Developing Disciplined Programs

Seminar at the James M. Hull College of Business

Clément Aubert
Appalachuan
Augusta University 30th January 2017

Introduction: What is the problem with my program?

program

2

Introduction: What is the problem with my program?

program
 $+$
 data

2

2

- operating system

- network
- hardware

2

program

2

Introduction: What is the problem with my program?

programming language

program

programming language

Introduction: What is the problem with my program?

programming language

program

Developing Disciplined Programs

Seminar at the James M. Hull College of Business

Clément Aubert
Appalachuan
Augusta University 30th January 2017

Developing Disciplined Programing Languages

Seminar at the James M. Hull College of Business

Clément Aubert
Appalachuan
Augusta University 30th January 2017

Data

$\longrightarrow B$ Boolean (output) \quad ——oolean (input)
\longrightarrow Integer (output) っ— Integer (input)

$\frac{\vdash \text { Program 1 : Bool } \rightarrow \mathrm{Int} \quad \frac{\vdash \text { Program } 2: \text { Int } \rightarrow \text { Bool } \quad \vdash \text { data }: \text { Int }}{\vdash \text { Program } 2(\text { data }): \text { Bool }}}{\vdash \text { Program1 (Program } 2(\text { data }): \text { Int }}$

\vdash Program 1: Bool \rightarrow Int	\vdash Program 2 : Int \rightarrow Bool $\quad \vdash$ da
	\vdash Program 2 (data) : Bool
\vdash Program1 (Program 2 (data)) : Int	
	2
	\vdash Int \rightarrow Bool \vdash Int
\vdash Bool \rightarrow Int	\vdash Bool
\vdash Int	

Introduction: Computational Complexity

Computational Complexity

- Sort problem by their difficulty

Introduction: Computational Complexity

Computational Complexity

- Sort problem by their difficulty
- Order of magnitude

Introduction: Computational Complexity

Computational Complexity

- Sort problem by their difficulty
- Order of magnitude
- Benchmark: Turing Machine

Introduction: Computational Complexity

Computational Complexity

- Sort problem by their difficulty
- Order of magnitude
- Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed graph
Polynomial Time (Prime): Circuit value problem

Introduction: Computational Complexity

Explicit Computational Complexity

- Sort problem by their difficulty
- Order of magnitude
- Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed graph
Polynomial Time (Prime): Circuit value problem

- Machine-dependent
- "External" clock and "external" measure on the tape

Introduction: Implicit Computational Complexity

classes. By implicit, we here mean that classes are not given by constraining the amount of resources a machine is allowed to use, but rather by imposing linguistic constraints on the way algorithms are formulated. This idea has de-
(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/AU/)

Introduction: Implicit Computational Complexity

classes. By implicit, we here mean that classes are not given by constraining the amount of resources a machine is allowed to use, but rather by imposing linguistic constraints on the way algorithms are formulated. This idea has de-
(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/AU/)
Implicit Computational Complexity (ICC)

- Machine-independent
- Without explicit bounds

Introduction: Implicit Computational Complexity

classes. By implicit, we here mean that classes are not given by constraining the amount of resources a machine is allowed to use, but rather by imposing linguistic constraints on the way algorithms are formulated. This idea has de-
(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/AU/)
Implicit Computational Complexity (ICC)

- Machine-independent
- Without explicit bounds

Some Achievements

- Fine-grained type systems for Ptime, L, NL, Pspace, etc.
- Differential privacy (Gaboardi et al., 2013)
- Computation over the reals (Férée et al., 2015)
(1) Introduction

What is the problem with my program?
Type Theory
Computational Complexity Implicit Computational Complexity
(2) Automata and ICC
(3) Logic Programming
(4) A New Correspondence
(5) Perspectives
(1) Introduction
(2) Automata and ICC

What is ICC, really?
Definitions
Main Characterizations
(3) Logic Programming
(4) A New Correspondence
(5) Perspectives

Automata and ICC: What is ICC, really?

