
Developing Disciplined Programs
Seminar at Appalachian State University

Clément Aubert

6th February 2017



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Developing Disciplined Programs
Seminar at Appalachian State University

Clément Aubert

6th February 2017



Developing Disciplined Programing Languages
Seminar at Appalachian State University

Clément Aubert

6th February 2017



Introduction: Type Theory

Program 1

Program 2

Data

Boolean (output)
Integer (output)

Boolean (input)
Integer (input)

5



Introduction: Type Theory

Program 1

Program 2

Data

Boolean (output)
Integer (output)

Boolean (input)
Integer (input)

5



Introduction: Type Theory

Program 1

Program 2

Data

Boolean (output)
Integer (output)

Boolean (input)
Integer (input)

5



Introduction: Type Theory

⊢ Program 1 : Bool → Int

⊢ Program 2 : Int → Bool ⊢ data : Int

⊢ Program 2 (data) : Bool

⊢ Program1 (Program 2 (data)) : Int

«

⊢ Bool → Int
⊢ Int → Bool ⊢ Int

⊢ Bool
⊢ Int

«

⊢x Bool → Int

⊢y Int → Bool ⊢z Int

⊢y+z+c Bool

⊢y+z+c+x+c′ Int

6



Introduction: Type Theory

⊢ Program 1 : Bool → Int

⊢ Program 2 : Int → Bool ⊢ data : Int

⊢ Program 2 (data) : Bool

⊢ Program1 (Program 2 (data)) : Int

«

⊢ Bool → Int
⊢ Int → Bool ⊢ Int

⊢ Bool
⊢ Int

«

⊢x Bool → Int

⊢y Int → Bool ⊢z Int

⊢y+z+c Bool

⊢y+z+c+x+c′ Int

6



Introduction: Type Theory

⊢ Program 1 : Bool → Int

⊢ Program 2 : Int → Bool ⊢ data : Int

⊢ Program 2 (data) : Bool

⊢ Program1 (Program 2 (data)) : Int

«

⊢ Bool → Int
⊢ Int → Bool ⊢ Int

⊢ Bool
⊢ Int

«

⊢x Bool → Int

⊢y Int → Bool ⊢z Int

⊢y+z+c Bool

⊢y+z+c+x+c′ Int

6



Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Computational Complexity

Explicit Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Implicit Computational Complexity

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/ASU/sm.html)

Implicit Computational Complexity (ICC)
— Machine-independent

— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.

— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)

8

https://www.lacl.fr/~caubert/ASU/sm.html


Introduction: Implicit Computational Complexity

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/ASU/sm.html)

Implicit Computational Complexity (ICC)
— Machine-independent

— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.

— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)

8

https://www.lacl.fr/~caubert/ASU/sm.html


Introduction: Implicit Computational Complexity

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/ASU/sm.html)

Implicit Computational Complexity (ICC)
— Machine-independent

— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.

— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)

8

https://www.lacl.fr/~caubert/ASU/sm.html


F = f

1 Introduction
What is the problem with my program?
Type Theory
Computational Complexity
Implicit Computational Complexity

2 ICC, Automata & Logic Programs

3 A New Correspondence

4 Perspectives

F=f



F = f

1 Introduction

2 ICC, Automata & Logic Programs
What is ICC, really?
Automata
Logic Programming

3 A New Correspondence

4 Perspectives

F=f



ICC, Automata & Logic Programs: What is ICC, really?

Machine-dependent

Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



ICC, Automata & Logic Programs: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



ICC, Automata & Logic Programs: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



ICC, Automata & Logic Programs: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



ICC, Automata & Logic Programs: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



ICC, Automata & Logic Programs: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



ICC, Automata & Logic Programs: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



ICC, Automata & Logic Programs: Automata

2NFA(k,p)
— Automata

— + Non-Deterministic

— + with p ⩾ 0 pushdown stacks

— + 2-ways

— + with k ⩾ 1 heads.

Main characterizations
Automata Language / Predicate

2NFA(1,0) Regular
2NFA(1,1) Context-free
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(∗,1) Polynomial time (Ptime)
2NFA(1,2) Computable

12



ICC, Automata & Logic Programs: Automata

2NFA(k,p)
— Automata

— + Non-Deterministic

— + with p ⩾ 0 pushdown stacks

— + 2-ways

— + with k ⩾ 1 heads.

Main characterizations
Automata Language / Predicate

2NFA(1,0) Regular
2NFA(1,1) Context-free
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(∗,1) Polynomial time (Ptime)
2NFA(1,2) Computable

12



ICC, Automata & Logic Programs: Automata

2NFA(k,p)
— Automata

— + Non-Deterministic

— + with p ⩾ 0 pushdown stacks

— + 2-ways

— + with k ⩾ 1 heads.

