Logarithmic Space and Permutations LCC'13, Torino

Clément Aubert Joint work with Thomas Seiller

aubert@lipn.fr

5 September 2013

CoRR, abs/1301.3189, 2013.

Jean-Yves Girard.

Normativity in logic.

In Peter Dybjer, Sten Lindström, Erik Palmgren, and Göran Sundholm, editors, *Epistemology versus Ontology*, volume 27 of *Logic, Epistemology, and the Unity of Science*, pages 243–263. Springer, 2012.

Overview

 $\mathsf{Integers} \to \mathsf{Binary} \ \mathsf{List} \to \lambda \text{-term} \to \mathsf{proof} \qquad \to \mathsf{Proof-Net} \to \mathsf{Matrices}$

$$0, 1, 2, 3, \dots$$

$$\hookrightarrow 001, 010, 011, 100, \dots$$

$$\hookrightarrow \lambda f_0 \lambda f_1 \lambda_X \cdot f_0(f_1(f_1(\dots (f_0 X) \dots)$$

$$\hookrightarrow \vdash \forall X(X \to X) \to ((X \to X))$$

$$0, 1, 2, 3, \dots$$

$$\hookrightarrow 001, 010, 011, 100, \dots$$

$$\hookrightarrow \lambda f_0 \lambda f_1 \lambda_x \cdot f_0(f_1(f_1(\dots (f_0 x) \dots)$$

$$\hookrightarrow \vdash \forall X? (X \multimap X) \multimap (?(X \multimap X) \multimap ! (X \multimap X))$$

$$M_n = \begin{pmatrix} 0 & 1 & \star \\ 0 & l_{00} & 0 & l_{10} & l_{50} & 0 \\ l_{00}{}^t & 0 & l_{01}{}^t & 0 & 0 & l_{0E}{}^t \\ 0 & l_{01} & 0 & l_{11} & l_{51} & 0 \\ l_{10}{}^t & 0 & l_{11}{}^t & 0 & 0 & l_{1E}{}^t \\ l_{50}{}^t & 0 & l_{51}{}^t & 0 & 0 & 0 \\ 0 & l_{0E} & 0 & l_{1E} & 0 & 0 \end{pmatrix} \right\} \overset{1}{\star}$$

Definition (Binary representation of integers)

An operator $N_n \in \mathfrak{M}_6(\mathfrak{N}_0)$ is a *binary representation* of an integer *n* if ...

Definition (Binary representation of integers)

An operator $N_n \in \mathfrak{M}_6(\mathfrak{N}_0)$ is a *binary representation* of an integer *n* if ...

Definition (Observations)

An *observation* is an operator $\phi \in \mathfrak{M}_6(\mathfrak{S})$.

Definition (Binary representation of integers)

An operator $N_n \in \mathfrak{M}_6(\mathfrak{N}_0)$ is a *binary representation* of an integer *n* if ...

Definition (Observations)

An *observation* is an operator $\phi \in \mathfrak{M}_6(\mathfrak{S})$.

Definition (Computing, accepting)

The computation ends if $\exists k \in \mathbb{N}$ such that

$$(\phi(N_n))^k = 0$$

Definition (Normative Pairs)

Let \mathfrak{N}_0 and \mathfrak{S} be two subalgebras of a von Neumann algebra \mathfrak{M} . The pair $(\mathfrak{N}_0, \mathfrak{S})$ is a *normative pair (in* \mathfrak{M}) if:

- \mathfrak{N}_0 is isomorphic to \mathfrak{R} ;
- For all Φ ∈ 𝔐₆(𝔅) and N_n, N'_n ∈ 𝔐₆(𝔅₀) two binary representations of n,

 ΦN_n is nilpotent $\Leftrightarrow \Phi N'_n$ is nilpotent

Definition (Normative Pairs)

Let \mathfrak{N}_0 and \mathfrak{S} be two subalgebras of a von Neumann algebra \mathfrak{M} . The pair $(\mathfrak{N}_0, \mathfrak{S})$ is a *normative pair (in* \mathfrak{M}) if:

- \mathfrak{N}_0 is isomorphic to \mathfrak{R} ;
- For all Φ ∈ 𝔐₆(𝔅) and N_n, N'_n ∈ 𝔐₆(𝔅₀) two binary representations of n,

 ΦN_n is nilpotent $\Leftrightarrow \Phi N'_n$ is nilpotent

Proposition

Let G be the group of finite permutations over \mathbb{N} , α an action of G and for all $n \in \mathbb{N}$, $\mathfrak{N}_n = \mathfrak{R}$. The algebra $(\bigotimes_{n \in \mathbb{N}} \mathfrak{N}_n) \rtimes_{\alpha} G$ contains a subalgebra generated by G that we will denote \mathfrak{G} . $(\mathfrak{N}_0, \mathfrak{G})$ is a normative pair in $(\bigotimes_{n \in \mathbb{N}} \mathfrak{N}_n) \rtimes_{\alpha} G$.

Definition (P_+ and $P_{+,1}$)

Let $(\mathfrak{N}_0,\mathfrak{G})$ be a normative pair, $\phi \in \mathfrak{M}_6(\mathfrak{G})$ an observation, we define:

 $[\phi] = \{n \in \mathbb{N} \mid \phi(N_n) \text{ is nilpotent}\}\$

Definition (P_+ and $P_{+,1}$)

Let $(\mathfrak{N}_0,\mathfrak{G})$ be a normative pair, $\phi \in \mathfrak{M}_6(\mathfrak{G})$ an observation, we define:

 $[\phi] = \{n \in \mathbb{N} \mid \phi(N_n) \text{ is nilpotent}\}\$

An observation is said to be *positive* when all its coefficients are ≥ 0 .

Definition (P_+ and $P_{+,1}$)

Let $(\mathfrak{N}_0,\mathfrak{G})$ be a normative pair, $\phi \in \mathfrak{M}_6(\mathfrak{G})$ an observation, we define:

 $[\phi] = \{n \in \mathbb{N} \mid \phi(N_n) \text{ is nilpotent}\}\$

An observation is said to be *positive* when all its coefficients are ≥ 0 . We then define:

$$P_{+} = \{\phi \mid \phi \text{ is a positive observation}\}$$
$$P_{+,1} = \{\phi \mid \phi \in P_{+} \text{ and } \|\phi\|_{1} \leq 1\}$$
$$\{P\} = \{[\phi] \mid \phi \in P\}$$

Definition (P_+ and $P_{+,1}$)

Let $(\mathfrak{N}_0,\mathfrak{G})$ be a normative pair, $\phi \in \mathfrak{M}_6(\mathfrak{G})$ an observation, we define:

 $[\phi] = \{n \in \mathbb{N} \mid \phi(N_n) \text{ is nilpotent}\}\$

An observation is said to be *positive* when all its coefficients are ≥ 0 . We then define:

$$P_{+} = \{\phi \mid \phi \text{ is a positive observation}\}$$
$$P_{+,1} = \{\phi \mid \phi \in P_{+} \text{ and } \|\phi\|_{1} \leq 1\}$$
$$\{P\} = \{[\phi] \mid \phi \in P\}$$

We will prove

$$\{P_+\} = \text{co-NL}$$

 $\{P_{+,1}\} = L$

Checking the nilpotency in co-NL

If $\phi \in P_+$

With b_i^j the elements of the basis encountered.

Checking the nilpotency in **co-NL**

If $\phi \in P_+$ $\phi(\pi, \mathbf{a}_1, \ldots, \mathbf{a}_{\rho}; \sigma; \mathbf{e}) = \sum_{i=0}^{K} \alpha_i(\rho, \mathbf{a}_{\tau_i(1)}, \ldots, \mathbf{a}_{\tau_i(\rho)}; \tau_i \sigma; \mathbf{e}_i)$ $b_{i_0^0}$ N_n b_i^1 b_0^2 Bounded by k $b_{p_2}^2$. . . b_p^3 Bounded by k

With b_i^j the elements of the basis encountered and *k* the dimensions of the underlying space.

