How Reversibility Can Solve Traditional Questions:
 The Example of Hereditary History-Preserving Bisimulation CONCUR 2020
 The 31st International Conference on Concurrency Theory

Clément Aubert ${ }^{1}$ Ioana Cristescu ${ }^{2}$

${ }^{1}$ Augusta University, School of Computer \& Cyber Sciences, GA, USA
\square
${ }^{2}$ Tarides, Paris
) Tarides
Vienna, Austria - ONLINE — September 1st, 2020

In a nutshell
This work offers the characterization of a relation
coming from
a denotationel model
in
a concurrent (reversible) calculus.

In a nutshell
This work offers the characterization of
Hereditary History-Preserving Bisimulation (HHPB)
coming from
a denotationel model
in
a concurrent (reversible) calculus.

In a nutshell
This work offers the characterization of
Hereditary History-Preserving Bisimulation (HHPB) coming from
Labelled Configuration Structures*
in
a concurrent (reversible) calculus.

* a.k.a. Stable configuration structures, completed stable families.

In a nutshell
This work offers the characterization of
Hereditary History-Preserving Bisimulation (HHPB) coming from
Labelled Configuration Structures*
in
Reversible Calculus of Communicating Systems (RCCS).

* a.k.a. Stable configuration structures, completed stable families.

In a nutshell
This work offers the characterization of Hereditary History-Preserving Bisimulation (HHPB) coming from
Labelled Configuration Structures*
in
Reversible Calculus of Communicating Systems (RCCS).

* a.k.a. Stable configuration structures, completed stable families. And we have learned a thing on two on reversibility doing so.

Concurrent calculus

Study of behaviour.

Concurrent calculus

Study of behaviour.

Good calculus Interesting way(s) of equating similar behaviors

Concurrent calculus

Study of behaviour.

Good calculus Interesting way(s) of equating similar behaviors
CCS Bissimulation
Weak Bissimulation

Concurrent calculus

Study of behaviour.

Good calculus Interesting way(s) of equating similar behaviors
CCS Bissimulation
Weak Bissimulation
RCCS / CCSK ?

Concurrent calculus

Study of behaviour.

Good calculus Interesting way(s) of equating similar behaviors
CCS Bissimulation
Weak Bissimulation
RCCS / CCSK ?

Good models Interesting way(s) of equating similar behaviors Conf. Structures Hereditary History-Preserving Bisimulation (HHPB)

Concurrent calculus

Study of behaviour.

Good calculus Interesting way(s) of equating similar behaviors

> | CCS | Bissimulation |
| :--- | :--- |
| | Weak Bissimulation |

RCCS Back-and-forth Bisimulation (B\&F)

Good models Interesting way(s) of equating similar behaviors Conf. Structures Hereditary History-Preserving Bisimulation (HHPB)

Concurrent calculus

Study of behaviour.

Good calculus Interesting way(s) of equating similar behaviors

> | CCS | Bissimulation |
| :--- | :--- |
| | Weak Bissimulation |

RCCS Back-and-forth Bisimulation (B\&F)

Good models Interesting way(s) of equating similar behaviors
Conf. Structures Hereditary History-Preserving Bisimulation (HHPB)
Our result
$H H P B=B \& F$

A labeled configuration structure $\mathcal{C}=(E, C, L, \ell)$ is
— events $E=\left\{e_{1}, e_{2}, \ldots\right\} \quad$ - labels $L=\{a, b, \tau, \ldots\}$

- configurations $C=\{x, y, \ldots\} \subseteq \wp(E) \quad$ - a labeling function $\ell: E \rightarrow L$
respecting Finiteness, Coincidence Freenes, Finite Completeness and Stability.

A labeled configuration structure $\mathcal{C}=(E, C, L, \ell)$ is
— events $E=\left\{e_{1}, e_{2}, \ldots\right\} \quad$ - labels $L=\{a, b, \tau, \ldots\}$

- configurations $C=\{x, y, \ldots\} \subseteq \wp(E) \quad$ - a labeling function $\ell: E \rightarrow L$
respecting Finiteness, Coincidence Freenes, Finite Completeness and Stability.

$$
\begin{array}{cr}
\left\{e_{1}, e_{2}\right\} \quad\left\{e_{1}, e_{3}\right\} & \\
\nwarrow \nearrow=e_{1} \mapsto a, \\
\nearrow & e_{2} \mapsto b, \\
\left\{e_{1}\right\} & e_{3} \mapsto b . \\
\uparrow &
\end{array}
$$

A labeled configuration structure $\mathcal{C}=(E, C, L, \ell)$ is
— events $E=\left\{e_{1}, e_{2}, \ldots\right\} \quad$ - labels $L=\{a, b, \tau, \ldots\}$

- configurations $C=\{x, y, \ldots\} \subseteq \wp(E) \quad$ - a labeling function $\ell: E \rightarrow L$
respecting Finiteness, Coincidence Freenes, Finite Completeness and Stability.
$\left\{a, b_{1}\right\} \quad\left\{a, b_{2}\right\}$

\uparrow

A labeled configuration structure $\mathcal{C}=(E, C, L, \ell)$ is

— events $E=\left\{e_{1}, e_{2}, \ldots\right\} \quad$ - labels $L=\{a, b, \tau, \ldots\}$

- configurations $C=\{x, y, \ldots\} \subseteq \wp(E) \quad$ - a labeling function $\ell: E \rightarrow L$
respecting Finiteness, Coincidence Freenes, Finite Completeness and Stability.

