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Explicit Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems

Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph

Polynomial Time (Ptime): Circuit value problem

— Machine-dependent
— “External” clock and “external” measure on the tape
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classes. By implicit, we here mean that classes are not given by constraining
the amount of resources a machine is allowed to use, but rather by imposing
linguistic constraints on the way algorithms are formulated. This idea has de-
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classes. By implicit, we here mean that classes are not given by constraining
the amount of resources a machine is allowed to use, but rather by imposing
linguistic constraints on the way algorithms are formulated. This idea has de-

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/ASU/sm.html)

Implicit Computational Complexity (ICC)
— Machine-independent
— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.
— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)
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The rules for storage naturally induce polynomials:

e MFA g
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(Girard et al., 1992, p. 18)
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ICC, Automata & Logic Programs: Whatis ICC, really?

Machine-dependent Machine-independent
Turing machine, Bounded recursion on notation (Cobham, 1965),
Random access machine, Bounded linear logic (Girard et al., 1992),
Counter machine, ... Bounded arithmetic (Buss, 1986), ...
Automaton, Descriptive complexity (Fagin, 1973),

- . Recursion on notatinn (Bellantoni and Conk, 1992
Auxiliary pushdown machine. R ( .y ’ )
related to the foregoing question. More specifically, we have attempted to characterize

several tape and time complexity classes of Turing machines in terms of devices whose
definitions involve only ways in which their infinite memory may be manipulated and

no restrictions are imposed on the amount of memory that they use. The basic model

(Ibarra, 1971, p. 88)
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2NFA(k,p)

— Automata

— + Non-Deterministic

— + with p > 0 pushdown stacks
— + 2-ways

— + with kK > 1 heads.

Main characterizations
Automata Language / Predicate

2NFA(1,0) Regular

2NFA(1,1) Context-free

2NFA(*,0) Non-Deterministic Logarithmic space (NL)
2NFA(*,1) Polynomial time (Ptime)

2NFA(1,2) Computable

12
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ICC, Automata & Logic Programs:

Logic Programming
— A programming paradigm
— Computation = unification
— Turing-complete

Logic Programming

Example

xaq(c) Rp(w, w).2Aq(d)

/N AN
AN

Unifiable?
X

c+d
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Logic Programming
— A programming paradigm
— Computation = unification
— Turing-complete

Usedin...
— Prolog, Datalog
— Type-inference in Haske11l and ML

— Models of Linear Logic (Baillot and Pedicini, 2001; Girard,
2013)
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ICC, Automata & Logic Programs: Logic Programming

Flows
A flowis a pair of terms t — u with var(t) c var(u).

Balanced

A flow t — u is balanced if for any x € Vvar(t) uvar(u), all
occurrences of x in both t and u have the same height.

Unary

A flow is unary if it is built using only unary function symbols and
a variable.

4
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Ptime

2NFA(x,1) Soundness

Completeness

Balanced and Unary
Flows
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A New Correspondence: New Connexions

Complexity Llnear Logic

NS

Programming Language

Automati_/ Category Theory
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Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of inputs
— Knowledge transfers
— Encode other variations of automata

19
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Classroom Presentation lacl.fr/~caubert/ASU/cp.html
Reversibility is in embryonic stage:

— Interpreter for reversible automata

— Extending Janus’ datatypes and datastructures
— Reversible algorithms 101

— Software engineering on research code

— New programming languages

Benefits:

— Re-usable skills

— Small community = strong (international) impact
— So much to be done!

20
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Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— 7 + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

— ? + ? = Web design

Thanks!

> O =
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