Characterizing co-NL by a Group Action

Focus Meeting

Clément Aubert
Joint work with Thomas Seiller (LAMA - Univ. de Savoie)

Institut Galilée - Université Paris-Nord
99, avenue Jean-Baptiste Clément
93430 Villetaneuse
aubert@lipn.fr
7 novembre 2012

$$
\text { co-NL }=\{A N D P M\}=\{N D P M\}=\left\{P_{+}\right\}=\{P \geqslant 0\}=\text { co-NL }
$$

(A)NDPM

Observations

Map (1 / 4)

$$
\text { co-NL } \subseteq\{A N D P M\} \subseteq\{N D P M\} \subseteq\left\{P_{+}\right\} \subseteq\left\{P_{\geqslant 0}\right\} \subseteq \text { co-NL }
$$

(A)NDPM

Observations

Our framework: an algebra

$\left(\mathfrak{M}_{6}(\mathfrak{S}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)$

Our framework: an algebra

$$
\underbrace{(\mathfrak{M}_{6}(\mathfrak{S}) \otimes \overbrace{\mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})}^{=\mathfrak{O}})}_{\text {Observation }} \underbrace{\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)}_{\text {The input }}
$$

Definition (Observations)

Let $\left(\mathcal{N}_{0}, \mathfrak{S}\right)$ be a normative pair. An observation is an operator
$\phi \in \mathfrak{M}_{6}(\mathfrak{S}) \otimes \mathfrak{O}$, where \mathfrak{O} is a matrix algebra, i.e. $\mathfrak{O}=\mathfrak{M}_{d}(\mathbb{C})$ for $d \in \mathbb{N}$, called the algebra of states.

Definition (Binary representation of integers)
An operator $N_{n} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$ is a binary representation of an integer n if \ldots

Our framework: an algebra

$$
\underbrace{(\mathfrak{M}_{6}(\mathfrak{S}) \otimes \overbrace{\mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})}^{=\mathfrak{O}})}_{\text {Observation }} \underbrace{\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)}_{\text {The input }}
$$

Definition (Observations)

Let $\left(\Re_{0}, \mathfrak{S}\right)$ be a normative pair. An observation is an operator
$\phi \in \mathfrak{M}_{6}(\mathfrak{S}) \otimes \mathfrak{O}$, where \mathfrak{D} is a matrix algebra, i.e. $\mathfrak{O}=\mathfrak{M}_{d}(\mathbb{C})$ for $d \in \mathbb{N}$, called the algebra of states.

Definition (Binary representation of integers)
An operator $N_{n} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$ is a binary representation of an integer n if \ldots

The computation ends if $\exists k \in \mathbb{N}$ such that

$$
\left(\phi\left(N_{n} \otimes 1_{\mathfrak{o}}\right)\right)^{k}=0
$$

Normative pair and crossed product

$\left(\mathfrak{N}_{6}(\mathfrak{S}) \otimes \mathfrak{N}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{N}_{6}(\mathbb{C}) \otimes \mathfrak{N}_{k}(\mathbb{C})\right)\left(\mathfrak{N}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)$

Definition (Normative Pairs)
Let \mathfrak{N}_{0} and \mathfrak{S} be two subalgebras of a von Neumann algebra \mathfrak{M}. The pair ($\mathfrak{N}_{0}, \mathfrak{S}$) is a normative pair (in \mathfrak{M}) if:

- \mathfrak{N}_{0} is isomorphic to \mathfrak{R};
- For all $\Phi \in \mathfrak{M}_{6}(\mathfrak{S})$ and $N_{n}, N_{n}^{\prime} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$ two binary representations of n, ΦN_{n} is nilpotent $\Leftrightarrow \Phi N_{n}^{\prime}$ is nilpotent

Normative pair and crossed product

$\left(\mathfrak{N}_{6}(\mathfrak{S}) \otimes \mathfrak{N}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{N}_{6}(\mathbb{C}) \otimes \mathfrak{N}_{k}(\mathbb{C})\right)\left(\mathfrak{N}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)$