$$
\begin{array}{cc}
\left\{a, b_{1}\right\} & \left\{a, b_{2}\right\} \\
\widetilde{\nearrow} & \varnothing \xrightarrow{a}\{a\} \\
\{a\} & \{a\} \xrightarrow{b_{1}}\left\{a, b_{1}\right\} \\
\uparrow & \{a\} \xrightarrow{b_{2}}\left\{a, b_{2}\right\}
\end{array}
$$

A labeled configuration structure $\mathcal{C}=(E, C, L, \ell)$ is
— events $E=\left\{e_{1}, e_{2}, \ldots\right\} \quad$ - labels $L=\{a, b, \tau, \ldots\}$

- configurations $C=\{x, y, \ldots\} \subseteq \wp(E) \quad$ - a labeling function $\ell: E \rightarrow L$
respecting Finiteness, Coincidence Freenes, Finite Completeness and Stability.

$$
\begin{array}{cc}
\left\{a, b_{1}\right\} & \left\{a, b_{2}\right\} \\
\nwarrow & \\
\nearrow & \varnothing \underset{\sim}{a}\{a\} \\
\uparrow & \{a\} \underset{\sim}{\underset{\sim}{b_{1}}}\left\{a, b_{1}\right\} \\
\varnothing & \{a\} \underset{\underset{\sim}{*}}{b_{2}}\left\{a, b_{2}\right\}
\end{array}
$$

A labeled configuration structure $\mathcal{C}=(E, C, L, \ell)$ is
— events $E=\left\{e_{1}, e_{2}, \ldots\right\} \quad$ - labels $L=\{a, b, \tau, \ldots\}$

- configurations $C=\{x, y, \ldots\} \subseteq \wp(E) \quad$ - a labeling function $\ell: E \rightarrow L$
respecting Finiteness, Coincidence Freenes, Finite Completeness and Stability.

$$
\begin{gathered}
\left\{a, b_{1}\right\} \quad\left\{a, b_{2}\right\} \\
\nwarrow \nearrow \\
\{a\} \\
\uparrow \\
\varnothing \\
\llbracket a \cdot(b+b) \rrbracket
\end{gathered}
$$

A labeled configuration structure $\mathcal{C}=(E, C, L, \ell)$ is

— events $E=\left\{e_{1}, e_{2}, \ldots\right\} \quad$ - labels $L=\{a, b, \tau, \ldots\}$

- configurations $C=\{x, y, \ldots\} \subseteq \wp(E) \quad$ - a labeling function $\ell: E \rightarrow L$
respecting Finiteness, Coincidence Freenes, Finite Completeness and Stability.

A labeled configuration structure $\mathcal{C}=(E, C, L, \ell)$ is

— events $E=\left\{e_{1}, e_{2}, \ldots\right\} \quad$ - labels $L=\{a, b, \tau, \ldots\}$

- configurations $C=\{x, y, \ldots\} \subseteq \wp(E) \quad$ - a labeling function $\ell: E \rightarrow L$
respecting Finiteness, Coincidence Freenes, Finite Completeness and Stability.

A labeled configuration structure $\mathcal{C}=(E, C, L, \ell)$ is

— events $E=\left\{e_{1}, e_{2}, \ldots\right\} \quad$ - labels $L=\{a, b, \tau, \ldots\}$

- configurations $C=\{x, y, \ldots\} \subseteq \wp(E) \quad$ - a labeling function $\ell: E \rightarrow L$
respecting Finiteness, Coincidence Freenes, Finite Completeness and Stability.

$\left\{a, b_{1}\right\}$	$\left\{a, b_{2}\right\}$	$\left\{a_{1}, b_{1}\right\}$	$\left\{a_{2}, b_{2}\right\}$
$\nwarrow \nearrow \nearrow$	\uparrow	\uparrow	$\left\{a_{1}, a_{2}\right\}$
$\{a\}$	$\left\{a_{1}\right\}$	$\left\{a_{2}\right\}$	$\left\{a_{1}\right\}$
\uparrow	$\nwarrow \nearrow$	\nwarrow	
\varnothing	\varnothing	\varnothing	
$\llbracket a \cdot(b+b) \rrbracket$	$\llbracket(a . b)+(a . b) \rrbracket$	$\llbracket a \mid a \rrbracket$	
$a \leqslant b_{1}$	$a_{1} \leqslant b_{1}$		
$a \leqslant b_{2}$	$a_{2} \leqslant b_{2}$		

\mathcal{C}_{1} and \mathcal{C}_{2} are HHPB if
$\exists \mathcal{R} \subseteq C_{1} \times C_{2} \times\left(E_{1}-E_{2}\right)$ such that

\mathcal{C}_{1} and \mathcal{C}_{2} are HHPB if
$\exists \mathcal{R} \subseteq C_{1} \times C_{2} \times\left(E_{1}-E_{2}\right)$ such that $(\varnothing, \varnothing, \varnothing) \in \mathcal{R}$,

\mathcal{C}_{1} and \mathcal{C}_{2} are HHPB if
$\exists \mathcal{R} \subseteq C_{1} \times C_{2} \times\left(E_{1}-E_{2}\right)$ such that $(\varnothing, \varnothing, \varnothing) \in \mathcal{R}$, and if $\left(x_{1}, x_{2}, f\right) \in \mathcal{R}$, then f is a label- and order- preserving bijection between x_{1} and x_{2}

