider that all initial paths start with index 0 (which is the tree root),
then the contents of cell j, say, symbol wj = a ∈ Σ, is an atomic proposition
that holds in the jth node of the path.

– Moreover, at each position j along the path only the tape symbol wj holds.
That is, satisfiability of symbols from Σ is mutually exclusive.

– i is the unique position on the path on which the atomic proposition q holds.
That is, satisfiability of symbols from Q is also mutually exclusive.

– Whenever a symbol in Q ∪ Σ holds, the corresponding primed symbol in
Q′ ∪Σ′ holds too.

– The whole path contains a position at which ⊥ holds and from there on it
holds forever.

– No symbol from Q∪Σ holds when ⊥ holds. This codes the finite amount of
cell tapes used during simulation.

– At the point where ⊥ holds, the symbols q and q′ (recall that q is the cur-
rent state of the Turing Machine). This is needed for coding the connection
between type 1 paths and type 2 paths.

In a type 2 path representing a transition between two configurations, say,
(q, w, i) ⊢ (r, z, j), the unprimed symbols (i.e. symbols from Q ∪ Σ) along the
path represent the configuration before the transition, while the primed symbols
(i.e. symbols from Q′ ∪ Σ′) represent the configuration after the transition, in
a way completely similar to the above description. Hence, we will have some
position on the path where symbol q holds, and another position (before or
after) where symbol r′ holds. Also ⊥ marks the limit of the available tape space,
and q and r′ hold wherever ⊥ holds.

It then remains to connect type 1 paths (representing instantaneous configu-
rations) with type 2 paths (representing transitions), by means of the observabil-
ity relations. This connection will be implemented using two agents and their
observability relations: one agent being able to see atomic propositions from

Q∪Q∪Σ, the other seeing Q′∪Q
′
∪Σ′. Formally, AP = AP1∪AP2∪{⊥} with:

AP1 = Q ∪Q ∪Σ AP2 = Q′ ∪Q
′
∪Σ′

Note that both agents cannot see the value of the symbol ⊥.
More specifically, we will connect, by means of ∼AP1

, each type 1 path rep-
reseting some configuration (q, w, i) with a type 2 path representing a transition
(q, w, i) ⊢ (r, z, j). Then, by means of ∼AP2

, we code the connection between
that type 2 path and another type 1 path, which represents the configuration

(r, z, j). The first type of connection is imposed by means of the operator K1,
whereas the second type of connection is ensured by the employment of K2.

We give in Figure 2 an example of the association between a part of the
computation of a Turing machine and a tree. The tree presented in Figure 2 is
associated with the following computation of the Turing machine: (q0ab, 1) ⊢δ1

(q1, cb, 2) ⊢δ2 (q2, cBB, 3) ⊢δ3 (q3, cBa, 2) where the transitions applied at each
step are the following: δ1(q0, a) = (q1, c, R), δ2(q1, b) = (q2, B,R), δ1(q2, B) =
(q3, a, L). The tree simulates a “guess” that the Turing machine will utilize
strictly less than 5 tape cells: on each run there are at most 4 tape cells simulated
before the ⊥ symbol. Here B is the blank tape symbol, whereas R, resp. L
denote the commands “move head to the right”, resp. “to the left”. Note also
that the tree node labeled with ⊥, q0, q

′
0 is AP1-similar with the node labeled

⊥, q0, q
′
1, which is AP2-similar with the node labeled ⊥, q1, q

′
1. This connection

implemented by the composition of ∼AP1
with ∼AP2

encodes the first step in
the above computation.

tree root, no labels

a, q0, a′, q′

0

b, b′

B, B′

B, B′

⊥, q0, q′

0

B, B′

a, q0, c′

b, b′, q1

B, B′

⊥, q0, q′

1

b, q1, b′, q′

1

B, B′

B, B′

⊥, q1, q′

1

b, q1, B

B, B′, q′

2
B, q2, B′, q′

2

B, B′

B, B′

⊥.q2, q′

2

B, B′

⊥, q1, q′

2

B, q2, a

B, B′, q′

3

B, B′

⊥, q2, q′

3

B, B′

⊥, q3, q′

3

a, a′

B, q3, B′, q′

3

c, c′

∼1 ∼2 ∼1 ∼2 ∼1 ∼2

Fig. 2. Simulating a sequence of transitions of a Turing machine within a CTLK tree.