Machine-dependent

Turing machine,
Random access machine, Counter machine, ...

Automata and ICC: What is ICC, really?

Machine-dependent

Turing machine,
Random access machine, Counter machine, ...

Machine-independent

Bounded recursion on notation (Cobham, 1965), Bounded linear logic (Girard et al., 1992), Bounded arithmetic (Buss, 1986), ...

Automata and ICC: What is ICC, really?

Machine-dependent

Turing machine,
Random access machine, Counter machine, ...

Machine-independent

Bounded recursion on notation (Cobham, 1965), Bounded linear logic (Girard et al., 1992), Bounded arithmetic (Buss, 1986), ...

The rules for storage naturally induce polynomials:

$$
\begin{array}{ll}
\text { Storage } & \frac{!_{y} \Gamma \vdash A}{!_{x} \Gamma \vdash!_{x} A} \\
\text { Contraction } & \frac{\Gamma,!_{x} A,!_{y} A \vdash B}{\Gamma,!_{x+y} A \vdash B}
\end{array} \quad \text { Deakening } \frac{\Gamma \vdash B}{\Gamma,!_{0} A \vdash B}
$$

Automata and ICC: What is ICC, really?

Machine-dependent

Explicit bounds

Machine-independent

Bounded recursion on notation (Cobham, 1965), Bounded linear logic (Girard et al., 1992), Bounded arithmetic (Buss, 1986), ...

Automata and ICC: What is ICC, really?

Machine-dependent

Turing machine,
Random access machine, Counter machine, ...

Machine-independent

Bounded recursion on notation (Cobham, 1965), Bounded linear logic (Girard et al., 1992), Bounded arithmetic (Buss, 1986), ...

Descriptive complexity (Fagin, 1973), Recursion on notation (Bellantoni and Cook, 1992), Tiered recurrence (Leivant, 1993), ...

Automata and ICC: What is ICC, really?

Machine-dependent

Turing machine, Random access machine, Counter machine, ...

Automaton,
Auxiliary pushdown machine,...

Machine-independent

Bounded recursion on notation (Cobham, 1965), Bounded linear logic (Girard et al., 1992), Bounded arithmetic (Buss, 1986), ...

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992), Tiered recurrence (Leivant, 1993), ...

Automata and ICC: What is ICC, really?

Machine-dependent

Turing machine, Random access machine, Counter machine, . . .
bounds
4uxiliary pushdown machine.

Machine-independent

Bounded recursion on notation (Cobham, 1965), Bounded linear logic (Girard et al., 1992), Bounded arithmetic (Buss, 1986), ...

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and C.onk, 1992),

Automata and ICC: Definitions

2NFA(k, p)

For $k \geqslant 1, p \geqslant 0$, a 2-way non-deterministic finite automaton with k-heads and p pushdown stacks is a tuple
$M=\{\mathbf{S}, A, B, \triangleright, \triangleleft, \boxtimes, \sigma\}$ where:

- \mathbf{S} is the finite set of states;
- A is the input alphabet, B is the stack alphabet;
— \triangleright and \triangleleft are the left and right endmarkers, $\triangleright, \triangleleft \notin A$;
- \square is the bottom symbol of the stack, $\square \notin B$;

$$
\begin{aligned}
-\sigma \subseteq & \left(\mathbf{S} \times(A \cup\{\triangleright, \triangleleft\})^{k} \times(B \cup\{\oplus\})^{p}\right) \\
& \times\left(\mathbf{S} \times\{-1,0,+1\}^{k} \times\{\text { pop, peek, push }(b)\}^{p}\right)
\end{aligned}
$$

2NFA $(\mathbf{k}, \mathbf{p})=\{\mathcal{L}(M) \mid M$ a $2 N F A(k, p)\}$
2NFA $(*, \mathbf{p})=\cup_{k \geqslant 1} 2 \operatorname{NFA}(\mathbf{k}, \mathbf{p})$