\mathcal{C}_{1} and \mathcal{C}_{2} are HHPB if

$\exists \mathcal{R} \subseteq C_{1} \times C_{2} \times\left(E_{1}-E_{2}\right)$ such that $(\varnothing, \varnothing, \varnothing) \in \mathcal{R}$, and if $\left(x_{1}, x_{2}, f\right) \in \mathcal{R}$, then f is a label- and order- preserving bijection between x_{1} and x_{2}

$$
\begin{aligned}
f \text { is I\&o-p } \Rightarrow & \ell_{1}\left(e_{1}\right)=\ell_{2}\left(f\left(e_{1}\right)\right) \\
& +e_{1} \leqslant e_{2} \Rightarrow f\left(e_{1}\right) \leqslant f\left(e_{2}\right)
\end{aligned} \text { for all } e_{1}, e_{2} \in x_{1}
$$

\mathcal{C}_{1} and \mathcal{C}_{2} are HHPB if

$\exists \mathcal{R} \subseteq C_{1} \times C_{2} \times\left(E_{1}-E_{2}\right)$ such that $(\varnothing, \varnothing, \varnothing) \in \mathcal{R}$, and if $\left(x_{1}, x_{2}, f\right) \in \mathcal{R}$, then f is a label- and order- preserving bijection between x_{1} and x_{2} such that:

$$
\forall y_{1}, x_{1} \xrightarrow{e_{1}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2},\left.g\right|_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R}
$$

\mathcal{C}_{1} and \mathcal{C}_{2} are HHPB if

$\exists \mathcal{R} \subseteq C_{1} \times C_{2} \times\left(E_{1}-E_{2}\right)$ such that $(\varnothing, \varnothing, \varnothing) \in \mathcal{R}$, and if $\left(x_{1}, x_{2}, f\right) \in \mathcal{R}$, then f is a label- and order- preserving bijection between x_{1} and x_{2} such that:

$$
\begin{aligned}
& \forall y_{1}, x_{1} \xrightarrow{e_{1}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2}, g \upharpoonright_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g \upharpoonright_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R}
\end{aligned}
$$

\mathcal{C}_{1} and \mathcal{C}_{2} are HHPB if

$\exists \mathcal{R} \subseteq C_{1} \times C_{2} \times\left(E_{1}-E_{2}\right)$ such that $(\varnothing, \varnothing, \varnothing) \in \mathcal{R}$, and if $\left(x_{1}, x_{2}, f\right) \in \mathcal{R}$, then f is a label- and order- preserving bijection between x_{1} and x_{2} such that:

$$
\begin{aligned}
& \forall y_{1}, x_{1} \xrightarrow{e_{1}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2},\left.g\right|_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1},\left.g\right|_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{1}, x_{1} \xrightarrow{e_{1}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2}, g=f \upharpoonright_{y_{1}},\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g=f \upharpoonright_{y_{1},},\left(y_{1}, y_{2}, g\right) \in \mathcal{R}
\end{aligned}
$$

Example of structures in HHPB

$$
\begin{aligned}
\mathcal{R}=\{ & (\varnothing, \varnothing, \varnothing), \\
& \left(\{a\},\left\{a_{1}\right\},\left\{a \mapsto a_{1}\right\}\right), \\
& \left(\left\{a, b_{1}\right\},\left\{a_{1}, b_{1}\right\},\left\{a \mapsto a_{1}, b_{1} \mapsto b_{1}\right\}\right),
\end{aligned}
$$

Example of structures in HHPB

Example of structures in HHPB

Example of structures in HHPB

Why do we care about HHPB?

Acta Informatica 37, 229-327 (2001)

Refinement of actions and equivalence notions
for concurrent systems
Rob van Glabbeek ${ }^{1}$, Ursula Goltz ${ }^{2}$
conflict [Winskel] upgraded with a termination predicate. We argue that history preserving and hereditary history preserving equivalence both preserve causality, branching, and their interplay, and both abstract from choices between identical alternatives; however, the latter may be the finest reasonable equivalence with these properties - it thoroughly respects the internal structure of related systems - whereas the former may be the coarsest equivalence of this kind, still making nontrivial identifications.

Why do we care about HHPB?

Bisimulation from Open Maps
André Joyal
ANDRÉ JovAL
AND
Mogens Nielsen and Glynn Winskel
Compurer Science Dchartinemb, Aorhus Uniecrsity. Soxo Aarhus C. Demnerk

An abstract definition of bisimulation is presented. It makes possible a uniform definition of bisimulation across a range of different models for parallel computation presented as categories. As examples, transition systems, synchronisation trees, transition systems with independence (an abstraction from Petri nets), and labelled event structures are considered. On transition systems the abstract definition readily specialises to Milner's strong bisimulation. On event structures it explains and leads to a strengthening of the history-preserving bisimulation of Rabinovitch and Traktenbrot and van Glabeek and

Why do we care about HHPB?

Reversibility and Models for Concurrency

```
    Iain Phillips\mp@subsup{}{}{1}
```



```
    Irek Ulidowski }\mp@subsup{}{}{2
Ma,
```

tion law: $(a \mid(b+c))+(a \mid b)+((a+c) \mid b)=(a \mid(b+c))+((a+c) \mid b)$. We show that FR bisimulation coincides with hereditary history-preserving (HHP) bisimulation, which is regarded as the canonical true concurrency equivalence $[1,5,7,3]$. The result holds for reversible transition systems with no auto-concurrency and with no auto-causation, and since CCSK gives rise to such transition systems the result holds for CCSK.