Formally, φT is the conjunction of the following formulas:

1. φ1, specifying that symbols in the same unprimed/primed/overlined set are
mutually exclusive:

φ1 : A2

(

∧

q,r∈Q,q 6=r

(

¬(q ∧ r) ∧ ¬(q′ ∧ r′) ∧ ¬(q ∧ r) ∧ ¬(q′ ∧ r′)
)

∧

∧

a,b∈Σ,a 6=b

(

¬(a ∧ b) ∧ ¬(a′ ∧ b′)
)

)

2. φ2, specifying that on each inital path there exists a single occurrence of a
state symbol, which marks the position of the R/W head:

φ2 :
(

A3

∨

q∈Q

q
)

∧
(

A3

∨

q∈Q

q′
)

∧
∧

q∈Q

A2

(

(q → A©A2¬q)∧(q′ → A©A2¬q′)
)

3. φ3, which, in combination with φ7 and φ9 below, is used to encode the fact
that the simulation of T is done on a finite tape, whose end is marked with
⊥:

φ3 : A3⊥ ∧ A2

(

⊥ → A2
(

⊥ ∧
∧

z∈Σ∪Q

(¬z ∧ ¬z′)
)

)

4. φ4 which copies the value of the current state of the configuration into the
position of the end marker ⊥ – this is useful for connecting configurations
via K1 and K2:

φ4 : A2
(

q → A2(⊥ → q)
)

∧ A2
(

q′ → A2(⊥ → q′)
)

5. φ5, specifying that on a path of the first type the primed and unprimed
symbols are the same:

φ5 : A2

∧

q∈Q

(

q∧q′ → A2

∧

a∈Σ

a↔ a′
)

∧A2

∧

q∈Q

(

E3(q∧q′) →
∧

a∈Σ

a↔ a′
)

6. φ6, specifying that on a path of the second type, the primed and unprimed
symbols are almost everywhere the same, excepting the current position of
the R/W head:

φ6 : A2

∧

(q,a)∈supp(δ)

(

q ∧ a ∧ ¬q′ → A2A©
∧

c∈Σ

c↔ c′
)

∧

∧

(q,a)∈supp(δ)

(

E3E©(q ∧ a ∧ ¬q′) →
∧

c∈Σ

c↔ c′
)

∧

7. φ7, specifying that if a path is of type 1 and encodes a configuration in
which a certain transition can be applied, then there exists a path of type
2 in which that transition is applied. (The unique transition which will be
applied is the subject of φ8.) φ7 also specifies that the “target” type 2 path
carries the end marker at the same position as the “source” type 1 path:

φ7 : A2

∧

(q,a)∈supp(δ)

(

q ∧ a ∧ q′ → A2
(

⊥ → K1⊥ ∧ P1¬q
′
)

)

8. φ8, specifying that each transition which can be applied in a certain config-
uration must be applied in that configuration:

φ8 :A2

∧

q∈Q,a∈Σ,δ(q,a)=(r,b,dir)

(

q ∧ a ∧ ¬q′ → b′
)

∧

A©A2

∧

q∈Q,a∈Σ,δ(q,a)=(r,b,L)

(

E©(q ∧ a ∧ ¬q′) → r′)∧

A2

∧

q∈Q,a∈Σ,δ(q,a)=(r,b,R)

(

q ∧ a ∧ ¬q′ → A© r′
)

Recall that T is deterministic, and hence in each configuration at most one
transition can be applied. Note also that the A© operator is needed at the
beginning of the second line above, in order to code the situations when the
head is on the first cell and tries to move left – in such situations the machine
halts, no next configuration exists, and therefore our formula φT needs to be
unsatisfiable.

9. φ9, specifying that the outcome of a transition, as coded in a type 2 path, is
copied, via ∼AP2

, into a type 1 path. φ9 also specifies that the “target” type
1 path carries the end marker at the same position as the “source” type 2
path:

φ9 :
∧

q∈Q

A2

(

q′ ∧ ¬q → A2
(

⊥ → K2⊥ ∧ P2q
)

)

10. φ10, encoding the initial configuration of T :

φ10 : ¬⊥∧
(

∧

z∈Q∪Σ

¬z ∧¬z′
)

∧E©
(

q0 ∧ q
′
0 ∧B ∧B′ ∧E©

(

(B ∧B′)EU ⊥
)

)

Here B represents the blank symbol from Σ. Note that the first position in
each path represents the beginning of the tape, hence it does not code any
tape cell.

