
Logarithmic Space and Permutations
LCC’13, Torino

Clément Aubert
Joint work with Thomas Seiller

aubert@lipn.fr

5 September 2013

aubert@lipn.fr

References

Clément Aubert and Thomas Seiller.
Characterizing co-NL by a group action.
CoRR, abs/1209.3422, 2012.

Clément Aubert and Thomas Seiller.
Logarithmic space and permutations.
CoRR, abs/1301.3189, 2013.

Jean-Yves Girard.
Normativity in logic.
In Peter Dybjer, Sten Lindström, Erik Palmgren, and Göran Sundholm,
editors, Epistemology versus Ontology, volume 27 of Logic,
Epistemology, and the Unity of Science, pages 243–263. Springer, 2012.

Overview

This talk

Complexity

Logic

MathematicsLinear Logic

Geometry of Interaction

Permutations

Encoding integers into the hyperfinite factor

Integers→ Binary List→ λ-term→ proof

in L.L.

→ Proof-Net→ Matrices

0, 1, 2, 3, . . .
↪→ 001, 010, 011, 100, . . .

↪→ λf0λf1λx · f0(f1(f1(. . . (f0x) . . .)
↪→ ` ∀X (X → X)→ ((X → X)→ (X → X))

↪→

?

. . .

?

. . .

`

X0 (X0 X1 (X1 XS (XE

Encoding integers into the hyperfinite factor

Integers→ Binary List→ λ-term→ proof in L.L.→ Proof-Net→ Matrices

0, 1, 2, 3, . . .
↪→ 001, 010, 011, 100, . . .

↪→ λf0λf1λx · f0(f1(f1(. . . (f0x) . . .)
↪→ ` ∀X?(X(X)((?(X(X)(!(X(X))

↪→

?

. . .

?

. . .

`

X0 (X0 X1 (X1 XS (XE

Encoding integers into the hyperfinite factor

Integers→ Binary List→ λ-term→ proof in L.L.→ Proof-Net→ Matrices

0, 1, 2, 3, . . .
↪→ 001, 010, 011, 100, . . .

↪→ λf0λf1λx · f0(f1(f1(. . . (f0x) . . .)
↪→ ` ∀X?(X(X)((?(X(X)(!(X(X))

↪→

?

. . .

?

. . .

`

X0 (X0 X1 (X1 XS (XE

Encoding integers into the hyperfinite factor

Integers→ Binary List→ λ-term→ proof in L.L.→ Proof-Net→ Matrices

? ES

o

ak
i

o
. . .

i

i

a1
o

Encoding integers into the hyperfinite factor

Integers→ Binary List→ λ-term→ proof in L.L.→ Proof-Net→ Matrices

Mn =

0︷ ︸︸ ︷ 1︷ ︸︸ ︷ ?︷ ︸︸ ︷

0 l00 0 l10 lS0 0

}
0

l00
t 0 l01

t 0 0 l0E
t

0 l01 0 l11 lS1 0
}

1
l10

t 0 l11
t 0 0 l1E

t

lS0
t 0 lS1

t 0 0 0
}
?0 l0E 0 l1E 0 0

How to compute with integers as operators?

Definition (Binary representation of integers)

An operator Nn ∈M6(N0) is a binary representation of an integer n if . . .

? •S•E 1 •
o•i 1 •

o•i 0 •
o•i 1 •

o•i 0 •
o•i

Definition (Observations)
An observation is an operator φ ∈M6(S).

Definition (Computing, accepting)
The computation ends if ∃k ∈ N such that

(φ(Nn))k = 0

How to compute with integers as operators?

Definition (Binary representation of integers)

An operator Nn ∈M6(N0) is a binary representation of an integer n if . . .

? •S•E 1 •
o•i 1 •

o•i 0 •
o•i 1 •

o•i 0 •
o•i

Definition (Observations)
An observation is an operator φ ∈M6(S).

Definition (Computing, accepting)
The computation ends if ∃k ∈ N such that

(φ(Nn))k = 0

How to compute with integers as operators?

Definition (Binary representation of integers)

An operator Nn ∈M6(N0) is a binary representation of an integer n if . . .

? •S•E 1 •
o•i 1 •

o•i 0 •
o•i 1 •

o•i 0 •
o•i

Definition (Observations)
An observation is an operator φ ∈M6(S).

