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Introduction: Type Theory

⊢ Program 1 : Bool → Int

⊢ Program 2 : Int → Bool ⊢ data : Int

⊢ Program 2 (data) : Bool

⊢ Program1 (Program 2 (data)) : Int

«

⊢ Bool → Int
⊢ Int → Bool ⊢ Int

⊢ Bool
⊢ Int

«

⊢x Bool → Int

⊢y Int → Bool ⊢z Int

⊢y+z+c Bool

⊢y+z+c+x+c′ Int
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Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape
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Introduction: Implicit Computational Complexity

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/ASU/sm.html)

Implicit Computational Complexity (ICC)
— Machine-independent

— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.

— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)
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ICC, Automata & Logic Programs: What is ICC, really?

Machine-dependent

Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)
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ICC, Automata & Logic Programs: Automata

2NFA(k,p)
— Automata

— + Non-Deterministic

— + with p ⩾ 0 pushdown stacks

— + 2-ways

— + with k ⩾ 1 heads.

Main characterizations
Automata Language / Predicate

2NFA(1,0) Regular
2NFA(1,1) Context-free
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(∗,1) Polynomial time (Ptime)
2NFA(1,2) Computable
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ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete
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c
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ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Example

●

x A1

c

●

A2

w w

A1

d

x ●A1(c) A2(w ,w) ●A1(d) Unifiable?

×

c ≠ d

13



ICC, Automata & Logic Programs: Logic Programming

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Used in . . .
— Prolog, Datalog

— Type-inference in Haskell and ML

— Models of Linear Logic (Baillot and Pedicini, 2001; Girard,
2013)

13



ICC, Automata & Logic Programs: Logic Programming

Flows
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).

Balanced
A flow t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Unary
A flow is unary if it is built using only unary function symbols and
a variable.
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A New Correspondence: New Results
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A New Correspondence: New Results

Ptime

2NFA(∗,1)

Balanced and Unary
Flows

Completeness

Soundness
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A New Correspondence: New Connexions

Complexity

Automata

Programming Language

Linear Logic

Category Theory

18



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of inputs

— Knowledge transfers

— Encode other variations of automata
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Perspectives: Reversibility

Classroom Presentation lacl.fr/~caubert/ASU/cp.html

Reversibility is in embryonic stage:

— Interpreter for reversible automata

— Extending Janus’ datatypes and datastructures

— Reversible algorithms 101

— Software engineering on research code

— New programming languages

Benefits:

— Re-usable skills

— Small community = strong (international) impact

— So much to be done!

20
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Perspectives: Cross-Disciplines

— Alisha Sprinkle + Richard Elaver (Assistant Professor of
Industrial Design) =

— ? + Richard Elaver = Python to design

— ? + Mark Nystrom (Associate Professor in the Art
department) = Artistic Coding!

— ? + ? = Web design

Thanks!

F=f

21

https://appstate.digication.com/alishasprinkle/
http://www.designercraftsman.com/
http://www.designercraftsman.com/
http://www.marknystrom.com/
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