Hence the formula φT ensures the existence of a path coding the initial con-
figuration of T , together with a guess of the amount of tape space needed for
simulating T until it stops or repeats an already visited a configuration. φT will
then ensure, by means of φ7, φ8 and φ9, that once a type 1 path encoding an
instantaneous configuration exists in the tree, and from that configuration some
transition may be fired, then a type 2 path encoding that transition exists, and
the resulting configuration is also encoded in another type 1 path of the tree.
It then follows that (t, ε) |= φT for some tree t if and only if there exists a fi-
nite subset Z of inital paths such that Z represents the evolution of the Turing
machine T , starting with a blank tape, and either halting in a final state, or
re-entering periodically into a configuration – that is, iff the Infinite Visiting
Problem has a negative answer for T . ⊓⊔

4 Model-checking CTLKprs

In this section we present a direct approach to model-checking CTLKprs. Our
approach is to reutilize the classical state-labeling technique for CTL model-
checking from [CES86], by adding a procedure that does state labeling with
Ki formulas. This extra procedure requires that the system be “sufficiently ex-
panded” such that each state be labeled with some knowledge formula that holds
in the state. This implies the necessity of a subset construction.

An n-agent system is a finite representation of an AP -labeled tree. Formally,
it is a tuple A = (Q,AP1, . . . , APn, AP0, π, δ, q0) where Q is a finite set of states,
π : Q → 2AP is the state labeling (here AP =

⋃

0≤i≤nAPi), δ : Q → 2Q

is the state transition function, and q0 ⊆ Q is initial state. The n agents are
denoted 1, . . . , n, and can observe respectively AP1, . . . , APn, whereas AP0 is
not observable by anyone.

We denote πi : Q → APi (0 ≤ i ≤ n) as the mapping defined by πi(S) =
π(S) ∩ APi. We also abuse notation and use δ as both a function δ : Q → 2Q

and a relation δ ⊆ Q×Q.
The tree of behaviors generated by A is the tree tA : N →◦ Q × AP defined

inductively as follows:

1. ε ∈ supp(tA) and tA(ε) = (q0, π(q0)).
2. If x ∈ supp(tA) with tA(x) = (q, P) and card(δ(q)) = k, then

– x has exactly k “sons” in t, i.e. xi ∈ supp(tA) iff 1 ≤ i ≤ k

– there exists a bijection σ : {1, . . . , k} → δ(q) such that for all 1 ≤ i ≤ k,
tA(xi) = (σ(i), π(σ(i))

Note that tA AP
, the projection of the tree generated by A onto AP , is an

AP -labeled tree, and, as such, is a model for CTLKprs. We then say that A is
a model of a CTLKprs formula φ if (tA AP

, ε) |= φ.

Problem 2 (Model-checking problem for CTLKprs). Given an n-agent system A
and a formula φ, is A a model of φ?

Theorem 2. The model-checking problem for CTLKprs is decidable.

Proof. The technique that we use is to transform A into another n-agent system
A′ generating the same AP -tree (modulo reordering of brother nodes). The new
system would have its state space Q′ decomposed into states Q′

ψ which satisfy
some subformula ψ of φ and some states Q′

¬ψ which do not satisfy it. Then we
will add a new propositional symbol pψ to AP , which will be appended to the
labels of Qψ (and will not be appended to the labels of Q¬ψ), and iterate the
whole procedure by structural induction on φ. The new propositional symbol
will not be observable by any agent, hence will be appended to AP0. For the
original CTL operators, it will be the case that A and A′ are the same. Only for
the Ki operators we will need to apply a particular subset construction to A in
order to get A′.

So consider first φ is in one of the forms A© p, p1 AU p2, p1 EU p2 or Kip,
where p, p1, p2 are atomic propositions. The first three constructions presented

below are exactly those used for model-checking CTL [CES86], that we re-state
here for the sake of self-containment.

For all temporal operators, the main idea is to split the state space into those
states that satisfy the formula and those that do not satisfy it. This can be done
in linear time, as follows:

For the case of φ = A© p, we partition Q in two sets of states:

QA© p =
{

q ∈ Q | ∀q′ ∈ δ(q), p ∈ π(q′)
}

Q¬A© p =
{

q ∈ Q | ∃q′ ∈ δ(q), p 6∈ π(q′)
}

The following lemma shows that our splitting is correct:

Lemma 1. (tA AP
, x) |= A© p if and only if for q = tA(x)

Q
we have that

q ∈ QA© p.

For the case of φ = p1 AU p2, we partition again Q into two sets of states:

1. Q¬(p1 AU p2) is the set of states q ∈ Q for which there exists a subset of states
Qq ⊆ Q such that:
(a) For all q′ ∈ Qq, p1 ∈ π(q) and p2 6∈ π(q).
(b) Qq is strongly connected w.r.t. δ.
(c) There exists a path ρ = (qi)1≤i≤l connecting q to some state q′ ∈ Qq

such that p1 ∈ π(qi) and p2 6∈ π(qi) for all 1 ≤ i ≤ l.
2. Qp1 AU p2 = Q \Q¬(p1 AU p2).