Automata and ICC: Main Characterizations

Main characterizations

Automata Language / Predicate
2NFA(1,2) Computable
2NFA(*, 1) Polynomial time (Ptime)
2NFA(*,0) Non-Deterministic Logarithmic space (NL)
2NFA(1,1) Context-free
2NFA(1,0) Regular

Automata and ICC: Main Characterizations

Main characterizations

Automata Language / Predicate
2NFA(1,2) Computable
2NFA(*, 1) Polynomial time (Ptime)
2NFA $(*, 0)$ Non-Deterministic Logarithmic space (NL)
2NFA(1,1) Context-free
2NFA(1,0) Regular

Question
Can we use those results to develop disciplined programing languages?
(1) Introduction
(2) Automata and ICC
(3) Logic Programming

Reminders
First-order Terms
Flows and Wirings
Subsets of Flows
(4) A New Correspondence
(5) Perspectives

Logic Programming: Reminders

Logic Programming

- A programming paradigm
- Computation = unification
- Turing-complete

Logic Programming: Reminders

Logic Programming

- A programming paradigm
- Computation = unification
- Turing-complete

Used in ...

- Prolog, Datalog
- Type-inference in Haskell and ML
- Models of Linear Logic (Baillot and Pedicini, 2001; Girard, 2013)

First-order terms

$$
\begin{array}{rlr}
t, u & := & c, d, \ldots \\
& x, y, z, \ldots & \in \mathrm{C} \\
& \left\lvert\, \begin{array}{ll}
A_{n}\left(t_{1}, \ldots, t_{n}\right) & n \in \mathbb{N}^{*} \\
& t \cdot u
\end{array}\right. & \text { with } t \cdot u \cdot v:=t \cdot(u \cdot v)
\end{array}
$$

Example

$$
x \cdot \mathrm{~A}_{1}(\mathrm{c}) \quad \mathrm{A}_{2}(y, y) \cdot \mathrm{A}_{1}(z)
$$

First-order terms

$$
\begin{array}{rll}
t, u & := & c, d, \ldots \\
& x, y, z, \ldots & \in \mathrm{C} \\
& \left\lvert\, \begin{array}{ll}
A_{n}\left(t_{1}, \ldots, t_{n}\right) & n \in \mathbb{N}^{*} \\
t \cdot u &
\end{array}\right. & \text { with } t \cdot u \cdot v:=t \cdot(u \cdot v)
\end{array}
$$

Example

$$
x \cdot \mathrm{~A}_{1}(\mathrm{c}) \quad \mathrm{A}_{2}(w, w) \cdot \mathrm{A}_{1}(z)
$$

First-order terms

$$
\begin{array}{rlr}
t, u & := & c, d, \ldots \\
& x, y, z, \ldots & \in \mathrm{C} \\
& \left\lvert\, \begin{array}{ll}
A_{n}\left(t_{1}, \ldots, t_{n}\right) & n \in \mathbb{N}^{*} \\
& t \cdot u
\end{array}\right. & \text { with } t \cdot u \cdot v:=t \bullet(u \cdot v)
\end{array}
$$

Example

$$
x \cdot A_{1}(c) \quad A_{2}(w, w) \cdot A_{1}(z) \quad \text { Unifiable? }
$$

First-order terms

$$
\begin{array}{rlrl}
t, u & := & c, d, \ldots & \in \mathrm{C} \\
& \left\lvert\, \begin{array}{ll}
x, y, z, \ldots & \in \mathrm{~V} \\
& A_{n}\left(t_{1}, \ldots, t_{n}\right)
\end{array}\right. & n \in \mathbb{N}^{*} \\
& t \cdot u & \text { with } t \cdot u \cdot v:=t \cdot(u \cdot v)
\end{array}
$$

