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Encoding integers into the hyperfinite factor

Integers→ Binary List→ λ-term→ proof

in L.L.

→ Proof-Net→ Matrices

0, 1, 2, 3, . . .
↪→ 001, 010, 011, 100, . . .

↪→ λf0λf1λx · f0(f1(f1(. . . (f0x) . . .)
↪→ ` ∀X (X → X )→ ((X → X )→ (X → X ))

↪→
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Encoding integers into the hyperfinite factor
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Encoding integers into the hyperfinite factor

Integers→ Binary List→ λ-term→ proof in L.L.→ Proof-Net→ Matrices

Mn =

0︷ ︸︸ ︷ 1︷ ︸︸ ︷ ?︷ ︸︸ ︷


0 l00 0 l10 lS0 0

}
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t 0 0 l0E
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0 l01 0 l11 lS1 0
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t 0 0 0
}
?0 l0E 0 l1E 0 0



How to compute with integers as operators?

Definition (Binary representation of integers)

An operator Nn ∈M6(N0) is a binary representation of an integer n if . . .

? •S•E 1 •
o•i 1 •

o•i 0 •
o•i 1 •

o•i 0 •
o•i

Definition (Observations)
An observation is an operator φ ∈M6(S).

Definition (Computing, accepting)
The computation ends if ∃k ∈ N such that

(φ(Nn))k = 0
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Normative pair & finite permutations

Definition (Normative Pairs)
Let N0 and S be two subalgebras of a von Neumann algebra M. The pair
(N0,S) is a normative pair (in M) if:

• N0 is isomorphic to R;
• For all Φ ∈M6(S) and Nn,N ′n ∈M6(N0) two binary representations of n,

ΦNn is nilpotent⇔ ΦN ′n is nilpotent

Proposition
Let G be the group of finite permutations over N, α an action of G and for all
n ∈ N, Nn = R. The algebra (⊗n∈NNn) oα G contains a subalgebra
generated by G that we will denote G.
(N0,G) is a normative pair in (⊗n∈NNn) oα G.
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Sets and complexity classes

Definition (P+ and P+,1)

Let (N0,G) be a normative pair, φ ∈M6(G) an observation, we define:

[φ] = {n ∈ N | φ(Nn) is nilpotent}

An observation is said to be positive when all its coefficients are > 0.
We then define:

P+ = {φ | φ is a positive observation}
P+,1 = {φ | φ ∈ P+ and ‖φ‖1 6 1}

{P} = {[φ] | φ ∈ P}

We will prove

{P+} = co-NL
{P+,1} = L
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Checking the nilpotency in co-NL

If φ ∈ P+

φ(π, a1, . . . , ap;σ; e) =
K∑

i=0

αi (ρ, aτi (1), . . . , aτi (p); τiσ; ei )
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Bounded by k

︸ ︷︷ ︸
Bounded by k

With bj
i the elements of the basis encountered.

and k the dimensions of the
underlying space.
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Checking the nilpotency in

co-N

L

If φ ∈ P+,1

φ(π, a1, . . . , ap;σ; e) =
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Singularities of this framework

•Positive observations
No interference between the “branches” of the computation.
↪→ Non-deterministic computation.

•Nilpotency
All “branches” must reach 0 for the computation to stop.
↪→ “Universally non-deterministic”

•Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
↪→ Several registers / pointers.

•Nilpotency as acceptation
A “fresh copy” of the input and the program is provided at every step.
↪→ Not possible to modify the input.

+ Technical details : circular input, specific kind of initialization, etc.
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A pointer machine

But which one?
• Purple
• JAG
• Knuth’s Linking Automaton
• Tarjan’s Reference Machine
• SMM, KUM,
• 2NDFA



A model of computation

Theorem

co-

NL = ∪k>1L(2NDFA(k))

L = ∪k>1L(2DFA(k))

Theorem
For any NDPM M, there exists an observation M• ∈M6(G) such that for all
Nn ∈M6(N0)

M(n) accepts iff M•(Nn) is nilpotent.

Moreover, M• ∈ P+, and if M was deterministic, M• ∈ P+,1

Theorem

{P+} = co-NL
{P+,1} = L
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What we did

• Defined a representation of integers as operators
• Defined “observations” i.e. programs as operators
• Took a specific sub-algebra
• Checked that nilpotency could be decided with logarithmic resources
• Defined an encoding from 2NDFA to operators



Perspectives

• Finite matrices?
• Different constrain on norm, coefficient, etc.
• Another group?


