# Logarithmic Space and Permutations 

LCC'13, Torino

Clément Aubert<br>Joint work with Thomas Seiller



5 September 2013

## References

围 Clément Aubert and Thomas Seiller. Characterizing co-NL by a group action. CoRR, abs/1209.3422, 2012.
圊
Clément Aubert and Thomas Seiller.
Logarithmic space and permutations.
CoRR, abs/1301.3189, 2013.
Jean-Yves Girard.
Normativity in logic.
In Peter Dybjer, Sten Lindström, Erik Palmgren, and Göran Sundholm, editors, Epistemology versus Ontology, volume 27 of Logic,
Epistemology, and the Unity of Science, pages 243-263. Springer, 2012.


## Encoding integers into the hyperfinite factor

Integers $\rightarrow$ Binary List $\rightarrow \lambda$-term $\rightarrow$ proof $\quad \rightarrow$ Proof-Net $\rightarrow$ Matrices

```
0,1,2,3,\ldots
    \hookrightarrow001,010,011, 100,\ldots
    \hookrightarrow \f0}\lambda\mp@code{f}\mp@subsup{f}{1}{}\mp@subsup{\lambda}{x}{}\cdot\mp@subsup{f}{0}{}(\mp@subsup{f}{1}{}(\mp@subsup{f}{1}{}(\ldots)(\mp@subsup{f}{0}{}x)\ldots
    \vdash\forallX(X->X)->((X->X)->(X->X))
```


## Encoding integers into the hyperfinite factor

Integers $\rightarrow$ Binary List $\rightarrow \lambda$-term $\rightarrow$ proof in L.L. $\rightarrow$ Proof-Net $\rightarrow$ Matrices

```
0,1,2,3,\ldots
    \hookrightarrow001,010,011, 100,\ldots
    \hookrightarrow \lambdaf0}\lambda\mp@subsup{f}{1}{}\mp@subsup{\lambda}{x}{}\cdot\mp@subsup{f}{0}{\prime}(\mp@subsup{f}{1}{}(\mp@subsup{f}{1}{}(\ldots(\mp@subsup{f}{0}{}x)\ldots
    \mapsto\forallX?(X\multimapX)\multimap(?(X\multimapX)\multimap!(X\multimapX))
```


## Encoding integers into the hyperfinite factor

Integers $\rightarrow$ Binary List $\rightarrow \lambda$-term $\rightarrow$ proof in L.L. $\rightarrow$ Proof-Net $\rightarrow$ Matrices
$0,1,2,3, \ldots$
$\hookrightarrow 001,010,011,100, \ldots$
$\hookrightarrow \lambda f_{0} \lambda f_{1} \lambda_{x} \cdot f_{0}\left(f_{1}\left(f_{1}\left(\ldots\left(f_{0} x\right) \ldots\right)\right.\right.$
$\hookrightarrow \underset{\hookrightarrow}{\forall} \forall(X \multimap X) \multimap(?(X \multimap X) \multimap!(X \multimap X))$


## Encoding integers into the hyperfinite factor

Integers $\rightarrow$ Binary List $\rightarrow \lambda$-term $\rightarrow$ proof in L.L. $\rightarrow$ Proof-Net $\rightarrow$ Matrices


## Encoding integers into the hyperfinite factor

Integers $\rightarrow$ Binary List $\rightarrow \lambda$-term $\rightarrow$ proof in L.L. $\rightarrow$ Proof-Net $\rightarrow$ Matrices


How to compute with integers as operators?

Definition (Binary representation of integers)
An operator $N_{n} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$ is a binary representation of an integer $n$ if $\ldots$


## How to compute with integers as operators?

Definition (Binary representation of integers)
An operator $N_{n} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$ is a binary representation of an integer $n$ if $\ldots$


Definition (Observations)
An observation is an operator $\phi \in \mathfrak{M}_{6}(\mathfrak{S})$.