Similarly to the first case, we get:

Lemma 2. (tA AP
, x) |= p1 AU p2 if and only if for q = tA(x)

Q
we have that

q ∈ Qp1 AU p2 .

For the case of φ = p1 EU p2, the partition of Q is the following:

1. Qp1 EU p2 is the set of states q ∈ Q for which there exists some state q′ ∈ Q

such that
(a) p2 ∈ π(q′)
(b) There exists a path ρ = (qi)1≤i≤l connecting q to q′ such that p1 ∈ π(qi)

for all 1 ≤ i ≤ l.
2. Q¬(p1 EU p2) = Q \Qp1 EU p2 .

As above, we also have:

Lemma 3. (tA AP
, x) |= p1 EU p2 if and only if for q = tA(x)

Q
we have that

q ∈ Qp1 EU p2 .

The last construction, for φ = Kip, no longer labels existing states, but
needs to split the states of the given model in order to be able to sufficiently
distinguish states that have identical history, as seen by agent i. Therefore,
we first build a system which generates the same AP -tree as A, but contains
sufficient information about the runs that are identically observable by agent i.

Intuitively, the new automaton is an unfolding of the deterministic automaton
(without final states) which accepts the same language as L(A)

APi

, that is, the

projection of the language of A onto APi.
Given a subset R ⊆ Q and a set of atomic propositions A ⊆ AP , we denote

δA(R) =
{

r′ ∈ Q | A ⊆ π(r′) and ∃r ∈ R with r′ ∈ δ(r)
}

The new system is Ã = (Q̃, AP1, . . . , APn, AP0, π̃, δ̃, q̃0) where:

Q̃ =
{

(q,R) | R ⊆ Q,∀r ∈ R, πi(q) = πi(r)
}

q̃0 =
(

q0, {q0}
)

and for all (q,R) ∈ Q̃,

π̃(q,R) = π(q)

δ̃(q,R) =
{

(q′, R′) | q′ ∈ δ(q), R′ = δπi(q′)(R)
}

The following proposition says that the tree generated by Ã and the tree
generated by A are the same, modulo node rearrangement:

Proposition 1. tÃ AP
∼ tA AP

.

This result is a consequence of the fact that Ã is an in-splitting of A [LM95],
that is, the mapping f : Q̃ → Q defined by f(q,R) = q is a surjective mapping
for which, for each (q,R) ∈ Q̃, there exists a bijection between δ(f(q,R)) and
f(δ(q,R)), which preserves the AP -labels.

We then partition Q̃ into two sets of states according to whether Kip holds
or not:

Q̃Kip =
{

(q,R) ∈ Q̃ | p ∈ π(q) and ∀r ∈ R, p ∈ π(r)
}

Q̃¬Kip = Q̃ \QKip

Lemma 4. (tÃ AP
, x) |= Kip if and only if for (q,R) = tÃ(x)

Q̃
we have that

(q,R) ∈ Q̃Kip.

It then only remains to augment AP in each system such that it includes
a new atomic propostion pφ, where φ is the formula that was used to partition
the state space. Formally, assume that, from the initial system A and formula φ
we construct the system B = (Q′, AP1, . . . , APn, AP0, π

′, δ′, q′0) (which in most
of the cases above is again A!), and that its state space is partitioned into
Qφ and Q¬φ, with Qφ ∪ Q¬φ = Q,Qφ ∩ Q¬φ = ∅. We then construct B′ =
(Q′, AP1, . . . , APn, AP

′
0, π

′′, δ′, q′0) by augmenting the set of atomic proposition
with a new propositional symbol pφ, AP

′
0 = AP0 ∪{pφ}, and relabel accordingly

all states: for all q ∈ Q′,

π′′(q′) = π′(q′) ∪
{

pφ | q ∈ Qφ
}

The final system Afin gives the answer to the model-checking problem: A |=
φ if and only if the initial state in Afin si labeled with pφ. ⊓⊔

The complexity of the algorithm is nonelementary, as each knowledge subfor-
mula involves a subset construction. It then follows that the complexity of model-
checking CTL with knowledge is similar to the complexity of model-checking LTL
with knowledge on a synchronous & perfect recall semantics – which, as shown
by [vdMS99], is nonelementary. Note that this is in contrast with the classic
case, in which model-checking CTL is easier than model-checking LTL [CES86].

5 Conclusions

We have shown that satisfiability is undecidable for CTL extended with knowl-
edge operators, in a synchronous and perfect recall semantics. Our result holds
in the absence of common knowledge operators, unlike some other well-known
undecidability results on temporal epistemic logics.