Example

$$
x \cdot \mathrm{~A}_{1}(\mathrm{c}) \quad \quad \mathrm{A}_{2}(w, w) \cdot \mathrm{A}_{1}(z) \quad \text { Unifiable? }
$$

First-order terms

$$
\begin{array}{rlrl}
t, u & := & c, d, \ldots & \in \mathrm{C} \\
& \left\lvert\, \begin{array}{ll}
& x, y, z, \ldots
\end{array}\right. & \in \mathrm{~V} \\
& A_{n}\left(t_{1}, \ldots, t_{n}\right) & n \in \mathbb{N}^{*} \\
& t \cdot u & \text { with } t \cdot u \cdot v:=t \cdot(u \cdot v)
\end{array}
$$

Example

$$
x \cdot \mathrm{~A}_{1}(\mathrm{c})
$$

$$
\mathrm{A}_{2}(w, w) \cdot \mathrm{A}_{1}(\mathrm{~d})
$$

Unifiable?

$$
\begin{gathered}
X \\
c \neq d
\end{gathered}
$$

Logic Programming: Flows and Wirings

Flows and Wirings
A flow is a pair of terms $t \leftharpoonup u$ with $\operatorname{Var}(t) \subseteq \operatorname{Var}(u)$. A wiring is a finite set of flows.

Logic Programming: Flows and Wirings

Flows and Wirings
A flow is a pair of terms $t \leftharpoonup u$ with $\operatorname{Var}(t) \subseteq \operatorname{Var}(u)$.
A wiring is a finite set of flows.

Composition of Flows

Let $u \leftharpoonup v$ and $t \leftharpoonup w$ be two flows, $\operatorname{Var}(v) \cap \operatorname{Var}(w)=\varnothing$,

$$
(u \leftharpoonup v)(t \leftharpoonup w):= \begin{cases}u \theta \leftharpoonup w \theta & \text { if } v \theta=t \theta \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Logic Programming: Flows and Wirings

Flows and Wirings
A flow is a pair of terms $t \leftharpoonup u$ with $\operatorname{Var}(t) \subseteq \operatorname{Var}(u)$.
A wiring is a finite set of flows.

Composition of Flows

Let $u \leftharpoonup v$ and $t \leftharpoonup w$ be two flows, $\operatorname{Var}(v) \cap \operatorname{Var}(w)=\varnothing$,

$$
(u \leftharpoonup v)(t \leftharpoonup w):= \begin{cases}u \theta \leftharpoonup w \theta & \text { if } v \theta=t \theta \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Examples

$$
\begin{aligned}
(f(x)<x)(f(y)<g(y)) & =f(f(y))<g(y) \\
(x \cdot c<(y \cdot y) \cdot x)((c \cdot c) \cdot x<y \cdot x) & =x \cdot c<c \cdot x
\end{aligned}
$$

Logic Programming: Subsets of Flows

Balanced

A flow $f=t \leftharpoonup u$ is balanced if for any $x \in \operatorname{Var}(t) \cup \operatorname{Var}(u)$, all occurrences of x in both t and u have the same height.

Examples

Logic Programming: Subsets of Flows

Balanced

A flow $f=t \leftharpoonup u$ is balanced if for any $x \in \operatorname{Var}(t) \cup \operatorname{Var}(u)$, all occurrences of x in both t and u have the same height.

Examples

Logic Programming: Subsets of Flows

Balanced

A flow $f=t \leftharpoonup u$ is balanced if for any $x \in \operatorname{Var}(t) \cup \operatorname{Var}(u)$, all occurrences of x in both t and u have the same height.

Examples

Logic Programming: Subsets of Flows

Balanced

A flow $f=t \leftharpoonup u$ is balanced if for any $x \in \operatorname{Var}(t) \cup \operatorname{Var}(u)$, all occurrences of x in both t and u have the same height.