## How to compute with integers as operators?

Definition (Binary representation of integers)
An operator $N_{n} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$ is a binary representation of an integer $n$ if $\ldots$


Definition (Observations)
An observation is an operator $\phi \in \mathfrak{M}_{6}(\mathfrak{S})$.

Definition (Computing, accepting)
The computation ends if $\exists k \in \mathbb{N}$ such that

$$
\left(\phi\left(N_{n}\right)\right)^{k}=0
$$

## Normative pair \& finite permutations

## Definition (Normative Pairs)

Let $\mathfrak{N}_{0}$ and $\mathfrak{S}$ be two subalgebras of a von Neumann algebra $\mathfrak{M}$. The pair ( $\mathfrak{N}_{0}, \mathfrak{S}$ ) is a normative pair (in $\mathfrak{M}$ ) if:

- $\mathfrak{N}_{0}$ is isomorphic to $\mathfrak{R}$;
- For all $\Phi \in \mathfrak{M}_{6}(\mathfrak{S})$ and $N_{n}, N_{n}^{\prime} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$ two binary representations of $n$, $\Phi N_{n}$ is nilpotent $\Leftrightarrow \Phi N_{n}^{\prime}$ is nilpotent


## Normative pair \& finite permutations

## Definition (Normative Pairs)

Let $\mathfrak{N}_{0}$ and $\mathfrak{S}$ be two subalgebras of a von Neumann algebra $\mathfrak{M}$. The pair ( $\mathfrak{N}_{0}, \mathfrak{S}$ ) is a normative pair (in $\mathfrak{M}$ ) if:

- $\mathfrak{N}_{0}$ is isomorphic to $\mathfrak{R}$;
- For all $\Phi \in \mathfrak{M}_{6}(\mathfrak{S})$ and $N_{n}, N_{n}^{\prime} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$ two binary representations of $n$,

$$
\Phi N_{n} \text { is nilpotent } \Leftrightarrow \Phi N_{n}^{\prime} \text { is nilpotent }
$$

## Proposition

Let $G$ be the group of finite permutations over $\mathbb{N}, \alpha$ an action of $G$ and for all $n \in \mathbb{N}, \mathfrak{N}_{n}=\mathfrak{R}$. The algebra $\left(\otimes_{n \in \mathbb{N}} \mathfrak{N}_{n}\right) \rtimes_{\alpha} G$ contains a subalgebra generated by $G$ that we will denote $\mathfrak{G}$. $\left(\mathfrak{N}_{0}, \mathfrak{G}\right)$ is a normative pair in $\left(\otimes_{n \in \mathbb{N}} \mathfrak{N}_{n}\right) \rtimes_{\alpha} G$.

## Sets and complexity classes

Definition ( $P_{+}$and $P_{+, 1}$ )
Let $\left(\mathfrak{N}_{0}, \mathfrak{G}\right)$ be a normative pair, $\phi \in \mathfrak{M}_{6}(\mathfrak{G})$ an observation, we define:

$$
[\phi]=\left\{n \in \mathbb{N} \mid \phi\left(N_{n}\right) \text { is nilpotent }\right\}
$$

## Sets and complexity classes

Definition ( $P_{+}$and $P_{+, 1}$ )
Let $\left(\mathfrak{N}_{0}, \mathfrak{G}\right)$ be a normative pair, $\phi \in \mathfrak{M}_{6}(\mathfrak{G})$ an observation, we define:

$$
[\phi]=\left\{n \in \mathbb{N} \mid \phi\left(N_{n}\right) \text { is nilpotent }\right\}
$$

An observation is said to be positive when all its coefficients are $\geqslant 0$.