Why do we care about HHPB?

Reversibility and Models for Concurrency
Iain Phillips ${ }^{1}$

Irek Ulidowski?

How Reversibility Can Solve Traditional Questions: The Example of HHPB

Why do we care about HHPB?

Reversibility and Models for Concurrency

```
    Iain Phillips}\mp@subsup{}{}{1
```



```
    Irek Ulidowski}\mp@subsup{}{}{2
Ma,
```

tion law: $(a \mid(b+c))+(a \mid b)+((a+c) \mid b)=(a \mid(b+c))+((a+c) \mid b)$. We show that FR bisimulation coincides with hereditary history-preserving (HHP) bisimulation, which is regarded as the canonical true concurrency equivalence $[1,5,7,3]$. The result holds for reversible transition systems with no auto-concurrency and with no auto-causation, and since CCSK gives rise to such transition systems the result holds for CCSK.

Why do we care about HHPB?

ELSEVIER

Journal of Logical and Algebraic Methods in Programming

Contextual equivalences in configuration structures and reversibility

Clément Aubert ${ }^{\text {a,b,+, }, ~}$, Ioana Cristescu ${ }^{c^{c_{+}+*}}$

- prga frane

4. Conclusions and future work

We showed that, for a restricted class of RCCS processes (coherent, without recursion, auto-concurrency nor auto-conflict (Definition 26)) hereditary history preserving bisimilarity has a contextual characterization in CCS. We used the barbed congruence defined on RCCS as the congruence of reference, adapted it to configuration structures and then showed a

R_{1} and R_{2} in R are "simple" back-and-forth (SB\&F) if
$\exists \mathcal{R} \subseteq \mathrm{R} \times \mathrm{R}$ such that
(Erroneous) Conjecture
R_{1} and R_{2} are SB\&F iff $\llbracket R_{1} \rrbracket$ and $\llbracket R_{2} \rrbracket$ are HHPB.

R_{1} and R_{2} in R are "simple" back-and-forth (SB\&F) if

$\exists \mathcal{R} \subseteq \mathrm{R} \times \mathrm{R}$ such that $\left(R_{1}, R_{2}\right) \in \mathcal{R}$,
(Erroneous) Conjecture
R_{1} and R_{2} are SB\&F iff $\llbracket R_{1} \rrbracket$ and $\llbracket R_{2} \rrbracket$ are HHPB .

R_{1} and R_{2} in R are "simple" back-and-forth (SB\&F) if

$\exists \mathcal{R} \subseteq \mathrm{R} \times \mathrm{R}$ such that (R_{1}, R_{2}) $\in \mathcal{R}$, and if R_{i}^{\prime} is (forward or backward) reachable from $R_{i}, i \in\{1,2\}$, and $\left(R_{1}^{\prime}, R_{2}^{\prime}\right) \in \mathcal{R}$, then
(Erroneous) Conjecture
R_{1} and R_{2} are SB\&F iff $\llbracket R_{1} \rrbracket$ and $\llbracket R_{2} \rrbracket$ are HHPB .

R_{1} and R_{2} in R are "simple" back-and-forth (SB\&F) if

$\exists \mathcal{R} \subseteq \mathrm{R} \times \mathrm{R}$ such that (R_{1}, R_{2}) $\in \mathcal{R}$, and if R_{i}^{\prime} is (forward or backward) reachable from $R_{i}, i \in\{1,2\}$, and $\left(R_{1}^{\prime}, R_{2}^{\prime}\right) \in \mathcal{R}$, then

$$
\begin{aligned}
& \forall R_{1}^{\prime} \xrightarrow{a} R_{1}^{\prime \prime} \Rightarrow \exists R_{2}^{\prime \prime}, R_{2}^{\prime} \xrightarrow{a} R_{2}^{\prime \prime} \\
& \forall R_{2}^{\prime} \xrightarrow{a} R_{2}^{\prime \prime} \Rightarrow \exists R_{1}^{\prime \prime}, R_{1}^{\prime} \xrightarrow{a} R_{1}^{\prime \prime}
\end{aligned}
$$

(Erroneous) Conjecture
R_{1} and R_{2} are SB\&F iff $\llbracket R_{1} \rrbracket$ and $\llbracket R_{2} \rrbracket$ are HHPB .

R_{1} and R_{2} in R are "simple" back-and-forth (SB\&F) if

$\exists \mathcal{R} \subseteq \mathrm{R} \times \mathrm{R}$ such that $\left(R_{1}, R_{2}\right) \in \mathcal{R}$, and if R_{i}^{\prime} is (forward or backward) reachable from $R_{i}, i \in\{1,2\}$, and $\left(R_{1}^{\prime}, R_{2}^{\prime}\right) \in \mathcal{R}$, then

$$
\begin{aligned}
& \forall R_{1}^{\prime} \xrightarrow{a} R_{1}^{\prime \prime} \Rightarrow \exists R_{2}^{\prime \prime}, R_{2}^{\prime} \xrightarrow{a} R_{2}^{\prime \prime} \\
& \forall R_{2}^{\prime} \xrightarrow{a} R_{2}^{\prime \prime} \Rightarrow \exists R_{1}^{\prime \prime}, R_{1}^{\prime} \xrightarrow[\rightarrow]{a} R_{1}^{\prime \prime} \\
& \forall R_{1}^{\prime} \stackrel{a}{\rightarrow} R_{1}^{\prime \prime} \Rightarrow \exists R_{2}^{\prime \prime}, R_{2}^{\prime} \stackrel{a}{\rightarrow} R_{2}^{\prime \prime} \\
& \forall R_{2}^{\prime} \stackrel{a}{\rightarrow} R_{2}^{\prime \prime} \Rightarrow \exists R_{1}^{\prime \prime}, R_{1}^{\prime} \stackrel{a}{\rightarrow} R_{1}^{\prime \prime}
\end{aligned}
$$