Checking the nilpotency in L

If $\phi \in P_{+,1}$

$$\phi(\pi, \mathbf{a}_1, \ldots, \mathbf{a}_p; \sigma; \mathbf{e}) = \alpha_i(\rho, \mathbf{a}_{\tau_i(1)}, \ldots, \mathbf{a}_{\tau_i(p)}; \tau_i \sigma; \mathbf{e}_i)$$

With b_i^j the elements of the basis encountered and *k* the dimensions of the underlying space.

Positive observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Positive observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

 $\hookrightarrow ``Universally non-deterministic"$

Positive observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

 \hookrightarrow "Universally non-deterministic"

•Crossed product with the group of finite permutations

Permutations to chose where the bit currently read is stored.

 \hookrightarrow Several registers / pointers.

Positive observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

 \hookrightarrow "Universally non-deterministic"

Crossed product with the group of finite permutations

Permutations to chose where the bit currently read is stored.

 \hookrightarrow Several registers / pointers.

Nilpotency as acceptation

A "fresh copy" of the input and the program is provided at every step. \hookrightarrow Not possible to modify the input.

Positive observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

 \hookrightarrow "Universally non-deterministic"

•Crossed product with the group of finite permutations

Permutations to chose where the bit currently read is stored.

 \hookrightarrow Several registers / pointers.

Nilpotency as acceptation

A "fresh copy" of the input and the program is provided at every step. \hookrightarrow Not possible to modify the input.

+ Technical details : circular input, specific kind of initialization, etc.

But which one?

- Purple
- JAG
- Knuth's Linking Automaton
- Tarjan's Reference Machine
- SMM, KUM,
- 2NDFA

A model of computation

Theorem

$$\begin{split} \textbf{NL} &= \cup_{k \geqslant 1} \mathcal{L}(2\textbf{NDFA}(k)) \\ \textbf{L} &= \cup_{k \geqslant 1} \mathcal{L}(2\textbf{DFA}(k)) \end{split}$$

A model of computation

Theorem

$co-NL = \bigcup_{k \ge 1} \mathcal{L}(NDPM(k))$ $L = \bigcup_{k \ge 1} \mathcal{L}(DPM(k))$

Theorem

$co-NL = \bigcup_{k \ge 1} \mathcal{L}(NDPM(k))$ $L = \bigcup_{k \ge 1} \mathcal{L}(DPM(k))$

Theorem

For any NDPM M, there exists an observation $M^{\bullet} \in \mathfrak{M}_{6}(\mathfrak{G})$ such that for all $N_{n} \in \mathfrak{M}_{6}(\mathfrak{N}_{0})$

M(n) accepts iff $M^{\bullet}(N_n)$ is nilpotent.

Moreover, $M^{\bullet} \in P_+$, and if M was deterministic, $M^{\bullet} \in P_{+,1}$

Theorem

$co-NL = \bigcup_{k \ge 1} \mathcal{L}(NDPM(k))$ $L = \bigcup_{k \ge 1} \mathcal{L}(DPM(k))$

Theorem

For any NDPM M, there exists an observation $M^{\bullet} \in \mathfrak{M}_{6}(\mathfrak{G})$ such that for all $N_{n} \in \mathfrak{M}_{6}(\mathfrak{N}_{0})$

M(n) accepts iff $M^{\bullet}(N_n)$ is nilpotent.

Moreover, $M^{\bullet} \in P_+$, and if M was deterministic, $M^{\bullet} \in P_{+,1}$

Theorem

$$\{P_+\} = co-NL$$

 $\{P_{+,1}\} = L$

- Defined a representation of integers as operators
- Defined "observations" *i.e.* programs as operators
- Took a specific sub-algebra
- Checked that nilpotency could be decided with logarithmic resources
- Defined an encoding from 2NDFA to operators

- Finite matrices?
- Different constrain on norm, coefficient, etc.
- Another group?