
Developing Disciplined Programs
Seminar at the James M. Hull College of Business

Clément Aubert

Augusta University
30th January 2017



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Introduction: What is the problem with my program?

program
+

data

program
+

data

answer

execution

code compilation

programming language
coding

— operating system

— network

— hardware

— operating system

— network

— hardware

user-side

programmer-side

2



Developing Disciplined Programs
Seminar at the James M. Hull College of Business

Clément Aubert

Augusta University
30th January 2017



Developing Disciplined Programing Languages
Seminar at the James M. Hull College of Business

Clément Aubert

Augusta University
30th January 2017



Introduction: Type Theory

Program 1

Program 2

Data

Boolean (output)
Integer (output)

Boolean (input)
Integer (input)

5



Introduction: Type Theory

Program 1

Program 2

Data

Boolean (output)
Integer (output)

Boolean (input)
Integer (input)

5



Introduction: Type Theory

Program 1

Program 2

Data

Boolean (output)
Integer (output)

Boolean (input)
Integer (input)

5



Introduction: Type Theory

⊢ Program 1 : Bool → Int

⊢ Program 2 : Int → Bool ⊢ data : Int

⊢ Program 2 (data) : Bool

⊢ Program1 (Program 2 (data)) : Int

«

⊢ Bool → Int
⊢ Int → Bool ⊢ Int

⊢ Bool
⊢ Int

«

⊢x Bool → Int

⊢y Int → Bool ⊢z Int

⊢y+z+c Bool

⊢y+z+c+x+c′ Int

6



Introduction: Type Theory

⊢ Program 1 : Bool → Int

⊢ Program 2 : Int → Bool ⊢ data : Int

⊢ Program 2 (data) : Bool

⊢ Program1 (Program 2 (data)) : Int

«

⊢ Bool → Int
⊢ Int → Bool ⊢ Int

⊢ Bool
⊢ Int

«

⊢x Bool → Int

⊢y Int → Bool ⊢z Int

⊢y+z+c Bool

⊢y+z+c+x+c′ Int

6



Introduction: Type Theory

⊢ Program 1 : Bool → Int

⊢ Program 2 : Int → Bool ⊢ data : Int

⊢ Program 2 (data) : Bool

⊢ Program1 (Program 2 (data)) : Int

«

⊢ Bool → Int
⊢ Int → Bool ⊢ Int

⊢ Bool
⊢ Int

«

⊢x Bool → Int

⊢y Int → Bool ⊢z Int

⊢y+z+c Bool

⊢y+z+c+x+c′ Int

6



Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Computational Complexity

Explicit Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape

7



Introduction: Implicit Computational Complexity

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/AU/)

Implicit Computational Complexity (ICC)
— Machine-independent

— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.

— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)

8

https://www.lacl.fr/~caubert/AU/


Introduction: Implicit Computational Complexity

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/AU/)

Implicit Computational Complexity (ICC)
— Machine-independent

— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.

— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)

8

https://www.lacl.fr/~caubert/AU/


Introduction: Implicit Computational Complexity

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/AU/)

Implicit Computational Complexity (ICC)
— Machine-independent

— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.

— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)

8

https://www.lacl.fr/~caubert/AU/


1 Introduction
What is the problem with my program?
Type Theory
Computational Complexity
Implicit Computational Complexity

2 Automata and ICC

3 Logic Programming

4 A New Correspondence

5 Perspectives



1 Introduction

2 Automata and ICC
What is ICC, really?
Definitions
Main Characterizations

3 Logic Programming

4 A New Correspondence

5 Perspectives



Automata and ICC: What is ICC, really?

Machine-dependent

Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



Automata and ICC: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



Automata and ICC: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



Automata and ICC: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



Automata and ICC: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



Automata and ICC: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



Automata and ICC: What is ICC, really?