(Erroneous) Conjecture
R_{1} and R_{2} are SB\&F iff $\llbracket R_{1} \rrbracket$ and $\llbracket R_{2} \rrbracket$ are HHPB .

The terms a. a and $a \mid a$ are SB\&F

$$
\begin{aligned}
a \cdot a \xrightarrow{a} a & \xrightarrow{a} 0 \\
a \mid a \xrightarrow{a} a & \xrightarrow{a} 0
\end{aligned}
$$

The terms a. a and $a \mid a$ are SB\&F

$$
\begin{aligned}
a \cdot a \xrightarrow{a} a & \xrightarrow{a} 0 \\
a \mid a \xrightarrow{a} a & \xrightarrow{a} 0
\end{aligned}
$$

The configurations $\llbracket a . a \rrbracket$ and $\llbracket a \mid a \rrbracket$ are not HHPB

The terms a. a and $a \mid a$ are SB\&F

$$
\begin{aligned}
a \cdot a \xrightarrow{a} a & \xrightarrow{a} 0 \\
a \mid a \xrightarrow{a} a & \xrightarrow{a} 0
\end{aligned}
$$

The configurations $\llbracket a . a \rrbracket$ and $\llbracket a \mid a \rrbracket$ are not HHPB

The terms a. a and $a \mid a$ are SB\&F

$$
\begin{aligned}
a . a \xrightarrow{a} a & \xrightarrow{a} 0 \\
a \mid a \xrightarrow{a} a & \xrightarrow{a} 0
\end{aligned}
$$

The configurations $\llbracket a . a \rrbracket$ and $\llbracket a \mid a \rrbracket$ are not HHPB

The terms a. a and $a \mid a$ are SB\&F

$$
\begin{aligned}
a \cdot a \xrightarrow{a} a & \xrightarrow{a} 0 \\
a \mid a \xrightarrow{a} a & \xrightarrow{a} 0
\end{aligned}
$$

The configurations $\llbracket a . a \rrbracket$ and $\llbracket a \mid a \rrbracket$ are not HHPB

The terms a. a and $a \mid a$ are SB\&F

$$
\begin{aligned}
a \cdot a \xrightarrow{a} a & \xrightarrow{a} 0 \\
a \mid a \xrightarrow{a} a & \xrightarrow{a} 0
\end{aligned}
$$

The configurations $\llbracket a . a \rrbracket$ and $\llbracket a \mid a \rrbracket$ are not HHPB

$$
\begin{aligned}
\mathcal{R}=\{ & (\varnothing, \varnothing, \varnothing),\left(\left\{a_{1}\right\},\left\{a_{1}\right\},\left\{a_{1} \mapsto a_{1}\right\}\right), \\
& \left(\left\{a_{1}, a_{2}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{1} \mapsto a_{1}, a_{2} \mapsto a_{2}\right\}\right),
\end{aligned}
$$

The terms a. a and $a \mid a$ are SB\&F

$$
\begin{aligned}
a . a \xrightarrow{a} a & \xrightarrow{a} 0 \\
a \mid a \xrightarrow{a} a & \xrightarrow{a} 0
\end{aligned}
$$

The configurations $\llbracket a . a \rrbracket$ and $\llbracket a \mid a \rrbracket$ are not HHPB

The terms a. a and $a \mid a$ are SB\&F

$$
\begin{aligned}
a . a \xrightarrow{a} a & \xrightarrow{a} 0 \\
a \mid a \xrightarrow{a} a & \xrightarrow{a} 0
\end{aligned}
$$

The configurations $\llbracket a . a \rrbracket$ and $\llbracket a \mid a \rrbracket$ are not HHPB

What we know so far

- The "right" equivalence for reversible calculi is not "just" back-and-forth + labels,

What we know so far

- The "right" equivalence for reversible calculi is not "just" back-and-forth + labels,
- Two transitions with the same label cannot be distinguished (auto-concurrency),

What we know so far

- The "right" equivalence for reversible calculi is not "just" back-and-forth + labels,
- Two transitions with the same label cannot be distinguished (auto-concurrency),
\Rightarrow Use RCCS' identifiers!

