Developing Disciplined Programs
Seminar at Appalachian State University

Clément Aubert

Appalachian

STATE UNIVERSITY

6th February 2017

Introduction: What is the problem with my program?

program

Introduction: What is the problem with my program?

program
+
data

Introduction: What is the problem with my program?

program
+
data

S
S
7%
(o)

answer

2

Introduction: What is the problem with my program?

program
+

data \

answer

2

Introduction: What is the problem with my program?

— operating system
— network
— hardware

program
+
data

user-side answer

2

Introduction: What is the problem with my program?

program
+

data \

answer

2

Introduction: What is the problem with my program?

programming language

program
+

data \

answer

2

Introduction: What is the problem with my program?

programming language

% — operating system
O"
% — network
— hardware
code

programmer-side program
+
data

answer

2

Introduction: What is the problem with my program?

programming language

program
+

data \

answer

2

Developing Disciplined Programs
Seminar at Appalachian State University

Clément Aubert

Appalachian

STATE UNIVERSITY

6th February 2017

Developing Disciplined Programing Languages
Seminar at Appalachian State University

Clément Aubert

Appalachian

STATE UNIVERSITY

6th February 2017

Introduction: Type Theory

Program 1

Program 2

—a Boolean (output) }—— Boolean (input)
——e Integer (output))>—— Integer (input)

Introduction: Type Theory

)—[Program 1]—1

Program 2

—a Boolean (output) }—— Boolean (input)
——e Integer (output))>—— Integer (input)

Introduction: Type Theory

Program 1

)—[Program 2]—1

—a Boolean (output) }—— Boolean (input)
—=e Integer (output) >—— Integer (input)

Introduction: Type Theory

+ Program 2 : Int - Bool + data : Int

+ Program 1 : Bool - Int + Program 2 (data) : Bool

+ Program1 (Program 2 (data)) : Int

Introduction: Type Theory

+ Program 2 : Int - Bool + data : Int

+ Program 1 : Bool - Int + Program 2 (data) : Bool

+ Program1 (Program 2 (data)) : Int

M

~Int - Bool +~ Int
+ Bool — Int ~ Bool
~ Int

Introduction: Type Theory

+ Program 2 : Int - Bool + data : Int

+ Program 1 : Bool - Int + Program 2 (data) : Bool

+ Program1 (Program 2 (data)) : Int

M

~Int - Bool +~ Int
~ Bool — Int ~ Bool

+ Int
v

Fy Int - Bool +; Int

+x Bool - Int Fy+z+c BOOI

Fy+z+etx+c! Int

Introduction: Computational Complexity

Computational Complexity
— Sort problem by their difficulty

Introduction: Computational Complexity

Computational Complexity
— Sort problem by their difficulty
— Order of magnitude

Introduction: Computational Complexity

Computational Complexity
— Sort problem by their difficulty
— Order of magnitude
— Benchmark: Turing Machine

Introduction: Computational Complexity

Computational Complexity
— Sort problem by their difficulty
— Order of magnitude
— Benchmark: Turing Machine

Complete Problems

Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph

Polynomial Time (Ptime): Circuit value problem

Introduction: Computational Complexity

Explicit Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems

Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph

Polynomial Time (Ptime): Circuit value problem

— Machine-dependent
— “External” clock and “external” measure on the tape

Introduction: Implicit Computational Complexity

classes. By implicit, we here mean that classes are not given by constraining
the amount of resources a machine is allowed to use, but rather by imposing
linguistic constraints on the way algorithms are formulated. This idea has de-

_,/“’ e ot o P Ty
(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/ASU/sm.html)

https://www.lacl.fr/~caubert/ASU/sm.html

Introduction: Implicit Computational Complexity

classes. By implicit, we here mean that classes are not given by constraining
the amount of resources a machine is allowed to use, but rather by imposing
linguistic constraints on the way algorithms are formulated. This idea has de-

— e <_IJ A - / = / "
(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/ASU/sm.html)

Implicit Computational Complexity (ICC)
— Machine-independent
— Without explicit bounds

https://www.lacl.fr/~caubert/ASU/sm.html

Introduction: Implicit Computational Complexity

classes. By implicit, we here mean that classes are not given by constraining
the amount of resources a machine is allowed to use, but rather by imposing
linguistic constraints on the way algorithms are formulated. This idea has de-