Definition (Normative Pairs)
Let \mathfrak{N}_{0} and \mathfrak{S} be two subalgebras of a von Neumann algebra \mathfrak{M}. The pair ($\mathfrak{N}_{0}, \mathfrak{S}$) is a normative pair (in \mathfrak{M}) if:

- \mathfrak{N}_{0} is isomorphic to \mathfrak{R};
- For all $\Phi \in \mathfrak{M}_{6}(\mathfrak{S})$ and $N_{n}, N_{n}^{\prime} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$ two binary representations of n, ΦN_{n} is nilpotent $\Leftrightarrow \Phi N_{n}^{\prime}$ is nilpotent

Proposition

Let G be the group of finite permutations over \mathbb{N}, α an action of G and for all $n \in \mathbb{N}, \mathfrak{N}_{n}=\mathfrak{R}$. The algebra $\left(\otimes_{n \in \mathbb{N}} \mathfrak{N}_{s}\right) \rtimes_{\hat{\alpha}} G$ contains a subalgebra generated by \mathfrak{G} that we will denote \mathfrak{G}.
$\left(\mathfrak{N}_{0}, \mathfrak{G}\right)$ is a normative pair in $\left(\otimes_{n \in \mathbb{N}} \mathfrak{N}_{s}\right) \rtimes_{\hat{\alpha}} G$ (the type $\|_{1}$ hyperfinite factor).

$$
\left(\mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)
$$

Definition ($P_{\geqslant 0}$ and P_{+})
Let $\left(\mathfrak{N}_{0}, \mathfrak{G}\right)$ be a normative pair, $\left(\phi_{i, j}\right)_{0 \leqslant i, j \leqslant 6 d} \in \mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{d}(\mathbb{C})$ an observation, we define:

$$
[\phi]=\left\{n \in \mathbb{N} \mid \phi\left(N_{n} \otimes 1_{0}\right) \text { is nilpotent }\right\}
$$

An observation is said to be positive (resp. boolean) when for all i, j,

$$
\phi_{i, j}=\sum_{l=0}^{m} \alpha_{l} \lambda\left(g_{l}\right) \text { with } \alpha_{l} \geqslant 0\left(\text { resp. with } \alpha_{l}=1\right)
$$

We then define:

$$
\begin{aligned}
P_{\geqslant 0}= & \{\phi \mid \phi \text { is a positive observation }\} \\
P_{+}= & \{\phi \mid \phi \text { is a boolean observation }\} \\
& \{P\}=\{[\phi] \mid \phi \in P\}
\end{aligned}
$$

Singularities of this framework

$$
\left(\mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)
$$

-Positive or boolean observations No interference between the "branches" of the computation.
\hookrightarrow Non-deterministic computation.

Singularities of this framework

$$
\left(\mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)
$$

-Positive or boolean observations
No interference between the "branches" of the computation.
\hookrightarrow Non-deterministic computation.

- Nilpotency

All "branches" must reach 0 for the computation to stop.
\hookrightarrow Characterization of the complementary of a complexity class.

Singularities of this framework

$$
\left(\mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)
$$

- Positive or boolean observations

No interference between the "branches" of the computation.
\hookrightarrow Non-deterministic computation.

- Nilpotency

All "branches" must reach 0 for the computation to stop.
\hookrightarrow Characterization of the complementary of a complexity class.

- Crossed product with the group of finite permutations

Permutations to chose where the bit currently read is stored.
\hookrightarrow The bit is stored only when the pointer moves.

Singularities of this framework

$$
\left(\mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)
$$

- Positive or boolean observations

No interference between the "branches" of the computation.
\hookrightarrow Non-deterministic computation.

- Nilpotency

All "branches" must reach 0 for the computation to stop.
\hookrightarrow Characterization of the complementary of a complexity class.

- Crossed product with the group of finite permutations

Permutations to chose where the bit currently read is stored.
\hookrightarrow The bit is stored only when the pointer moves.