What we know so far

- The "right" equivalence for reversible calculi is not "just" back-and-forth + labels,
- Two transitions with the same label cannot be distinguished (auto-concurrency),
\Rightarrow Use RCCS' identifiers!
$R \xrightarrow{i: a} \ldots \xrightarrow{i_{n}: a_{n}} O_{R}$

RCCS' identifiers

Reversible Communicating Systems

Vincent Danos ${ }^{1 \star}$ and Jean Krivine ${ }^{2}$

${ }^{1}$ Université Paris 7 \& CNRS
${ }^{2}$ INRIA Rocquencourt

Monitored Processes. In RCCS, simple processes are not runnable as such, only monitored processes are. This second kind of process is defined as follows:

Memories:	$m::=\langle \rangle$	Empty memory
	(1) $\cdot m$	Left-Fork
	(2) $\cdot m$	Right-Fork
	$(*, \alpha, P\rangle \cdot m$	Semi-Synch
	$\langle m, \alpha, P\rangle \cdot m$	Synch
Monitored Processes:	$R::=m \triangleright P$	Threads
	$\mid(R \mid R)$	Product
	(a) R	Restriction

RCCS' identifiers

Contextual equivalences in configuration structures and reversibility ,
Clément Aubert ${ }^{\text {P. .0.e. }}$, laana Cristescu ${ }^{\text {co }}$

Grammar. Consider the following process constructors, also called combinators or operators:

$$
\begin{aligned}
e & :=\langle i, \alpha, P\rangle \\
m & :=\varnothing\|Y . m\| \text { e.m } \\
P, Q & :=\lambda . P\|P \mid Q\| \lambda . P+\pi \cdot Q\|P \backslash a\| 0 \\
R, S & :=m \triangleright P\|R \mid S\| R \backslash a \\
\mathrm{~A}(\text { memory }) & \text { event } e=\langle i, \alpha, P\rangle \text { is made of: }
\end{aligned}
$$

- An event identifier $i \in I$ that tags transitions. We may think of them as pid, in the sense that they are a centrally distributed identifier attached to each transition.

RCCS' identifiers

Contextual equivalences in configuration structures and reversibility ,

$\mathrm{IN}+\overline{m a^{i a}(i, a, \mathrm{Q}) \mathrm{mDP}} i \notin \mathrm{l}(m)$ $m \triangleright a \cdot P+Q \xrightarrow{i a}\langle i, a, Q\rangle . m \triangleright P$

Out+ $\overline{m \triangleright \bar{a} . P+Q \xrightarrow{i: \bar{a}}\langle i, \bar{a}, Q\rangle . m \triangleright P}$

In-
$\overline{\langle i, a, Q\rangle . m \triangleright P \stackrel{i: a}{\sim} m \triangleright a . P+Q}$
Out-
$\overline{\langle i, \bar{a}, Q\rangle . m \triangleright P \stackrel{i . \bar{a}}{\rightarrow} m \triangleright \bar{a} . P+Q} i \notin I(m)$
(a) Prefix and sum rules

$$
\begin{array}{cc}
\text { Com }+\frac{R \xrightarrow{i: \alpha} R^{\prime} S \xrightarrow{i: \alpha} S^{\prime}}{R\left|S \xrightarrow{i: \tau} R^{\prime}\right| S^{\prime}} & \text { PARL } \frac{R \xrightarrow{i: \alpha} R^{\prime}}{R\left|S \xrightarrow{i: \alpha} R^{\prime}\right| S} i \notin \mathrm{l}(S) \\
\text { Com- } \frac{R \xrightarrow{i: \alpha} R^{\prime} S \xrightarrow{i: \bar{\alpha}} S^{\prime}}{R\left|S \xrightarrow{i: \tau} R^{\prime}\right| S^{\prime}} & \text { PARR } \frac{R \xrightarrow{i: \alpha} R^{\prime}}{S|R \xrightarrow{i: \alpha} S| R^{\prime}} i \notin \mathrm{l}(S)
\end{array}
$$

(b) Parallel constructions

\mathcal{C}_{1} and \mathcal{C}_{2} are HHPB if

$\exists \mathcal{R} \subseteq C_{1} \times C_{2} \times\left(E_{1}-E_{2}\right)$ such that $(\varnothing, \varnothing, \varnothing) \in \mathcal{R}$, and if $\left(x_{1}, x_{2}, f\right) \in \mathcal{R}$, then f is a label- and order- preserving bijection between x_{1} and x_{2} such that:

$$
\begin{aligned}
& \forall y_{1}, x_{1} \xrightarrow{e_{1}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2}, g \upharpoonright_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g \upharpoonright_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{1}, x_{1} \xrightarrow{\stackrel{e}{1}^{\rightarrow}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2}, g=f \upharpoonright_{y_{1}},\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g=f \upharpoonright_{y_{1}},\left(y_{1}, y_{2}, g\right) \in \mathcal{R}
\end{aligned}
$$

R_{1} and R_{2} are $\mathrm{B} \& \mathrm{~F}$ if

$\exists \mathcal{R} \subseteq C_{1} \times C_{2} \times\left(E_{1}-E_{2}\right)$ such that $(\varnothing, \varnothing, \varnothing) \in \mathcal{R}$, and if $\left(x_{1}, x_{2}, f\right) \in \mathcal{R}$, then f is a label- and order- preserving bijection between x_{1} and x_{2} such that:

$$
\begin{aligned}
& \forall y_{1}, x_{1} \xrightarrow{e_{1}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2}, g \upharpoonright_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g \upharpoonright_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{1}, x_{1} \xrightarrow{\stackrel{e}{1}^{\longrightarrow}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2}, g=f \upharpoonright_{y_{1}},\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g=f \upharpoonright_{y_{1}},\left(y_{1}, y_{2}, g\right) \in \mathcal{R}
\end{aligned}
$$