We have also given a direct decision procedure for the model-checking prob-
lem for CTLKprs, which extends the classical algorithm from [CES86]. The
algorithm is based on a subset construction which associates with each state q
the set of states within the model that give the same observed history for some
agent as all runs that reach q.

The undecidability result was obtained while trying to give an automata-
based procedure for model-checking CTL. The author tried to build a class of
automata for which the “star-free” subclass would be equivalent with formulas
in CTLKprs. Unfortunately it appeared that no such automata had a decidable
emptiness problem. The exact class of automata that would be equivalent with
some extension of CTLKprs with “counting” capabilities is still to be identified.

Both our results rely on the synchrony and perfect recall assumptions. It
would be interesting to investigate whether any of these can be relaxed, and also
whether they can be translated in a non-learning semantics.

The author acknowledges the many discussions with Dimitar Guelev on tem-
poral logics with knowledge, during his visit at the LACL in October-November
2007.

References

[CES86] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans-
actions of Programming Languages and Systems, 8(2):244–263, 1986.

[DW99] M. Dickhöfer and Th. Wilke. Timed alternating tree automata: The
automata-theoretic solution to the TCTL model checking problem. In Pro-
ceedings of ICALP’99, volume 1644 of LNCS, pages 281–290. Springer, 1999.

[EKM98] J. Elgaard, N. Klarlund, and A. Møller. Mona 1.x: New techniques for
ws1s and ws2s. In Proceedings of CAV’98, volume 1427 of Lecture Notes in
Computer Science, pages 516–520. Springer, 1998.

[ER66] C.C. Elgot and M.O. Rabin. Decidability and undecidability of extensions
of second (first) order theory of (generalized) successor. Journal of Symbolic
Logic, 31(2):169–181, 1966.

[FHV04] R. Fagin, J. Halpern, and M. Vardi. Reasoning about knowledge. The MIT
Press, 2004.

[HV86] J.Y. Halpern and M.Y. Vardi. The complexity of reason-
ing about knowledge and time: Extended abstract. In Pro-
ceedings of STOC’86, pages 304–315, 1986. Online version at
https://www.cs.rice.edu/~vardi/papers/stoc86r1.pdf.gz.

[HV89] J.Y. Halpern and M.Y. Vardi. The complexity of reasoning about knowledge
and time. I. Lower bounds. Journal of Computer System Sciences, 38(1):195–
237, 1989.

[KLN+06] M. Kacprzak, A. Lomuscio, A. Niewiadomski, W. Penczek, F. Raimondi,
and M. Szreter. Comparing BDD and SAT based techniques for model
checking Chaum’s Dining Cryptographers Protocol. Fundamenta Informat-
icae, 72(1-3):215–234, 2006.

[LM95] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, 1995.

[LR06] A. Lomuscio and F. Raimondi. The complexity of model checking concurrent
programs against CTLK specifications. In Proceedings of DALT’06, volume
4327 of Lecture Notes in Computer Science, pages 29–42. Springer, 2006.

[RL05] F. Raimondi and A. Lomuscio. Automatic verification of multi-agent systems
by model checking via ordered binary decision diagrams. Journal of Applied
Logic, 5(2):235–251, 2005.

[SG02] N.V. Shilov and N.O. Garanina. Model checking knowledge and fixpoints. In
Proceedings of FICS’02, pages 25–39, Extended version available as Preprint
98, Ershov Institute of Informatics, Novosibirsk, 2002.

[Tho92] W. Thomas. Infinite trees and automaton-definable relations over ω-words.
Theoretical Computer Science, 103(1):143–159, 1992.

[vBP06] J. van Benthem and E. Pacuit. The tree of knowledge in action: Towards
a common perspective. In Guido Governatori, Ian M. Hodkinson, and Yde
Venema, editors, Proceedings of AiML’06, pages 87–106. College Publica-
tions, 2006.

[vdM98] R. van der Meyden. Common knowledge and update in finite environments.
Information and Computation, 140(2):115–157, 1998.

[vdMS99] R. van der Meyden and N.V. Shilov. Model checking knowledge and
time in systems with perfect recall (extended abstract). In Proceedings of
FSTTCS’99, volume 1738 of LNCS, pages 432–445, 1999.

[vdMS04] Ron van der Meyden and Kaile Su. Symbolic model checking the knowledge
of the dining cryptographers. In Proceedings of the 17th IEEE Computer
Security Foundations Workshop, (CSFW-17 2004), pages 280–. IEEE Com-
puter Society, 2004.