Machine-dependent Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)

11



Automata and ICC: Definitions

2NFA(k,p)
For k ⩾ 1, p ⩾ 0, a 2-way non-deterministic finite automaton with
k-heads and p pushdown stacks is a tuple
M = {S,A,B,⊳,⊲,⊡, σ} where:

— S is the finite set of states;

— A is the input alphabet, B is the stack alphabet;

— ⊳ and ⊲ are the left and right endmarkers, ⊳,⊲∉ A;

— ⊡ is the bottom symbol of the stack, ⊡ ∉ B;

—
σ ⊆ (S × (A ∪ {⊳,⊲})k × (B ∪ {⊡})p)
× (S × {−1,0,+1}k × {pop,peek,push(b)}p)

2NFA(k,p) = {L(M) ∣ M a 2NFA(k,p)}
2NFA(∗,p) = ∪k⩾12NFA(k,p)

12



Automata and ICC: Main Characterizations

Main characterizations
Automata Language / Predicate

2NFA(1,2) Computable
2NFA(∗,1) Polynomial time (Ptime)
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(1,1) Context-free
2NFA(1,0) Regular

Question
Can we use those results to develop disciplined programing
languages?

13



Automata and ICC: Main Characterizations

Main characterizations
Automata Language / Predicate

2NFA(1,2) Computable
2NFA(∗,1) Polynomial time (Ptime)
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(1,1) Context-free
2NFA(1,0) Regular

Question
Can we use those results to develop disciplined programing
languages?

13



1 Introduction

2 Automata and ICC

3 Logic Programming
Reminders
First-order Terms
Flows and Wirings
Subsets of Flows

4 A New Correspondence

5 Perspectives



Logic Programming: Reminders

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Used in . . .
— Prolog, Datalog

— Type-inference in Haskell and ML

— Models of Linear Logic (Baillot and Pedicini, 2001; Girard,
2013)

15



Logic Programming: Reminders

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Used in . . .
— Prolog, Datalog

— Type-inference in Haskell and ML

— Models of Linear Logic (Baillot and Pedicini, 2001; Girard,
2013)

15



Logic Programming: First-order Terms

First-order terms
t ,u := c,d, . . . ∈ C

∣ x ,y ,z, . . . ∈ V
∣ An(t1, . . . , tn) n ∈ N∗

∣ t ●u with t ●u ●v := t ●(u ●v)

Example

●

x A1

c

●

A2

y y

A1

z

x ●A1(c) A2(y ,y) ●A1(z)

16



Logic Programming: First-order Terms

First-order terms
t ,u := c,d, . . . ∈ C

∣ x ,y ,z, . . . ∈ V
∣ An(t1, . . . , tn) n ∈ N∗

∣ t ●u with t ●u ●v := t ●(u ●v)

Example

●

x A1

c

●

A2

w w

A1

z

x ●A1(c) A2(w ,w) ●A1(z)

16



Logic Programming: First-order Terms

First-order terms
t ,u := c,d, . . . ∈ C

∣ x ,y ,z, . . . ∈ V
∣ An(t1, . . . , tn) n ∈ N∗

∣ t ●u with t ●u ●v := t ●(u ●v)

Example

●

x A1

c

●

A2

w w

A1

z

x ●A1(c) A2(w ,w) ●A1(z) Unifiable?

16



Logic Programming: First-order Terms

First-order terms
t ,u := c,d, . . . ∈ C

∣ x ,y ,z, . . . ∈ V
∣ An(t1, . . . , tn) n ∈ N∗

∣ t ●u with t ●u ●v := t ●(u ●v)

Example

●

x A1

c

●

A2

w w

A1

z

x ●A1(c) A2(w ,w) ●A1(z) Unifiable?

✓

θ = [x ← A2(w ,w);z ← c]

16



Logic Programming: First-order Terms

First-order terms
t ,u := c,d, . . . ∈ C

∣ x ,y ,z, . . . ∈ V
∣ An(t1, . . . , tn) n ∈ N∗

∣ t ●u with t ●u ●v := t ●(u ●v)

Example

●

x A1

c

●

A2

w w

A1

d

x ●A1(c) A2(w ,w) ●A1(d) Unifiable?