R_{1} and R_{2} are $\mathrm{B} \& \mathrm{~F}$ if

$\exists \mathcal{R} \subseteq R \times R \times I-I$ such that $\left(\varnothing \triangleright O_{R_{1}}, \varnothing \triangleright O_{R_{2}}, \varnothing\right) \in \mathcal{R}$, and if $\left(x_{1}, x_{2}, f\right) \in \mathcal{R}$, then f is a label- and order- preserving bijection between x_{1} and x_{2} such that:

$$
\begin{aligned}
& \forall y_{1}, x_{1} \xrightarrow{e_{1}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2}, g \upharpoonright_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g \upharpoonright_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{1}, x_{1} \xrightarrow{\stackrel{e}{1}^{\longrightarrow}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2}, g=f \upharpoonright_{y_{1}},\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g=f \upharpoonright_{y_{1}},\left(y_{1}, y_{2}, g\right) \in \mathcal{R}
\end{aligned}
$$

R_{1} and R_{2} are $\mathrm{B} \& \mathrm{~F}$ if

$\exists \mathcal{R} \subseteq R \times R \times I \rightarrow I$ such that $\left(\varnothing \triangleright O_{R_{1}}, \varnothing \triangleright O_{R_{2}}, \varnothing\right) \in \mathcal{R}$, and if $\left(R_{1}, R_{2}, f\right) \in \mathcal{R}$, then f is a label- and order-preserving bijection between $I\left(R_{1}\right)$ and $I\left(R_{2}\right)$ such that:

$$
\begin{aligned}
& \forall y_{1}, x_{1} \xrightarrow{e_{1}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2},\left.g\right|_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g \upharpoonright_{x_{1}}=f,\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{1}, x_{1} \xrightarrow{e_{1}} y_{1} \Rightarrow \exists y_{2}, g, x_{2} \xrightarrow{e_{2}} y_{2}, g=f \upharpoonright_{y_{1}},\left(y_{1}, y_{2}, g\right) \in \mathcal{R} \\
& \forall y_{2}, x_{2} \xrightarrow{e_{2}} y_{2} \Rightarrow \exists y_{1}, g, x_{1} \xrightarrow{e_{1}} y_{1}, g=f \upharpoonright_{y_{1}},\left(y_{1}, y_{2}, g\right) \in \mathcal{R}
\end{aligned}
$$

R_{1} and R_{2} are $\mathrm{B} \& \mathrm{~F}$ if

$\exists \mathcal{R} \subseteq R \times R \times I \rightarrow /$ such that $\left(\varnothing \triangleright O_{R_{1}}, \varnothing \triangleright O_{R_{2}}, \varnothing\right) \in \mathcal{R}$, and if $\left(R_{1}, R_{2}, f\right) \in \mathcal{R}$, then f is a label- and order-preserving bijection between $I\left(R_{1}\right)$ and $I\left(R_{2}\right)$ such that:

$$
\begin{aligned}
& \forall R_{1}^{\prime}, R_{1} \xrightarrow{e_{1}} R_{1}^{\prime} \Rightarrow \exists R_{2}^{\prime}, g, R_{2} \xrightarrow{e_{2}} R_{2}^{\prime}, g \upharpoonright_{R_{1}}=f,\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R} \\
& \forall R_{2}^{\prime}, R_{2} \xrightarrow{e_{2}} R_{2}^{\prime} \Rightarrow \exists R_{1}^{\prime}, g, R_{1} \xrightarrow{e_{1}} R_{1}^{\prime}, g \upharpoonright_{R_{1}}=f,\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R} \\
& \forall R_{1}^{\prime}, R_{1} \xrightarrow{e_{1}} R_{1}^{\prime} \Rightarrow \exists R_{2}^{\prime}, g, R_{2} \xrightarrow{e_{2}} R_{2}^{\prime}, g=f \upharpoonright_{R_{1}^{\prime}},\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R} \\
& \forall R_{2}^{\prime}, R_{2} \xrightarrow{e_{2}} R_{2}^{\prime} \Rightarrow \exists R_{1}^{\prime}, g, R_{1} \xrightarrow{e_{1}} R_{1}^{\prime}, g=f \upharpoonright_{R_{1}^{\prime}},\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R}
\end{aligned}
$$

R_{1} and R_{2} are $\mathrm{B} \& \mathrm{~F}$ if

$\exists \mathcal{R} \subseteq R \times R \times I \rightharpoonup I$ such that $\left(\varnothing \triangleright O_{R_{1}}, \varnothing \triangleright O_{R_{2}}, \varnothing\right) \in \mathcal{R}$, and if $\left(R_{1}, R_{2}, f\right) \in \mathcal{R}$, then f is a label- and order-preserving bijection between $I\left(R_{1}\right)$ and $I\left(R_{2}\right)$ such that:

$$
\begin{aligned}
& \forall R_{1}^{\prime}, R_{1} \xrightarrow{i_{1}: a} R_{1}^{\prime} \Rightarrow \exists R_{2}^{\prime}, g, R_{2} \xrightarrow{i_{2}: a} R_{2}^{\prime}, g \upharpoonright_{R_{1}}=f,\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R} \\
& \forall R_{2}^{\prime}, R_{2} \xrightarrow{i_{2}: a} R_{2}^{\prime} \Rightarrow \exists R_{1}^{\prime}, g, R_{1} \xrightarrow{i_{1}: a} R_{1}^{\prime}, g \upharpoonright_{R_{1}}=f,\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R} \\
& \forall R_{1}^{\prime}, R_{1} \stackrel{\stackrel{i}{1}: a}{\longrightarrow} R_{1}^{\prime} \Rightarrow \exists R_{2}^{\prime}, g, R_{2} \xrightarrow{i_{2}: a} R_{2}^{\prime}, g=f \upharpoonright_{R_{1}^{\prime}},\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R} \\
& \forall R_{2}^{\prime}, R_{2} \stackrel{i_{2}: a}{m} R_{2}^{\prime} \Rightarrow \exists R_{1}^{\prime}, g, R_{1} \xrightarrow{i_{1}: a} R_{1}^{\prime}, g=f \upharpoonright_{R_{1}^{\prime}},\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right)-\infty
\end{aligned}
$$

