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Introduction: Type Theory

⊢ Program 1 : Bool → Int

⊢ Program 2 : Int → Bool ⊢ data : Int

⊢ Program 2 (data) : Bool

⊢ Program1 (Program 2 (data)) : Int

«

⊢ Bool → Int
⊢ Int → Bool ⊢ Int

⊢ Bool
⊢ Int

«

⊢x Bool → Int

⊢y Int → Bool ⊢z Int

⊢y+z+c Bool

⊢y+z+c+x+c′ Int
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Introduction: Computational Complexity

Explicit

Computational Complexity
— Sort problem by their difficulty

— Order of magnitude

— Benchmark: Turing Machine

Complete Problems
Logarithmic Space (L): Acyclicity in undirected graph
Non-Deterministic Logarithmic Space (NL): Acyclicity in directed
graph
Polynomial Time (Ptime): Circuit value problem

— Machine-dependent

— “External” clock and “external” measure on the tape
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Introduction: Implicit Computational Complexity

(Dal Lago, 2011, p. 90)(lacl.fr/~caubert/AU/)

Implicit Computational Complexity (ICC)
— Machine-independent

— Without explicit bounds

Some Achievements
— Fine-grained type systems for Ptime, L, NL, Pspace, etc.

— Differential privacy (Gaboardi et al., 2013)

— Computation over the reals (Férée et al., 2015)
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Automata and ICC: What is ICC, really?

Machine-dependent

Machine-independent

E
xp

lic
it

bo
un

ds

Turing machine,
Random access machine,
Counter machine, . . .

Bounded recursion on notation (Cobham, 1965),
Bounded linear logic (Girard et al., 1992),
Bounded arithmetic (Buss, 1986), . . .

Im
pl

ic
it

bo
un

ds

Automaton,
Auxiliary pushdown machine,. . .

Descriptive complexity (Fagin, 1973),
Recursion on notation (Bellantoni and Cook, 1992),
Tiered recurrence (Leivant, 1993), . . .

(Girard et al., 1992, p. 18)

(Ibarra, 1971, p. 88)
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Automata and ICC: Definitions

2NFA(k,p)
For k ⩾ 1, p ⩾ 0, a 2-way non-deterministic finite automaton with
k-heads and p pushdown stacks is a tuple
M = {S,A,B,⊳,⊲,⊡, σ} where:

— S is the finite set of states;

— A is the input alphabet, B is the stack alphabet;

— ⊳ and ⊲ are the left and right endmarkers, ⊳,⊲∉ A;

— ⊡ is the bottom symbol of the stack, ⊡ ∉ B;

—
σ ⊆ (S × (A ∪ {⊳,⊲})k × (B ∪ {⊡})p)
× (S × {−1,0,+1}k × {pop,peek,push(b)}p)

2NFA(k,p) = {L(M) ∣ M a 2NFA(k,p)}
2NFA(∗,p) = ∪k⩾12NFA(k,p)
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Automata and ICC: Main Characterizations

Main characterizations
Automata Language / Predicate

2NFA(1,2) Computable
2NFA(∗,1) Polynomial time (Ptime)
2NFA(∗,0) Non-Deterministic Logarithmic space (NL)
2NFA(1,1) Context-free
2NFA(1,0) Regular

Question
Can we use those results to develop disciplined programing
languages?
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Logic Programming: Reminders

Logic Programming
— A programming paradigm

— Computation = unification

— Turing-complete

Used in . . .
— Prolog, Datalog

— Type-inference in Haskell and ML

— Models of Linear Logic (Baillot and Pedicini, 2001; Girard,
2013)

15
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Logic Programming: First-order Terms

First-order terms
t ,u := c,d, . . . ∈ C

∣ x ,y ,z, . . . ∈ V
∣ An(t1, . . . , tn) n ∈ N∗

∣ t ●u with t ●u ●v := t ●(u ●v)

Example

●

x A1

c

●

A2

y y

A1

z

x ●A1(c) A2(y ,y) ●A1(z)
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✓

θ = [x ← A2(w ,w);z ← c]
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Logic Programming: First-order Terms

First-order terms
t ,u := c,d, . . . ∈ C

∣ x ,y ,z, . . . ∈ V
∣ An(t1, . . . , tn) n ∈ N∗

∣ t ●u with t ●u ●v := t ●(u ●v)

Example

●

x A1

c

●

A2

w w

A1

d

x ●A1(c) A2(w ,w) ●A1(d) Unifiable?

×

c ≠ d
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Logic Programming: Flows and Wirings

Flows and Wirings
A flow is a pair of terms t ↼ u with Var(t) ⊆ Var(u).
A wiring is a finite set of flows.

Composition of Flows
Let u ↼ v and t ↼ w be two flows, Var(v) ∩ Var(w) = ∅,

(u ↼ v)(t ↼ w) :=
⎧⎪⎪⎨⎪⎪⎩

uθ ↼ wθ if vθ = tθ

undefined otherwise

Examples
(f(x)↼ x)(f(y)↼ g(y)) = f(f(y))↼ g(y)

(x ●c↼ (y ●y) ●x)((c ●c) ●x ↼ y ●x) = x ●c↼ c ●x

17
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Logic Programming: Subsets of Flows

Balanced
A flow f = t ↼ u is balanced if for any x ∈ Var(t) ∪ Var(u), all
occurrences of x in both t and u have the same height.

Examples
●

y A1

y

●

A2

x y

A1

y

↼ ×

Unary
A flow is unary if it is built using only unary function symbols and
a variable.

18
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A New Correspondence: New Results

NL

2NFA(∗,0) Acyclicity
in directed graph

Balanced Flows

Completeness Soundness
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A New Correspondence: New Results

Ptime

2NFA(∗,1)

Balanced and Unary
Flows

Completeness

Soundness
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A New Correspondence: New Connexions

Complexity

Automata

Programming Language

Linear Logic

Category Theory

22
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Perspectives: Looking Back

Results of a series of works (Aubert, 2015; Aubert and Bagnol,
2014; Aubert, Bagnol, and Seiller, 2016; Aubert and Seiller,
2016a,b; Aubert et al., 2014) whose story remains to be told.

— From Proof Theory to simulations

— Algebraic techniques

— Pushdown Systems (PDS)?

— Functional complexity?
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Perspectives: Looking Forward

In increasing order of complexity:

— Write an intepreter for Automata (Chakraborty, Saxena, and
Katti, 2011)

— The odd status of input in logic programming: can we have
non-deterministic data?

— Transfer results from automata to logic programming!

— Encode other variations of automata

— Go back to the type system

Thanks!

F=f
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