## Sets and complexity classes

Definition ( $P_{+}$and $P_{+, 1}$ )
Let $\left(\mathfrak{N}_{0}, \mathfrak{G}\right)$ be a normative pair, $\phi \in \mathfrak{M}_{6}(\mathfrak{G})$ an observation, we define:

$$
[\phi]=\left\{n \in \mathbb{N} \mid \phi\left(N_{n}\right) \text { is nilpotent }\right\}
$$

An observation is said to be positive when all its coefficients are $\geqslant 0$. We then define:

$$
\begin{aligned}
P_{+}= & \{\phi \mid \phi \text { is a positive observation }\} \\
P_{+, 1}= & \left\{\phi \mid \phi \in P_{+} \text {and }\|\phi\|_{1} \leqslant 1\right\} \\
& \{P\}=\{[\phi] \mid \phi \in P\}
\end{aligned}
$$

## Sets and complexity classes

Definition ( $P_{+}$and $P_{+, 1}$ )
Let $\left(\mathfrak{N}_{0}, \mathfrak{G}\right)$ be a normative pair, $\phi \in \mathfrak{M}_{6}(\mathfrak{G})$ an observation, we define:

$$
[\phi]=\left\{n \in \mathbb{N} \mid \phi\left(N_{n}\right) \text { is nilpotent }\right\}
$$

An observation is said to be positive when all its coefficients are $\geqslant 0$. We then define:

$$
\begin{aligned}
P_{+}= & \{\phi \mid \phi \text { is a positive observation }\} \\
P_{+, 1}= & \left\{\phi \mid \phi \in P_{+} \text {and }\|\phi\|_{1} \leqslant 1\right\} \\
& \{P\}=\{[\phi] \mid \phi \in P\}
\end{aligned}
$$

We will prove

$$
\begin{aligned}
\left\{P_{+}\right\} & =\mathbf{c o}-\mathbf{N L} \\
\left\{P_{+, 1}\right\} & =\mathbf{L}
\end{aligned}
$$

If $\phi \in P_{+}$

$$
\phi\left(\pi, a_{1}, \ldots, a_{p} ; \sigma ; e\right)=\sum_{i=0}^{\kappa} \alpha_{i}\left(\rho, a_{\tau_{i}(1)}, \ldots, a_{\tau_{i}(p) ;} ; \tau_{i} \sigma ; e_{i}\right)
$$



With $b_{i}^{j}$ the elements of the basis encountered.

## Checking the nilpotency in co-NL

If $\phi \in P_{+}$

$$
\phi\left(\pi, a_{1}, \ldots, a_{p} ; \sigma ; \boldsymbol{e}\right)=\sum_{i=0}^{K} \alpha_{i}\left(\rho, a_{\tau_{i}(1)}, \ldots, a_{\tau_{i}(p)} ; \tau_{i} \sigma ; e_{i}\right)
$$



With $b_{i}^{j}$ the elements of the basis encountered and $k$ the dimensions of the underlying space.

If $\phi \in P_{+, 1}$

$$
\phi\left(\pi, a_{1}, \ldots, a_{p} ; \sigma ; e\right)=\quad \alpha_{i}\left(\rho, a_{\tau_{i}(1)}, \ldots, a_{\tau_{i}(p)} ; \tau_{i} \sigma ; e_{i}\right)
$$



With $b_{i}^{j}$ the elements of the basis encountered and $k$ the dimensions of the underlying space.

## Singularities of this framework

-Positive observations
No interference between the "branches" of the computation.
$\hookrightarrow$ Non-deterministic computation.

## Singularities of this framework

-Positive observations
No interference between the "branches" of the computation.
$\hookrightarrow$ Non-deterministic computation.

- Nilpotency

All "branches" must reach 0 for the computation to stop.
$\hookrightarrow$ "Universally non-deterministic"

## Singularities of this framework

-Positive observations
No interference between the "branches" of the computation.
$\hookrightarrow$ Non-deterministic computation.

- Nilpotency

All "branches" must reach 0 for the computation to stop.
$\hookrightarrow$ "Universally non-deterministic"
-Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
$\hookrightarrow$ Several registers / pointers.

## Singularities of this framework

-Positive observations
No interference between the "branches" of the computation.
$\hookrightarrow$ Non-deterministic computation.