×

c ≠ d

16



Logic Programming: Flows and Wirings

Flows and Wirings
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).
A wiring is a finite set of flows.

Composition of Flows
Let u ↼ v and t ↼ w be two flows, Var(v) ∩ Var(w) = ∅,

(u ↼ v)(t ↼ w) :=
⎧⎪⎪⎨⎪⎪⎩

uθ ↼ wθ if vθ = tθ

undefined otherwise

Examples
(f(x)↼ x)(f(y)↼ g(y)) = f(f(y))↼ g(y)

(x ●c↼ (y ●y) ●x)((c ●c) ●x ↼ y ●x) = x ●c↼ c ●x

17



Logic Programming: Flows and Wirings

Flows and Wirings
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).
A wiring is a finite set of flows.

Composition of Flows
Let u ↼ v and t ↼ w be two flows, Var(v) ∩ Var(w) = ∅,

(u ↼ v)(t ↼ w) :=
⎧⎪⎪⎨⎪⎪⎩

uθ ↼ wθ if vθ = tθ

undefined otherwise

Examples
(f(x)↼ x)(f(y)↼ g(y)) = f(f(y))↼ g(y)

(x ●c↼ (y ●y) ●x)((c ●c) ●x ↼ y ●x) = x ●c↼ c ●x

17



Logic Programming: Flows and Wirings

Flows and Wirings
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).
A wiring is a finite set of flows.

Composition of Flows
Let u ↼ v and t ↼ w be two flows, Var(v) ∩ Var(w) = ∅,

(u ↼ v)(t ↼ w) :=
⎧⎪⎪⎨⎪⎪⎩

uθ ↼ wθ if vθ = tθ

undefined otherwise

Examples
(f(x)↼ x)(f(y)↼ g(y)) = f(f(y))↼ g(y)

(x ●c↼ (y ●y) ●x)((c ●c) ●x ↼ y ●x) = x ●c↼ c ●x

17



Logic Programming: Subsets of Flows

Balanced
A flow f = t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Examples
●

y A1

y

●

A2

x y

A1

y

↼ ×

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

18



Logic Programming: Subsets of Flows

Balanced
A flow f = t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Examples
●

x A1

y

●

A2

x y

A1

y

↼ ×

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

18



Logic Programming: Subsets of Flows

Balanced
A flow f = t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Examples
●

c A1

y

●

A2

x y

A1

y

↼ ✓

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

18



Logic Programming: Subsets of Flows

Balanced
A flow f = t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Examples
●

c A1

y

●

A2

x y

A1

y

↼ ✓

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

18



1 Introduction

2 Automata and ICC

3 Logic Programming

4 A New Correspondence
New Results
New Connexions

5 Perspectives



A New Correspondence: New Results

NL

2NFA(∗,0) Acyclicity
in directed graph

Balanced Flows

Completeness Soundness

20



A New Correspondence: New Results

NL

2NFA(∗,0) Acyclicity
in directed graph

Balanced Flows

Completeness Soundness

20



A New Correspondence: New Results

NL

2NFA(∗,0) Acyclicity
in directed graph

Balanced Flows

Completeness Soundness

20



A New Correspondence: New Results

NL

2NFA(∗,0) Acyclicity
in directed graph

Balanced Flows

Completeness Soundness

20



A New Correspondence: New Results

Ptime

2NFA(∗,1)

Balanced and Unary
Flows

Completeness

Soundness

21



A New Correspondence: New Results

Ptime

2NFA(∗,1)

Balanced and Unary
Flows

Completeness

Soundness

21



A New Correspondence: New Results

Ptime

2NFA(∗,1)

Balanced and Unary
Flows

Completeness

Soundness

21



A New Correspondence: New Connexions

Complexity

Automata

Programming Language

Linear Logic

Category Theory

22



1 Introduction

2 Automata and ICC

3 Logic Programming

4 A New Correspondence

5 Perspectives
Looking Back
Looking Forward



Perspectives: Looking Back

Results of a series of works (Aubert, 2015; Aubert and Bagnol,
2014; Aubert, Bagnol, and Seiller, 2016; Aubert and Seiller,
2016a,b; Aubert et al., 2014) whose story remains to be told.