Main characterizations
Automata Language / Predicate

2NFA(1,0) Regular
2NFA(1,1) Context-free
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(∗,1) Polynomial time (Ptime)
2NFA(1,2) Computable

12



ICC, Automata & Logic Programs: Automata

2NFA(k,p)
— Automata

— + Non-Deterministic

— + with p ⩾ 0 pushdown stacks

— + 2-ways

— + with k ⩾ 1 heads.

Main characterizations
Automata Language / Predicate

2NFA(1,0) Regular
2NFA(1,1) Context-free
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(∗,1) Polynomial time (Ptime)
2NFA(1,2) Computable

12



ICC, Automata & Logic Programs: Automata

2NFA(k,p)
— Automata

— + Non-Deterministic

— + with p ⩾ 0 pushdown stacks

— + 2-ways

— + with k ⩾ 1 heads.

Main characterizations
Automata Language / Predicate

2NFA(1,0) Regular
2NFA(1,1) Context-free
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(∗,1) Polynomial time (Ptime)
2NFA(1,2) Computable

12



ICC, Automata & Logic Programs: Automata

2NFA(k,p)
— Automata

— + Non-Deterministic

— + with p ⩾ 0 pushdown stacks

— + 2-ways

— + with k ⩾ 1 heads.

Main characterizations
Automata Language / Predicate

2NFA(1,0) Regular
2NFA(1,1) Context-free
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(∗,1) Polynomial time (Ptime)
2NFA(1,2) Computable

12



ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

13



ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Example

●

x A1

c

●

A2

w w

A1

z

x ●A1(c) A2(w ,w) ●A1(z)

13



ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Example

●

x A1

c

●

A2

w w

A1

z

x ●A1(c) A2(w ,w) ●A1(z) Unifiable?

13



ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Example

●

x A1

c

●

A2

w w

A1

z

x ●A1(c) A2(w ,w) ●A1(z) Unifiable?

✓

θ = [x ← A2(w ,w);z ← c]

13



ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Example

●

x A1

c

●

A2

w w

A1

d

x ●A1(c) A2(w ,w) ●A1(d) Unifiable?

×

c ≠ d

13



ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Used in . . .
— Prolog, Datalog

— Type-inference in Haskell and ML

— Models of Linear Logic (Baillot and Pedicini, 2001; Girard,
2013)

13



ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).

Balanced
A flow t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

14



ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).

Balanced
A flow t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

14



ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).

Balanced
A flow t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Examples
●

y A1

y

●

A2

x y

A1

y

↼ ×

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

14



ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).

Balanced
A flow t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Examples
●

x A1

y

●

A2

x y

A1

y

↼ ×

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

14



ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).

Balanced
A flow t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Examples
●

c A1

y

●

A2

x y

A1

y

↼ ✓

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

14



ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).

Balanced
A flow t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

14



F = f

1 Introduction

2 ICC, Automata & Logic Programs

3 A New Correspondence
New Results
New Connexions

4 Perspectives

F=f



A New Correspondence: New Results

NL

2NFA(∗,0)
Acyclicity

in directed graph

Balanced Flows

Completeness Soundness

16



A New Correspondence: New Results

NL

2NFA(∗,0)
Acyclicity

in directed graph

Balanced Flows

Completeness Soundness

16



A New Correspondence: New Results

NL

2NFA(∗,0)
Acyclicity

in directed graph

Balanced Flows

Completeness Soundness

16



A New Correspondence: New Results

NL

2NFA(∗,0)
Acyclicity

in directed graph

Balanced Flows

Completeness Soundness

16



A New Correspondence: New Results

Ptime

2NFA(∗,1)

Balanced and Unary
Flows

Completeness

Soundness

17



A New Correspondence: New Results

Ptime

2NFA(∗,1)

Balanced and Unary
Flows

Completeness

Soundness

17



A New Correspondence: New Results

Ptime

2NFA(∗,1)

Balanced and Unary
Flows

Completeness

Soundness

17



A New Correspondence: New Connexions

Complexity

Automata

Programming Language

Linear Logic

Category Theory

18



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of inputs

— Knowledge transfers

— Encode other variations of automata

19



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of inputs

— Knowledge transfers

— Encode other variations of automata

19



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of inputs

— Knowledge transfers

— Encode other variations of automata

19



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of inputs

— Knowledge transfers

— Encode other variations of automata

19



Perspectives: Reversibility

Classroom Presentation lacl.fr/~caubert/ASU/cp.html

Reversibility is in embryonic stage:

— Interpreter for reversible automata

— Extending Janus’ datatypes and datastructures

— Reversible algorithms 101

— Software engineering on research code

— New programming languages

Benefits:

— Re-usable skills

— Small community = strong (international) impact

— So much to be done!