Examples

Unary
A flow is unary if it is built using only unary function symbols and a variable.
(1) Introduction
(2) Automata and ICC
(3) Logic Programming
(4) A New Correspondence

New Results
New Connexions
(5) Perspectives

A New Correspondence: New Results

Balanced Flows

A New Correspondence: New Results

A New Correspondence: New Results

A New Correspondence: New Results

Balanced and Unary
Flows

A New Correspondence: New Results

Flows

A New Correspondence: New Results

A New Correspondence: New Connexions

(1) Introduction
(2) Automata and ICC
(3) Logic Programming
(4) A New Correspondence
(5) Perspectives

Looking Back
Looking Forward

Perspectives: Looking Back

Results of a series of works (Aubert, 2015; Aubert and Bagnol, 2014; Aubert, Bagnol, and Seiller, 2016; Aubert and Seiller, 2016a,b; Aubert et al., 2014) whose story remains to be told.

- From Proof Theory to simulations

Perspectives: Looking Back

Results of a series of works (Aubert, 2015; Aubert and Bagnol, 2014; Aubert, Bagnol, and Seiller, 2016; Aubert and Seiller, 2016a,b; Aubert et al., 2014) whose story remains to be told.

- From Proof Theory to simulations
- Algebraic techniques

Perspectives: Looking Back

Results of a series of works (Aubert, 2015; Aubert and Bagnol, 2014; Aubert, Bagnol, and Seiller, 2016; Aubert and Seiller, 2016a,b; Aubert et al., 2014) whose story remains to be told.

- From Proof Theory to simulations
- Algebraic techniques
- Pushdown Systems (PDS)?

Perspectives: Looking Back

Results of a series of works (Aubert, 2015; Aubert and Bagnol, 2014; Aubert, Bagnol, and Seiller, 2016; Aubert and Seiller, 2016a,b; Aubert et al., 2014) whose story remains to be told.

- From Proof Theory to simulations
- Algebraic techniques
- Pushdown Systems (PDS)?
- Functional complexity?

In increasing order of complexity:

- Write an intepreter for Automata (Chakraborty, Saxena, and Katti, 2011)

In increasing order of complexity:

- Write an intepreter for Automata (Chakraborty, Saxena, and Katti, 2011)
- The odd status of input in logic programming: can we have non-deterministic data?

In increasing order of complexity:

- Write an intepreter for Automata (Chakraborty, Saxena, and Katti, 2011)
- The odd status of input in logic programming: can we have non-deterministic data?
- Transfer results from automata to logic programming!

In increasing order of complexity:

- Write an intepreter for Automata (Chakraborty, Saxena, and Katti, 2011)
- The odd status of input in logic programming: can we have non-deterministic data?
- Transfer results from automata to logic programming!
- Encode other variations of automata

In increasing order of complexity:

- Write an intepreter for Automata (Chakraborty, Saxena, and Katti, 2011)
- The odd status of input in logic programming: can we have non-deterministic data?
- Transfer results from automata to logic programming!
- Encode other variations of automata
- Go back to the type system

In increasing order of complexity:

- Write an intepreter for Automata (Chakraborty, Saxena, and Katti, 2011)
- The odd status of input in logic programming: can we have non-deterministic data?
- Transfer results from automata to logic programming!
- Encode other variations of automata
- Go back to the type system

Perspectives：References

國 Aubert，Clément（2015）．An in－between＂implicit＂and＂explicit＂ complexity：Automata．Research Report． 5 pp．arXiv： 1502.00145 ［cs．LO］．Communication at DICE 2015.
（ Aubert，Clément and Marc Bagnol（2014）．＂Unification and Logarithmic Space＂．In：RTA－TLCA．Ed．by Gilles Dowek． Vol．8650．LNCS．Springer，pp．77－92．arXiv：1402．4327 ［cs．LO］．
囯 Aubert，Clément，Marc Bagnol，and Thomas Seiller（2016）． ＂Unary Resolution：Characterizing Ptime＂．In：FoSSaCS． Ed．by Bart Jacobs and Christof Löding．Vol．9634．LNCS． Springer，pp．373－389．
目 Aubert，Clément and Thomas Seiller（2016a）．＂Characterizing co－NL by a group action＂．In：MSCS 26 （04），pp．606－638．