— From Proof Theory to simulations

— Algebraic techniques

— Pushdown Systems (PDS)?

— Functional complexity?

24



Perspectives: Looking Back

Results of a series of works (Aubert, 2015; Aubert and Bagnol,
2014; Aubert, Bagnol, and Seiller, 2016; Aubert and Seiller,
2016a,b; Aubert et al., 2014) whose story remains to be told.

— From Proof Theory to simulations

— Algebraic techniques

— Pushdown Systems (PDS)?

— Functional complexity?

24



Perspectives: Looking Back

Results of a series of works (Aubert, 2015; Aubert and Bagnol,
2014; Aubert, Bagnol, and Seiller, 2016; Aubert and Seiller,
2016a,b; Aubert et al., 2014) whose story remains to be told.

— From Proof Theory to simulations

— Algebraic techniques

— Pushdown Systems (PDS)?

— Functional complexity?

24



Perspectives: Looking Back

Results of a series of works (Aubert, 2015; Aubert and Bagnol,
2014; Aubert, Bagnol, and Seiller, 2016; Aubert and Seiller,
2016a,b; Aubert et al., 2014) whose story remains to be told.

— From Proof Theory to simulations

— Algebraic techniques

— Pushdown Systems (PDS)?

— Functional complexity?

24



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of input in logic programming: can we have
non-deterministic data?

— Transfer results from automata to logic programming!

— Encode other variations of automata

— Go back to the type system

Thanks!

F=f

25



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of input in logic programming: can we have
non-deterministic data?

— Transfer results from automata to logic programming!

— Encode other variations of automata

— Go back to the type system

Thanks!

F=f

25



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of input in logic programming: can we have
non-deterministic data?

— Transfer results from automata to logic programming!

— Encode other variations of automata

— Go back to the type system

Thanks!

F=f

25



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of input in logic programming: can we have
non-deterministic data?

— Transfer results from automata to logic programming!

— Encode other variations of automata

— Go back to the type system

Thanks!

F=f

25



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of input in logic programming: can we have
non-deterministic data?

— Transfer results from automata to logic programming!

— Encode other variations of automata

— Go back to the type system

Thanks!

F=f

25



Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of input in logic programming: can we have
non-deterministic data?

— Transfer results from automata to logic programming!

— Encode other variations of automata

— Go back to the type system

Thanks!

F=f

25



Perspectives: References

Aubert, Clément (2015). An in-between "implicit" and "explicit"
complexity: Automata. Research Report. 5 pp. arXiv:
1502.00145 [cs.LO]. Communication at DICE 2015.

Aubert, Clément and Marc Bagnol (2014). “Unification and
Logarithmic Space”. In: RTA-TLCA. Ed. by Gilles Dowek.
Vol. 8650. LNCS. Springer, pp. 77–92. arXiv: 1402.4327
[cs.LO].

Aubert, Clément, Marc Bagnol, and Thomas Seiller (2016).
“Unary Resolution: Characterizing Ptime”. In: FoSSaCS.
Ed. by Bart Jacobs and Christof Löding. Vol. 9634. LNCS.
Springer, pp. 373–389.

Aubert, Clément and Thomas Seiller (2016a). “Characterizing
co-NL by a group action”. In: MSCS 26 (04), pp. 606–638.

