What is the right structural congruence for the (Reversible) Calculus of Communicating Systems?

11th International School on Rewriting

Clément Aubert¹ Ioana-Domnina Cristescu²

¹Augusta University – School of Computer & Cyber Sciences

²INRIA - TAMIS team

Paris, 1-6 July 2019

Goal

Specifying Reversible Concurrent Computation

- What?
 - Concurrent (multiprocessing, parallel, distributed, etc.) computation that can backtrack. Memory needs to be "enough", "not too big", **and** distributed.
- Why?
 - Combine all the benefits of reversible and concurrent computation!
 - But also all the difficulties . . .
 - Network of reversible computers!
- How?

Reversing process calculi, reversible event structures, etc.

Goal

Specifying Reversible Concurrent Computation

RCCS
adds
Reversibility
to the
Calculus of Communicating Systems

CCS System

Operators:

$$P, Q = \lambda . P \mid \sum_{i \in I} P_i \mid A \mid P \mid Q \mid P \setminus a \mid P[a \leftarrow b] \mid 0$$

2 Labeled Transition System:

$$\frac{P \xrightarrow{\alpha} P'}{P \mid Q \xrightarrow{\alpha} P' \mid Q}, \qquad \frac{Q \xrightarrow{\alpha} Q'}{P \mid Q \xrightarrow{\alpha} P \mid Q'},$$

$$\frac{P \xrightarrow{\lambda} P' \qquad Q \xrightarrow{\overline{\lambda}} Q'}{P \mid Q \xrightarrow{\tau} P' \mid Q'}, \qquad \text{etc.}$$

3 Structural Equivalence:

$$P \mid 0 \equiv P$$
, $P \mid Q \equiv Q \mid P$, $P + Q \equiv Q + P$, etc.

RCCS System

Operators:

$$T \coloneqq m \rhd P$$
 (Reversible Thread)
 $R, S \coloneqq T \mid R \mid S \mid R \setminus a$ (RCCS Processes)

2 Labeled Transition System:

$$m \triangleright \lambda.P \xrightarrow{i:\lambda} \langle i, \lambda, 0 \rangle.m \triangleright P$$
, $\langle i, \lambda, 0 \rangle.m \triangleright P \xrightarrow{i:\lambda} m \triangleright \lambda.P$, etc.

3 Structural Equivalence:

$$m \triangleright (P \mid Q) \equiv (\vee .m \triangleright P) \mid (\vee .m \triangleright Q)$$

But hold on

- 1 Isn't that mixing the syntactical sugar and the system?
- 2 How come the congruence does not include e.g. $R \mid S \equiv S \mid R$?
- 3 How do we know it's the right ≡?

If $P \xrightarrow{\alpha} P'$ with the "pure" LTS and $P \equiv Q$ then $Q \xrightarrow{\alpha} Q'$ with the "sweetened" LTS and $P' \equiv Q'$.

Semantics

$$\forall P,Q,\, [\![P]\!] \cong [\![Q]\!] \iff P \equiv Q$$

Syntactics

Every term P has a "normal form".

If $P \xrightarrow{\alpha} P'$ with the "pure" LTS and $P \equiv Q$ then $Q \xrightarrow{\alpha} Q'$ with the "sweetened" LTS and $P' \equiv Q'$.

Semantics

$$\forall P,Q,\, [\![P]\!] \cong [\![Q]\!] \iff P \equiv Q$$

Syntactics

Every term P has a "normal form".

If $P \xrightarrow{\alpha} P'$ with the "pure" LTS and $P \equiv Q$ then $Q \xrightarrow{\alpha} Q'$ with the "sweetened" LTS and $P' \equiv Q'$.

Semantics

$$\forall P, Q, [\![P]\!] \cong [\![Q]\!] \iff P \equiv Q$$

No! Usually, $[\![P+0]\!] \cong [\![P]\!]$.

Syntactics

Every term P has a "normal form".

If $P \xrightarrow{\alpha} P'$ with the "pure" LTS and $P \equiv Q$ then $Q \xrightarrow{\alpha} Q'$ with the "sweetened" LTS and $P' \equiv Q'$.

Semantics

 $\forall P, Q, [\![P]\!] \cong [\![Q]\!] \iff P \equiv Q$ No! Usually, $[\![P + 0]\!] \cong [\![P]\!]$.

Syntactics

Every term P has a "normal form".

So what?