+ circular input

Map (2 / 4)

co-NL $\subseteq \quad\{A N D P M\} \subseteq\{N D P M\} \subseteq\left\{P_{+}\right\} \subseteq\left\{P_{\geqslant 0}\right\} \subseteq$ co-NL
(A)NDPM Observations

Theorem
A NDPM can decides a co-NL complete problem.
co-NL $\subseteq\{A N D P M\} \subseteq\{N D P M\} \subseteq\left\{P_{+}\right\} \subseteq\left\{P_{\geqslant 0}\right\} \subseteq$ co-NL
(A)NDPM Observations

Theorem
A NDPM can decides a co-NL complete problem.

Remark (Arnaud Durand)

In fact, NDPM are (slightly modified) 2NFA(k), and it is proven that $N L=\cup_{k \geqslant 1} \mathcal{L}(2 N F A(k))$.

Definition (Non-Deterministic Pointer Machines)

A non-deterministic pointer machine (NDPM) with $p \in \mathbb{N}$ pointers is a triplet $M=\{Q, \Sigma, \rightarrow\}$ where

- Q is the set of states, $Q=\left\{\mathbf{q}_{0}, \mathbf{q}_{1}, \ldots, \mathbf{q}_{e}\right\}$;
- $\Sigma=\{0,1, \star\}$ is the alphabet;
- $\rightarrow \subseteq\left(\Sigma^{p} \times Q\right) \times\left(\wp\left(\left(P^{p} \times Q\right) \backslash \emptyset\right) \cup\{\right.$ accept, reject $\left.\}\right)$ is the binary transition relation.
where P is the set of instructions: $P=\left\{p_{i-}, \epsilon_{i}, p_{i}+\mid i \in\{1, \ldots, p\}\right\}$.
- Fixed (constant) number of pointers
- No access to the adresses
- Non-determinist

Theorem
There exists a NMDP that decides s-t-conn-Comp, a co-NL complete problem.

Definition
Let \{NDPM\} (resp. \{ANDPM\}) be the class of sets S such that there exists a NDPM (resp. an acyclic NDPM) that decides S.

Corollary

$$
\mathbf{c o}-N L \subseteq\{N D P M\}
$$

Map (3 / 4)

$$
\text { co-NL } \subseteq\{A N D P M\}=\{N D P M\} \subseteq\left\{P_{+}\right\} \subseteq\{P \geqslant 0\} \subseteq \text { co-NL }
$$

(A)NDPM

Observations

Theorem
A ANDPM can be encoded in an observation.

Acyclic NDPM

$$
\left(\mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)
$$

Definition

A configuration (resp. a pseudo-configuration) is an element of the set $n^{p} \times \Sigma^{p} \times Q$ (resp. $\Sigma^{p} \times Q$). The set of all possible pseudo-configurations of a NDPM M is denoted c_{M}.

Acyclic NDPM

$$
\left(\mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)
$$

Definition

A configuration (resp. a pseudo-configuration) is an element of the set $n^{p} \times \Sigma^{p} \times Q$ (resp. $\Sigma^{p} \times Q$). The set of all possible pseudo-configurations of a NDPM M is denoted c_{M}.

Definition (Acyclicity)
A NDPM M is said to be acyclic when for all $c \in C_{M}$ and all entry $n \in \mathbb{N}$, $M_{c}(n)$ halts.

Lemma

For all NDPM M that decides a set S there exists an acyclic NDPM M' that decides S.