R_{1} and R_{2} are $\mathrm{B} \& \mathrm{~F}$ if

$\exists \mathcal{R} \subseteq R \times R \times I \rightharpoonup I$ such that $\left(\varnothing \triangleright O_{R_{1}}, \varnothing \triangleright O_{R_{2}}, \varnothing\right) \in \mathcal{R}$, and if $\left(R_{1}, R_{2}, f\right) \in \mathcal{R}$, then f is a label- and order-preserving bijection between $I\left(R_{1}\right)$ and $I\left(R_{2}\right)$ such that:

$$
\begin{aligned}
& \forall R_{1}^{\prime}, R_{1} \xrightarrow{i_{1}: a} R_{1}^{\prime} \Rightarrow \exists R_{2}^{\prime}, g, R_{2} \xrightarrow{i_{2}: a} R_{2}^{\prime}, g \upharpoonright_{R_{1}}=f,\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R} \\
& \forall R_{2}^{\prime}, R_{2} \xrightarrow{i_{2}: a} R_{2}^{\prime} \Rightarrow \exists R_{1}^{\prime}, g, R_{1} \xrightarrow{i_{1}: a} R_{1}^{\prime}, g \upharpoonright_{R_{1}}=f,\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R} \\
& \forall R_{1}^{\prime}, R_{1} \stackrel{i_{1}: a}{m} R_{1}^{\prime} \Rightarrow \exists R_{2}^{\prime}, g, R_{2} \xrightarrow{i_{2}: a} R_{2}^{\prime}, g=f \upharpoonright_{R_{1}^{\prime}},\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right) \in \mathcal{R} \\
& \forall R_{2}^{\prime}, R_{2} \stackrel{i_{2}: a}{\stackrel{i}{l}} R_{2}^{\prime} \Rightarrow \exists R_{1}^{\prime}, g, R_{1} \xrightarrow{i_{1}: a} R_{1}^{\prime}, g=f \upharpoonright_{R_{1}^{\prime}},\left(R_{1}^{\prime}, R_{2}^{\prime}, g\right)-\infty
\end{aligned}
$$

- f preserves labels "for free",
- f will always have to (un-)match i_{1} and i_{2},
- identifiers will induce an order on the transitions.

Main result
R_{1} and R_{2} are B\&F iff $\llbracket O_{R_{1}} \rrbracket$ and $\llbracket O_{R_{2}} \rrbracket$ are HHPB.

Main result
P_{1} and P_{2} are B\&F iff $\llbracket P_{1} \rrbracket$ and $\llbracket P_{2} \rrbracket$ are HHPB.

Main result
P_{1} and P_{2} are B\&F iff $\llbracket P_{1} \rrbracket$ and $\llbracket P_{2} \rrbracket$ are HHPB.
By-product
On processes without auto-concurrency, B\&F = SB\&F.

Main result

P_{1} and P_{2} are B\&F iff $\llbracket P_{1} \rrbracket$ and $\llbracket P_{2} \rrbracket$ are HHPB.

By-product

On processes without auto-concurrency, B\&F = SB\&F.

Techniques

- Encoding of memory,
- Categorical representation,
- Operational correspondence with new model,
- Trace equivalences,
- Connection to previous semantics of reversible calculi.

Main result

P_{1} and P_{2} are B\&F iff $\llbracket P_{1} \rrbracket$ and $\llbracket P_{2} \rrbracket$ are HHPB.

By-product

On processes without auto-concurrency, B\&F = SB\&F.

Techniques

- Encoding of memory,
- Categorical representation,
- Operational correspondence with new model,
- Trace equivalences,
- Connection to previous semantics of reversible calculi.

Example of memory encoding and its correspondence

$P=$
a
a

Example of memory encoding and its correspondence

Example of memory encoding and its correspondence

$$
\begin{aligned}
& \varnothing \triangleright P \equiv V . \varnothing \triangleright a \mid V . \varnothing \triangleright a \\
& \rightarrow{ }^{1: a}\langle 1, a\rangle, \vee . \varnothing \triangleright 0 \mid \vee \cdot \varnothing \triangleright a
\end{aligned}
$$

In a nutshell (again!)

We solved
an open problem
using
reversibility
and offering
a new model.

In a nutshell (again!)
We solved
the question of the capturing HHPB in syntactical terms using
reversibility
and offering
a new model.

In a nutshell (again!)
We solved
the question of the capturing HHPB in syntactical terms using
back-and-forth transitions and the memory mechanism and offering
a new model.

In a nutshell (again!)
We solved
the question of the capturing HHPB in syntactical terms using
back-and-forth transitions and the memory mechanism and offering
identified configuration structures.

In a nutshell (again!)
We solved
the question of the capturing HHPB in syntactical terms using
back-and-forth transitions and the memory mechanism and offering
identified configuration structures.

Thanks!

We'll be in the chat to answer your questions!