Definition (Computing, accepting)
The computation ends if ∃k ∈ N such that

(φ(Nn))k = 0

Normative pair & finite permutations

Definition (Normative Pairs)
Let N0 and S be two subalgebras of a von Neumann algebra M. The pair
(N0,S) is a normative pair (in M) if:

• N0 is isomorphic to R;
• For all Φ ∈M6(S) and Nn,N ′n ∈M6(N0) two binary representations of n,

ΦNn is nilpotent⇔ ΦN ′n is nilpotent

Proposition
Let G be the group of finite permutations over N, α an action of G and for all
n ∈ N, Nn = R. The algebra (⊗n∈NNn) oα G contains a subalgebra
generated by G that we will denote G.
(N0,G) is a normative pair in (⊗n∈NNn) oα G.

Normative pair & finite permutations

Definition (Normative Pairs)
Let N0 and S be two subalgebras of a von Neumann algebra M. The pair
(N0,S) is a normative pair (in M) if:

• N0 is isomorphic to R;
• For all Φ ∈M6(S) and Nn,N ′n ∈M6(N0) two binary representations of n,

ΦNn is nilpotent⇔ ΦN ′n is nilpotent

Proposition
Let G be the group of finite permutations over N, α an action of G and for all
n ∈ N, Nn = R. The algebra (⊗n∈NNn) oα G contains a subalgebra
generated by G that we will denote G.
(N0,G) is a normative pair in (⊗n∈NNn) oα G.

Sets and complexity classes

Definition (P+ and P+,1)

Let (N0,G) be a normative pair, φ ∈M6(G) an observation, we define:

[φ] = {n ∈ N | φ(Nn) is nilpotent}

An observation is said to be positive when all its coefficients are > 0.
We then define:

P+ = {φ | φ is a positive observation}
P+,1 = {φ | φ ∈ P+ and ‖φ‖1 6 1}

{P} = {[φ] | φ ∈ P}

We will prove

{P+} = co-NL
{P+,1} = L

Sets and complexity classes

Definition (P+ and P+,1)

Let (N0,G) be a normative pair, φ ∈M6(G) an observation, we define:

[φ] = {n ∈ N | φ(Nn) is nilpotent}

An observation is said to be positive when all its coefficients are > 0.

We then define:

P+ = {φ | φ is a positive observation}
P+,1 = {φ | φ ∈ P+ and ‖φ‖1 6 1}

{P} = {[φ] | φ ∈ P}

We will prove

{P+} = co-NL
{P+,1} = L

Sets and complexity classes

Definition (P+ and P+,1)

Let (N0,G) be a normative pair, φ ∈M6(G) an observation, we define:

[φ] = {n ∈ N | φ(Nn) is nilpotent}

An observation is said to be positive when all its coefficients are > 0.
We then define:

P+ = {φ | φ is a positive observation}
P+,1 = {φ | φ ∈ P+ and ‖φ‖1 6 1}

{P} = {[φ] | φ ∈ P}

We will prove

{P+} = co-NL
{P+,1} = L

Sets and complexity classes

Definition (P+ and P+,1)

Let (N0,G) be a normative pair, φ ∈M6(G) an observation, we define:

[φ] = {n ∈ N | φ(Nn) is nilpotent}

An observation is said to be positive when all its coefficients are > 0.
We then define:

P+ = {φ | φ is a positive observation}
P+,1 = {φ | φ ∈ P+ and ‖φ‖1 6 1}

{P} = {[φ] | φ ∈ P}

We will prove

{P+} = co-NL
{P+,1} = L

Checking the nilpotency in co-NL

If φ ∈ P+

φ(π, a1, . . . , ap;σ; e) =
K∑

i=0

αi (ρ, aτi (1), . . . , aτi (p); τiσ; ei)

bi00

b1
i0

Nn

b2
0 b2

p2
. . .

φ

b3
0 b3

p3

. . .

φ

. . .

φ

Nn Nn

Bounded by k

︸ ︷︷ ︸
Bounded by k

With bj
i the elements of the basis encountered.

and k the dimensions of the
underlying space.

Checking the nilpotency in co-NL

If φ ∈ P+

φ(π, a1, . . . , ap;σ; e) =
K∑

i=0

αi (ρ, aτi (1), . . . , aτi (p); τiσ; ei)

bi00

b1
i0

Nn

b2
0 b2

p2
. . .

φ

b3
0 b3

p3

. . .

φ

. . .

φ

Nn Nn

Bounded by k

︸ ︷︷ ︸
Bounded by k

With bj
i the elements of the basis encountered and k the dimensions of the

underlying space.

Checking the nilpotency in

co-N

L

If φ ∈ P+,1

φ(π, a1, . . . , ap;σ; e) =

K∑
i=0

αi (ρ, aτi (1), . . . , aτi (p); τiσ; ei)

bi00

b1
i0

Nn

b2
0

b3
0

Nn

φ

...

Bounded by k

︸ ︷︷ ︸
Bounded by k

With bj
i the elements of the basis encountered and k the dimensions of the

underlying space.