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/ASU/sm.html)

Implicit Computational Complexity (ICC)
— Machine-independent
— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.
— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)

https://www.lacl.fr/~caubert/ASU/sm.html

@ Introduction
What is the problem with my program?
Type Theory
Computational Complexity
Implicit Computational Complexity

@ ICC, Automata & Logic Programs
® A New Correspondence

@ Perspectives

@ Introduction

@ ICC, Automata & Logic Programs
What is ICC, really?
Automata
Logic Programming

® A New Correspondence

O Perspectives

ICC, Automata & Logic Programs: Whatis ICC, really?

Machine-dependent

Turing machine,
Random access machine,
Counter machine, ...

11

ICC, Automata & Logic Programs: Whatis ICC, really?

Machine-dependent Machine-independent
Turing machine, Bounded recursion on notation (Cobham, 1965),
Random access machine, Bounded linear logic (Girard et al., 1992),
Counter machine, ... Bounded arithmetic (Buss, 1986), ...

11

ICC, Automata & Logic Programs: Whatis ICC, really?

Machine-dependent Machine-independent

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), ...

Turing machine,
Random access machine,
Counter machine, ...

The rules for storage naturally induce polynomials:

e MFA g

torage 1A cakening I, b A-B
1A 1LA-B I,A-B

Contraction m Dereliction r—,vm

(Girard et al., 1992, p. 18)

Explicit bounds

ICC, Automata & Logic Programs: Whatis ICC, really?

Machine-dependent Machine-independent

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), ...

Turing machine,
Random access machine,
Counter machine, ...

11

Explicit bounds

Implicit bounds

ICC, Automata & Logic Programs: Whatis ICC, really?

Machine-dependent Machine-independent
Turing machine, Bounded recursion on notation (Cobham, 1965),
Random access machine, Bounded linear logic (Girard et al., 1992),
Counter machine, ... Bounded arithmetic (Buss, 1986), ...

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), ...

11

Explicit bounds

Implicit bounds

ICC, Automata & Logic Programs: Whatis ICC, really?

Machine-dependent

Turing machine,
Random access machine,
Counter machine, ...

Automaton,
Auxiliary pushdown machine,.. .

Machine-independent

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), ...

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), ...

11

Explicit bounds

Younds

ICC, Automata & Logic Programs: Whatis ICC, really?

Machine-dependent Machine-independent
Turing machine, Bounded recursion on notation (Cobham, 1965),
Random access machine, Bounded linear logic (Girard et al., 1992),
Counter machine, ... Bounded arithmetic (Buss, 1986), ...
Automaton, Descriptive complexity (Fagin, 1973),

- . Recursion on notatinn (Bellantoni and Conk, 1992
Auxiliary pushdown machine. R (.y ’)
related to the foregoing question. More specifically, we have attempted to characterize

several tape and time complexity classes of Turing machines in terms of devices whose
definitions involve only ways in which their infinite memory may be manipulated and

no restrictions are imposed on the amount of memory that they use. The basic model

(Ibarra, 1971, p. 88)

11

2NFA(k,p)
— Automata

ICC, Automata & Logic Programs: Automata

12

ICC, Automata & Logic Programs: Automata

2NFA(k,p)
— Automata
— + Non-Deterministic

12

ICC, Automata & Logic Programs: Automata

2NFA(k,p)

— Automata

— + Non-Deterministic

— + with p > 0 pushdown stacks

12

ICC, Automata & Logic Programs: Automata

2NFA (k,p)

Automata

+ Non-Deterministic

+ with p > 0 pushdown stacks
+ 2-ways

12

ICC, Automata & Logic Programs: Automata

2NFA (k,p)

Automata

+ Non-Deterministic

+ with p > 0 pushdown stacks
+ 2-ways

+ with k > 1 heads.

12

ICC, Automata & Logic Programs: Automata

2NFA(k,p)

— Automata

— + Non-Deterministic

— + with p > 0 pushdown stacks
— + 2-ways

— + with kK > 1 heads.