20

https://lacl.fr/~caubert/ASU/cp.html


Perspectives: Reversibility

Classroom Presentation lacl.fr/~caubert/ASU/cp.html
Reversibility is in embryonic stage:

— Interpreter for reversible automata

— Extending Janus’ datatypes and datastructures

— Reversible algorithms 101

— Software engineering on research code

— New programming languages

Benefits:

— Re-usable skills

— Small community = strong (international) impact

— So much to be done!

20

https://lacl.fr/~caubert/ASU/cp.html


Perspectives: Reversibility

Classroom Presentation lacl.fr/~caubert/ASU/cp.html
Reversibility is in embryonic stage:

— Interpreter for reversible automata

— Extending Janus’ datatypes and datastructures

— Reversible algorithms 101

— Software engineering on research code

— New programming languages

Benefits:

— Re-usable skills

— Small community = strong (international) impact

— So much to be done!

20

https://lacl.fr/~caubert/ASU/cp.html


Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— ? + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

— ? + ? = Web design

Thanks!

F=f

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/


Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— ? + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

— ? + ? = Web design

Thanks!

F=f

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/


Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— ? + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

— ? + ? = Web design

Thanks!

F=f

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/


Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— ? + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

— ? + ? = Web design

Thanks!

F=f

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/


Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— ? + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

— ? + ? = Web design

Thanks!

F=f

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/


Perspectives: References

Baillot, Patrick and Marco Pedicini (2001). “Elementary
Complexity and Geometry of Interaction”. In: Fund. Inform.
45.1–2, pp. 1–31.

Bellantoni, Stephen J. and Stephen Arthur Cook (1992). “A New
Recursion-Theoretic Characterization of the Polytime
Functions (Extended Abstract)”. In: STOC. Ed. by
S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis. ACM, pp. 283–93.

Buss, Samuel R. (1986). Bounded Arithmetic. Vol. 3. Studies in
Proof Theory. Lecture Notes. Bibliopolis.

Chakraborty, Pinaki, Prem Chandra Saxena, and
Chittaranjan Padmanabha Katti (2011). “Fifty years of
automata simulation: a review”. In: Inroads 2.4, pp. 59–70.

22



Perspectives: References

Cobham, Alan (1965). “The intrinsic computational difficulty of
functions”. In: Logic, methodology and philosophy of science:
Proceedings of the 1964 international congress held at the
Hebrew university of Jerusalem, Israel, from August 26 to
September 2, 1964. Ed. by Yehoshua Bar-Hillel. Studies in
Logic and the foundations of mathematics. North-Holland
Publishing Company, pp. 24–30.

Dal Lago, Ugo (2011). “A Short Introduction to Implicit
Computational Complexity”. In: ESSLLI. Ed. by
Nick Bezhanishvili and Valentin Goranko. Vol. 7388. LNCS.
Springer, pp. 89–109.

Fagin, Ronald (1973). “Contributions to the Model Theory of
Finite Structures”. PhD thesis. University of California,
Berkeley.

23



Perspectives: References

Férée, Hugo, Emmanuel Hainry, Mathieu Hoyrup, and
Romain Péchoux (2015). “Characterizing polynomial time
complexity of stream programs using interpretations”. In:
Theoret. Comput. Sci. 585, pp. 41–54.

Gaboardi, Marco, Andreas Haeberlen, Justin Hsu,
Arjun Narayan, and Benjamin C. Pierce (2013). “Linear
dependent types for differential privacy”. In: POPL. Ed. by
Roberto Giacobazzi and Radhia Cousot. ACM, pp. 357–370.

Girard, Jean-Yves (2013). “Three lightings of logic”. In: CSL.
Ed. by Simona Ronchi Della Rocca. Vol. 23. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 11–23.

Girard, Jean-Yves, Andre Scedrov, and Philip J. Scott (1992).
“Bounded linear logic: a modular approach to polynomial-time
computability”. In: Theoret. Comput. Sci. 97.1, pp. 1–66.

24



Perspectives: References

Ibarra, Oscar H. (1971). “Characterizations of Some Tape and
Time Complexity Classes of Turing Machines in Terms of
Multihead and Auxiliary Stack Automata”. In: J. Comput. Syst.
Sci. 5.2, pp. 88–117.

Leivant, Daniel (1993). “Stratified Functional Programs and
Computational Complexity”. In: POPL. Ed. by
Mary S. Van Deusen and Bernard Lang. ACM Press,
pp. 325–333.

25


	Introduction
	ICC, Automata & Logic Programs
	A New Correspondence
	Perspectives