Encoding ANDPM

$$
\left(\mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)
$$

Proposition (Encoding M_{c})
$\rightarrow \sum_{c \in C_{M}} \sum_{\text {s.t. }} \phi_{c \rightarrow t} \phi_{c, t}$

- Q^{\bullet} is in the matrix algebra.
- P^{\bullet} by means of projections and permutations.
- accept ${ }^{\boldsymbol{*}}=0$
- reject $=$ "restore M with initial pseudo-configuration c"

$$
\left(\mathfrak{M}_{6}(\mathfrak{G}) \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C}) \otimes \mathfrak{M}_{k}(\mathbb{C})\right)\left(\mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right) \otimes \mathfrak{O}\right)
$$

Proposition (Encoding M_{c})
$\rightarrow \sum_{c \in C_{M}} \sum_{\text {s.t. }} \phi_{c \rightarrow t} \phi_{c, t}$

- Q^{\bullet} is in the matrix algebra.
- P^{\bullet} by means of projections and permutations.
- accept ${ }^{\boldsymbol{*}}=0$
- reject ${ }^{\circ}=$ "restore M with initial pseudo-configuration c"

Theorem

For any acyclic NDPM M and pseudo-configuration $c \in C_{M}$, there exists an observation $M_{c}^{\bullet} \in \mathfrak{M}_{6}(\mathfrak{D}) \otimes \mathfrak{Q}_{M}$ such that for all $N_{n} \in \mathfrak{M}_{6}\left(\mathfrak{N}_{0}\right)$

$$
M_{c}(n) \text { accepts iff } M_{c}^{*}\left(N_{n} \otimes 1_{\mathfrak{Q}_{M}}\right) \text { is nilpotent. }
$$

Moreover, $M_{c}^{*} \in P_{+}$.

Observations

Theorem
A Turing Machine can decide if an observation accepts.

Some transformations

Lemma

There exist a morphism Φ and two matrices M and $\bar{\phi}$ such that $\Phi\left(M \otimes 1_{\mathfrak{E}}\right)=N_{n} \otimes 1_{\mathfrak{E}}$ and $\Phi(\bar{\phi})=\phi$. So we have $\phi\left(N_{n} \otimes 1_{\mathfrak{E}}\right)$ nilpotent if and only if $\left(M \otimes 1_{\mathfrak{E}}\right) \bar{\phi}$ nilpotent.

Remark

It is equivalent to consider

$$
\mathfrak{M}_{6}(\mathfrak{G}) \otimes \underbrace{\mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C})}_{p \text { times }} \otimes \mathfrak{M}_{k}(\mathbb{C})
$$

and

$$
\mathfrak{M}_{6}(\mathbb{C}) \otimes((\underbrace{\mathfrak{M}_{n+1}(\mathbb{C}) \otimes \cdots \otimes \mathfrak{M}_{n+1}(\mathbb{C})}_{p \text { times }}) \rtimes G_{p}) \otimes \mathfrak{E}
$$

whose basis contains elements of the form

$$
\left(\pi, a_{1}, \ldots, a_{p} ; \sigma ; e\right)
$$

$$
\bar{\phi}\left(\pi, a_{1}, \ldots, a_{p} ; \sigma ; e\right)=\sum_{i=0}^{K} \alpha_{i}\left(\rho, a_{\tau_{i}(1)}, \ldots, a_{\tau_{i}(p)} ; \tau_{i} \sigma ; e_{i}\right)
$$

With b_{i}^{j} the elements of the basis encountered.

Checking the nilpotency in co-NL

$$
\bar{\phi}\left(\pi, a_{1}, \ldots, a_{p} ; \sigma ; e\right)=\sum_{i=0}^{K} \alpha_{i}\left(\rho, a_{\tau_{i}(1)}, \ldots, a_{\tau_{i}(p)} ; \tau_{i} \sigma ; e_{i}\right)
$$

With b_{i}^{j} the elements of the basis encountered and k the dimensions of the underlying space, $6(n+1)^{p} p!d$ where d is the dimension of \mathfrak{E}.

Conclusion

$$
\begin{array}{cl}
\mathbf{c o - N L}=\{A N D P M\}=\{N D P M\}= & \left\{P_{+}\right\}=\left\{P_{\geqslant 0}\right\}=\mathbf{c o - N L} \\
& \text { Observations }
\end{array}
$$

$$
\begin{aligned}
& \text { lipn.fr/~aubert/ } \\
& \text { aubert@lipn.fr }
\end{aligned}
$$