Main characterizations
Automata Language / Predicate

2NFA(1,0) Regular

2NFA(1,1) Context-free

2NFA(*,0) Non-Deterministic Logarithmic space (NL)
2NFA(*,1) Polynomial time (Ptime)

2NFA(1,2) Computable

12

ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm
— Computation = unification
— Turing-complete

13

ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm
— Computation = unification
— Turing-complete

Example

X-A1(C) Ag(W, W)-A1 (Z)

/N AN
| / \ \

13

ICC, Automata & Logic Programs:

Logic Programming
— A programming paradigm
— Computation = unification
— Turing-complete

Logic Programming

Example

X-A1(C) Ag(W, W)-A1 (Z)

/N AN
| / \ \

Unifiable?

13

ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm
— Computation = unification
— Turing-complete

Example

X-A1(C) Ag(W, W)-A1 (Z)

/N AN
| / \ \

0=

Unifiable?

v

[x < Bo(W, W); Z <]

13

ICC, Automata & Logic Programs:

Logic Programming
— A programming paradigm
— Computation = unification
— Turing-complete

Logic Programming

Example

xaq(c) Rp(w, w).2Aq(d)

/N AN
AN

Unifiable?
X

c+d

13

ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm
— Computation = unification
— Turing-complete

Usedin...
— Prolog, Datalog
— Type-inference in Haske11l and ML

— Models of Linear Logic (Baillot and Pedicini, 2001; Girard,
2013)

13

ICC, Automata & Logic Programs: Logic Programming

Flows
A flowis a pair of terms t < u with var(t) c var(u). J

14

ICC, Automata & Logic Programs: Logic Programming

Flows
A flowis a pair of terms t — u with var(t) c var(u).

Balanced
A flow t — u is balanced if for any x € Vvar(t) uvar(u), all
occurrences of x in both t and u have the same height.

14

ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t — u with var(t) c var(u).

Balanced
A flow t — u is balanced if for any x € var(t) uvar(u), all
occurrences of x in both t and u have the same height.

Examples
SN = /\ X
/ \

y y

14

ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t — u with var(t) c var(u).

Balanced
A flow t — u is balanced if for any x € var(t) uvar(u), all
occurrences of x in both t and u have the same height.

Examples
SN = / \ X
/ \

y y

14

ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t — u with var(t) c var(u).

Balanced
A flow t — u is balanced if for any x € var(t) uvar(u), all
occurrences of x in both t and u have the same height.

Examples
N = A/'\A/

/N

X y

y

14

ICC, Automata & Logic Programs: Logic Programming

Flows
A flowis a pair of terms t — u with var(t) c var(u).

Balanced

A flow t — u is balanced if for any x € Vvar(t) uvar(u), all
occurrences of x in both t and u have the same height.

Unary

A flow is unary if it is built using only unary function symbols and
a variable.

4

14

@ Introduction
@ ICC, Automata & Logic Programs

@® A New Correspondence
New Results
New Connexions

@ Perspectives

2NFA(+,0)

A New Correspondence: New Results

NL

Balanced Flows

16

2NFA(+,0)

Completeness

A New Correspondence: New Results

NL

Balanced Flows

16

A New Correspondence: New Results

NL

Acyclicity

2NFA(*,0) in directed graph

Completeness

Balanced Flows

16

A New Correspondence: New Results

/ NL \
Acyclicity
2NFA(+,0) in directed graph

Completenes\‘ Soundness

Balanced Flows

16

A New Correspondence: New Results

Ptime

2NFA(*,1)

Balanced and Unary
Flows

17

A New Correspondence: New Results

Ptime

2NFA(*,1)

Completeness

Balanced and Unary
Flows

17

A New Correspondence: New Results

Ptime

2NFA(x,1) Soundness

Completeness

Balanced and Unary
Flows

17

A New Correspondence: New Connexions

Complexity Llnear Logic

NS

Programming Language

Automati_/ Category Theory

18

Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

19

Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of inputs

19

Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of inputs
— Knowledge transfers

19

Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of inputs
— Knowledge transfers
— Encode other variations of automata

19

Perspectives: Reversibility

Classroom Presentation lacl.fr/~caubert/ASU/cp.html

20

https://lacl.fr/~caubert/ASU/cp.html

Perspectives: Reversibility

Classroom Presentation lacl.fr/~caubert/ASU/cp.html
Reversibility is in embryonic stage:

— Interpreter for reversible automata

— Extending Janus’ datatypes and datastructures
— Reversible algorithms 101

— Software engineering on research code

— New programming languages

20

https://lacl.fr/~caubert/ASU/cp.html

Perspectives: Reversibility

Classroom Presentation lacl.fr/~caubert/ASU/cp.html
Reversibility is in embryonic stage:

— Interpreter for reversible automata

— Extending Janus’ datatypes and datastructures
— Reversible algorithms 101

— Software engineering on research code

— New programming languages

Benefits:

— Re-usable skills

— Small community = strong (international) impact
— So much to be done!

20

https://lacl.fr/~caubert/ASU/cp.html

Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/

Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/

Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— 7 + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/

Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— 7 + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

— ? + ? = Web design

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/

Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— 7 + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

— ? + ? = Web design

Thanks!

> O =

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/

Perspectives: References

Baillot, Patrick and Marco Pedicini (2001). “Elementary
Complexity and Geometry of Interaction”. In: Fund. Inform.
45.1-2, pp. 1-31.

Bellantoni, Stephen J. and Stephen Arthur Cook (1992). “A New
Recursion-Theoretic Characterization of the Polytime
Functions (Extended Abstract)”. In: STOC. Ed. by
S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis. ACM, pp. 283-93.

Buss, Samuel R. (1986). Bounded Arithmetic. \ol. 3. Studies in
Proof Theory. Lecture Notes. Bibliopolis.

Chakraborty, Pinaki, Prem Chandra Saxena, and
Chittaranjan Padmanabha Katti (2011). “Fifty years of
automata simulation: a review”. In: Inroads 2.4, pp. 59-70.

22

Perspectives: References

[1 Cobham, Alan (1965). “The intrinsic computational difficulty of
functions”. In: Logic, methodology and philosophy of science:
Proceedings of the 1964 international congress held at the
Hebrew university of Jerusalem, Israel, from August 26 to
September 2, 1964. Ed. by Yehoshua Bar-Hillel. Studies in
Logic and the foundations of mathematics. North-Holland
Publishing Company, pp. 24-30.

[1 DalLago, Ugo (2011). “A Short Introduction to Implicit
Computational Complexity”. In: ESSLLI. Ed. by
Nick Bezhanishvili and Valentin Goranko. Vol. 7388. LNCS.
Springer, pp. 89—109.

[Fagin, Ronald (1973). “Contributions to the Model Theory of
Finite Structures”. PhD thesis. University of California,
Berkeley.

23

Perspectives: References

Férée, Hugo, Emmanuel Hainry, Mathieu Hoyrup, and
Romain Péchoux (2015). “Characterizing polynomial time
complexity of stream programs using interpretations”. In:
Theoret. Comput. Sci. 585, pp. 41-54.
Gaboardi, Marco, Andreas Haeberlen, Justin Hsu,
Arjun Narayan, and Benjamin C. Pierce (2013). “Linear
dependent types for differential privacy”. In: POPL. Ed. by
Roberto Giacobazzi and Radhia Cousot. ACM, pp. 357-370.
Girard, Jean-Yves (2013). “Three lightings of logic”. In: CSL.
Ed. by Simona Ronchi Della Rocca. Vol. 23. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum far Informatik, pp. 11-23.
Girard, Jean-Yves, Andre Scedrov, and Philip J. Scott (1992).
“Bounded linear logic: a modular approach to polynomial-time
computability”. In: Theoret. Comput. Sci. 97.1, pp. 1-66.

24

Perspectives: References

[4 Ibarra, Oscar H. (1971). “Characterizations of Some Tape and
Time Complexity Classes of Turing Machines in Terms of
Multihead and Auxiliary Stack Automata”. In: J. Comput. Syst.
Sci. 5.2, pp. 88-117.

[4 Leivant, Daniel (1993). “Stratified Functional Programs and
Computational Complexity”. In: POPL. Ed. by
Mary S. Van Deusen and Bernard Lang. ACM Press,
pp. 325-333.

25

	Introduction
	ICC, Automata & Logic Programs
	A New Correspondence
	Perspectives