Singularities of this framework

•Positive observations
No interference between the “branches” of the computation.
↪→ Non-deterministic computation.

•Nilpotency
All “branches” must reach 0 for the computation to stop.
↪→ “Universally non-deterministic”

•Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
↪→ Several registers / pointers.

•Nilpotency as acceptation
A “fresh copy” of the input and the program is provided at every step.
↪→ Not possible to modify the input.

+ Technical details : circular input, specific kind of initialization, etc.

Singularities of this framework

•Positive observations
No interference between the “branches” of the computation.
↪→ Non-deterministic computation.

•Nilpotency
All “branches” must reach 0 for the computation to stop.
↪→ “Universally non-deterministic”

•Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
↪→ Several registers / pointers.

•Nilpotency as acceptation
A “fresh copy” of the input and the program is provided at every step.
↪→ Not possible to modify the input.

+ Technical details : circular input, specific kind of initialization, etc.

Singularities of this framework

•Positive observations
No interference between the “branches” of the computation.
↪→ Non-deterministic computation.

•Nilpotency
All “branches” must reach 0 for the computation to stop.
↪→ “Universally non-deterministic”

•Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
↪→ Several registers / pointers.

•Nilpotency as acceptation
A “fresh copy” of the input and the program is provided at every step.
↪→ Not possible to modify the input.

+ Technical details : circular input, specific kind of initialization, etc.

Singularities of this framework

•Positive observations
No interference between the “branches” of the computation.
↪→ Non-deterministic computation.

•Nilpotency
All “branches” must reach 0 for the computation to stop.
↪→ “Universally non-deterministic”

•Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
↪→ Several registers / pointers.

•Nilpotency as acceptation
A “fresh copy” of the input and the program is provided at every step.
↪→ Not possible to modify the input.

+ Technical details : circular input, specific kind of initialization, etc.

Singularities of this framework

•Positive observations
No interference between the “branches” of the computation.
↪→ Non-deterministic computation.

•Nilpotency
All “branches” must reach 0 for the computation to stop.
↪→ “Universally non-deterministic”

•Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
↪→ Several registers / pointers.

•Nilpotency as acceptation
A “fresh copy” of the input and the program is provided at every step.
↪→ Not possible to modify the input.

+ Technical details : circular input, specific kind of initialization, etc.

A pointer machine

But which one?
• Purple
• JAG
• Knuth’s Linking Automaton
• Tarjan’s Reference Machine
• SMM, KUM,
• 2NDFA

A model of computation

Theorem

co-

NL = ∪k>1L(2NDFA(k))

L = ∪k>1L(2DFA(k))

Theorem
For any NDPM M, there exists an observation M• ∈M6(G) such that for all
Nn ∈M6(N0)

M(n) accepts iff M•(Nn) is nilpotent.

Moreover, M• ∈ P+, and if M was deterministic, M• ∈ P+,1

Theorem

{P+} = co-NL
{P+,1} = L

A model of computation

Theorem

co-NL = ∪k>1L(NDPM(k))

L = ∪k>1L(DPM(k))

Theorem
For any NDPM M, there exists an observation M• ∈M6(G) such that for all
Nn ∈M6(N0)

M(n) accepts iff M•(Nn) is nilpotent.

Moreover, M• ∈ P+, and if M was deterministic, M• ∈ P+,1

Theorem

{P+} = co-NL
{P+,1} = L

A model of computation

Theorem

co-NL = ∪k>1L(NDPM(k))

L = ∪k>1L(DPM(k))

Theorem
For any NDPM M, there exists an observation M• ∈M6(G) such that for all
Nn ∈M6(N0)

M(n) accepts iff M•(Nn) is nilpotent.

Moreover, M• ∈ P+, and if M was deterministic, M• ∈ P+,1

Theorem

{P+} = co-NL
{P+,1} = L

A model of computation

Theorem

co-NL = ∪k>1L(NDPM(k))

L = ∪k>1L(DPM(k))

Theorem
For any NDPM M, there exists an observation M• ∈M6(G) such that for all
Nn ∈M6(N0)

M(n) accepts iff M•(Nn) is nilpotent.

Moreover, M• ∈ P+, and if M was deterministic, M• ∈ P+,1

Theorem

{P+} = co-NL
{P+,1} = L

What we did

• Defined a representation of integers as operators
• Defined “observations” i.e. programs as operators
• Took a specific sub-algebra
• Checked that nilpotency could be decided with logarithmic resources
• Defined an encoding from 2NDFA to operators

Perspectives

• Finite matrices?
• Different constrain on norm, coefficient, etc.
• Another group?