26

http://arxiv.org/abs/1502.00145
http://dice15.computing.dundee.ac.uk/
http://arxiv.org/abs/1402.4327
http://arxiv.org/abs/1402.4327


Perspectives: References

Aubert, Clément and Thomas Seiller (2016b). “Logarithmic
Space and Permutations”. In: Inf. Comput. 248. Ed. by
Simona Ronchi Della Rocca and Virgile Mogbil. Development
on Implicit Computational Complexity (DICE 2013), pp. 2–21.

Aubert, Clément, Marc Bagnol, Paolo Pistone, and
Thomas Seiller (2014). “Logic Programming and Logarithmic
Space”. In: APLAS. Ed. by Jacques Garrigue. Vol. 8858.
LNCS. Springer, pp. 39–57. arXiv: 1406.2110 [cs.LO].

Baillot, Patrick and Marco Pedicini (2001). “Elementary
Complexity and Geometry of Interaction”. In: Fund. Inform.
45.1–2, pp. 1–31.

27

http://arxiv.org/abs/1406.2110


Perspectives: References

Bellantoni, Stephen J. and Stephen Arthur Cook (1992). “A New
Recursion-Theoretic Characterization of the Polytime
Functions (Extended Abstract)”. In: STOC. Ed. by
S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and
John A. Ellis. ACM, pp. 283–93.

Buss, Samuel R. (1986). Bounded Arithmetic. Vol. 3. Studies in
Proof Theory. Lecture Notes. Bibliopolis.

Chakraborty, Pinaki, Prem Chandra Saxena, and
Chittaranjan Padmanabha Katti (2011). “Fifty years of
automata simulation: a review”. In: Inroads 2.4, pp. 59–70.

28



Perspectives: References

Cobham, Alan (1965). “The intrinsic computational difficulty of
functions”. In: Logic, methodology and philosophy of science:
Proceedings of the 1964 international congress held at the
Hebrew university of Jerusalem, Israel, from August 26 to
September 2, 1964. Ed. by Yehoshua Bar-Hillel. Studies in
Logic and the foundations of mathematics. North-Holland
Publishing Company, pp. 24–30.

Dal Lago, Ugo (2011). “A Short Introduction to Implicit
Computational Complexity”. In: ESSLLI. Ed. by
Nick Bezhanishvili and Valentin Goranko. Vol. 7388. LNCS.
Springer, pp. 89–109.

Fagin, Ronald (1973). “Contributions to the Model Theory of
Finite Structures”. PhD thesis. University of California,
Berkeley.

29



Perspectives: References

Férée, Hugo, Emmanuel Hainry, Mathieu Hoyrup, and
Romain Péchoux (2015). “Characterizing polynomial time
complexity of stream programs using interpretations”. In:
Theoret. Comput. Sci. 585, pp. 41–54.

Gaboardi, Marco, Andreas Haeberlen, Justin Hsu,
Arjun Narayan, and Benjamin C. Pierce (2013). “Linear
dependent types for differential privacy”. In: POPL. Ed. by
Roberto Giacobazzi and Radhia Cousot. ACM, pp. 357–370.

Girard, Jean-Yves (2013). “Three lightings of logic”. In: CSL.
Ed. by Simona Ronchi Della Rocca. Vol. 23. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 11–23.

Girard, Jean-Yves, Andre Scedrov, and Philip J. Scott (1992).
“Bounded linear logic: a modular approach to polynomial-time
computability”. In: Theoret. Comput. Sci. 97.1, pp. 1–66.

30



Perspectives: References

Ibarra, Oscar H. (1971). “Characterizations of Some Tape and
Time Complexity Classes of Turing Machines in Terms of
Multihead and Auxiliary Stack Automata”. In: J. Comput. Syst.
Sci. 5.2, pp. 88–117.

Leivant, Daniel (1993). “Stratified Functional Programs and
Computational Complexity”. In: POPL. Ed. by
Mary S. Van Deusen and Bernard Lang. ACM Press,
pp. 325–333.

31


	Introduction
	Automata and ICC
	Logic Programming
	A New Correspondence
	Perspectives