- Nilpotency

All "branches" must reach 0 for the computation to stop.
$\hookrightarrow$ "Universally non-deterministic"
-Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
$\hookrightarrow$ Several registers / pointers.

- Nilpotency as acceptation

A "fresh copy" of the input and the program is provided at every step.
$\hookrightarrow$ Not possible to modify the input.

## Singularities of this framework

-Positive observations
No interference between the "branches" of the computation.
$\hookrightarrow$ Non-deterministic computation.

- Nilpotency

All "branches" must reach 0 for the computation to stop.
$\hookrightarrow$ "Universally non-deterministic"
-Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
$\hookrightarrow$ Several registers / pointers.

- Nilpotency as acceptation

A "fresh copy" of the input and the program is provided at every step.
$\hookrightarrow$ Not possible to modify the input.

+ Technical details : circular input, specific kind of initialization, etc.

But which one?

- Purple
- JAG
- Knuth's Linking Automaton
- Tarjan's Reference Machine
- SMM, KUM,
- 2NDFA


## A model of computation

Theorem

$$
\begin{aligned}
\boldsymbol{N L} & =\cup_{k} \geqslant 1 \mathcal{L}(2 N D F A(k)) \\
\boldsymbol{L} & =\cup_{k} \geqslant 1 \mathcal{L}(2 D F A(k))
\end{aligned}
$$

## A model of computation

Theorem

$$
\begin{aligned}
\mathbf{c o}-\mathbf{N L} & =\cup_{k \geqslant 1} \mathcal{L}(\operatorname{NDPM}(k)) \\
\boldsymbol{L} & =\cup_{k} \geqslant 1 \mathcal{L}(D P M(k))
\end{aligned}
$$

## A model of computation

Theorem

$$
\begin{aligned}
\mathbf{c o}-\mathbf{N L} & =\cup_{k \geqslant 1} \mathcal{L}(\operatorname{NDPM}(k)) \\
\boldsymbol{L} & =\cup_{k \geqslant 1} \mathcal{L}(D P M(k))
\end{aligned}
$$

Theorem
For any NDPM M, there exists an observation $M^{\bullet} \in \mathfrak{M}_{6}(\mathfrak{G})$ such that for all $N_{n} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$
$M(n)$ accepts iff $M^{\bullet}\left(N_{n}\right)$ is nilpotent.
Moreover, $M^{\boldsymbol{\bullet}} \in P_{+}$, and if $M$ was deterministic, $M^{\bullet} \in P_{+, 1}$

## A model of computation

Theorem

$$
\begin{aligned}
\mathbf{c o}-\mathbf{N L} & =\cup_{k \geqslant 1} \mathcal{L}(\operatorname{NDPM}(k)) \\
\boldsymbol{L} & =\cup_{k \geqslant 1} \mathcal{L}(D P M(k))
\end{aligned}
$$

## Theorem

For any NDPM M, there exists an observation $M^{\boldsymbol{\bullet}} \in \mathfrak{M}_{6}(\mathfrak{G})$ such that for all $N_{n} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$

$$
M(n) \text { accepts iff } M^{\bullet}\left(N_{n}\right) \text { is nilpotent. }
$$

Moreover, $M^{\bullet} \in P_{+}$, and if $M$ was deterministic, $M^{\bullet} \in P_{+, 1}$

Theorem

$$
\begin{aligned}
\left\{P_{+}\right\} & =\mathbf{c o}-\mathbf{N L} \\
\left\{P_{+, 1}\right\} & =\boldsymbol{L}
\end{aligned}
$$

## What we did

- Defined a representation of integers as operators
- Defined "observations" i.e. programs as operators
- Took a specific sub-algebra
- Checked that nilpotency could be decided with logarithmic resources
- Defined an encoding from 2NDFA to operators


## Perspectives

- Finite matrices?
- Different constrain on norm, coefficient, etc.
- Another group?