Perspectives: References

國 Aubert, Clément and Thomas Seiller (2016b). "Logarithmic Space and Permutations". In: Inf. Comput. 248. Ed. by
Simona Ronchi Della Rocca and Virgile Mogbil. Development on Implicit Computational Complexity (DICE 2013), pp. 2-21.
R Aubert, Clément, Marc Bagnol, Paolo Pistone, and
Thomas Seiller (2014). "Logic Programming and Logarithmic Space". In: APLAS. Ed. by Jacques Garrigue. Vol. 8858. LNCS. Springer, pp. 39-57. arXiv: 1406.2110 [cs.LO].
(R) Baillot, Patrick and Marco Pedicini (2001). "Elementary

Complexity and Geometry of Interaction". In: Fund. Inform.
45.1-2, pp. 1-31.

Perspectives: References

围 Bellantoni, Stephen J. and Stephen Arthur Cook (1992). "A New Recursion-Theoretic Characterization of the Polytime Functions (Extended Abstract)". In: STOC. Ed. by
S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis. ACM, pp. 283-93.
回 Buss, Samuel R. (1986). Bounded Arithmetic. Vol. 3. Studies in Proof Theory. Lecture Notes. Bibliopolis.

- Chakraborty, Pinaki, Prem Chandra Saxena, and

Chittaranjan Padmanabha Katti (2011). "Fifty years of automata simulation: a review". In: Inroads 2.4, pp. 59-70.

Perspectives: References

国 Cobham, Alan (1965). "The intrinsic computational difficulty of functions". In: Logic, methodology and philosophy of science: Proceedings of the 1964 international congress held at the Hebrew university of Jerusalem, Israel, from August 26 to September 2, 1964. Ed. by Yehoshua Bar-Hillel. Studies in Logic and the foundations of mathematics. North-Holland Publishing Company, pp. 24-30.

- Dal Lago, Ugo (2011). "A Short Introduction to Implicit Computational Complexity". In: ESSLLI. Ed. by Nick Bezhanishvili and Valentin Goranko. Vol. 7388. LNCS. Springer, pp. 89-109.
- Fagin, Ronald (1973). "Contributions to the Model Theory of Finite Structures". PhD thesis. University of California, Berkeley.

Perspectives: References

© Férée, Hugo, Emmanuel Hainry, Mathieu Hoyrup, and Romain Péchoux (2015). "Characterizing polynomial time complexity of stream programs using interpretations". In: Theoret. Comput. Sci. 585, pp. 41-54.
围 Gaboardi, Marco, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce (2013). "Linear dependent types for differential privacy". In: POPL. Ed. by
Roberto Giacobazzi and Radhia Cousot. ACM, pp. 357-370.
: Girard, Jean-Yves (2013). "Three lightings of logic". In: CSL.
Ed. by Simona Ronchi Della Rocca. Vol. 23. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 11-23.
© Girard, Jean-Yves, Andre Scedrov, and Philip J. Scott (1992).
"Bounded linear logic: a modular approach to polynomial-time computability". In: Theoret. Comput. Sci. 97.1, pp. 1-66.

Perspectives: References

圁 Ibarra, Oscar H. (1971). "Characterizations of Some Tape and Time Complexity Classes of Turing Machines in Terms of Multihead and Auxiliary Stack Automata". In: J. Comput. Syst. Sci. 5.2, pp. 88-117.
固 Leivant, Daniel (1993). "Stratified Functional Programs and
Computational Complexity". In: POPL. Ed. by
Mary S. Van Deusen and Bernard Lang. ACM Press,
pp. 325-333.

