Characterizing **co-NL** by a Group Action Focus Meeting

Clément Aubert Joint work with Thomas Seiller (LAMA - Univ. de Savoie)

Institut Galilée - Université Paris-Nord 99, avenue Jean-Baptiste Clément 93430 Villetaneuse aubert@lipn.fr

7 novembre 2012

Мар

Map (1 / 4)

Our framework: an algebra

 $(\mathfrak{M}_6(\mathfrak{S})\otimes \mathfrak{M}_6(\mathbb{C})\otimes \ldots\otimes \mathfrak{M}_6(\mathbb{C})\otimes \mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes \mathfrak{O})$

Definition (Observations)

Let $(\mathfrak{N}_0, \mathfrak{S})$ be a normative pair. An *observation* is an operator $\phi \in \mathfrak{M}_6(\mathfrak{S}) \otimes \mathfrak{O}$, where \mathfrak{O} is a matrix algebra, i.e. $\mathfrak{O} = \mathfrak{M}_d(\mathbb{C})$ for $d \in \mathbb{N}$, called the *algebra of states*.

Definition (Binary representation of integers)

An operator $N_n \in \mathfrak{M}_6(\mathfrak{N}_0)$ is a *binary representation* of an integer *n* if ...

$$\overset{\mathsf{E}}{\underbrace{\bullet}} \underbrace{\underbrace{\bullet}} \overset{\mathsf{S}}{\underbrace{\bullet}} \underbrace{\longleftrightarrow} \overset{\mathsf{I}}{1} \overset{\mathsf{O}}{\underbrace{\bullet}} \underbrace{\longleftrightarrow} \overset{\mathsf{I}}{1} \overset{\mathsf{O}}{\underbrace{\bullet}} \underbrace{\longleftrightarrow} \overset{\mathsf{I}}{\underbrace{\bullet}} \overset{\mathsf{O}}{\underbrace{\bullet}} \underbrace{\bullet} \underbrace{\longleftrightarrow} \overset{\mathsf{I}}{\underbrace{\bullet}} \overset{\mathsf{O}}{\underbrace{\bullet}} \underbrace{\bullet} \underbrace{\longleftrightarrow} \overset{\mathsf{I}}{\underbrace{\bullet}} \overset{\mathsf{O}}{\underbrace{\bullet}} \underbrace{\bullet} \underbrace{\longleftrightarrow} \overset{\mathsf{I}}{\underbrace{\bullet}} \overset{\mathsf{O}}{\underbrace{\bullet}} \underbrace{\bullet} \underbrace{\bullet} \overset{\mathsf{I}}{\underbrace{\bullet}} \overset{\mathsf{O}}{\underbrace{\bullet}} \underbrace{\bullet} \overset{\mathsf{I}}{\underbrace{\bullet}} \underbrace{\bullet} \overset{\mathsf{I}}{\underbrace{\bullet}} \overset{\mathsf{O}}{\underbrace{\bullet}} \underbrace{\bullet} \overset{\mathsf{I}}{\underbrace{\bullet}} \underbrace{\bullet} \overset{\mathsf{I}}{\underbrace{\bullet}} \underbrace{\bullet} \overset{\mathsf{I}}{\underbrace{\bullet}} \underbrace{\bullet} \overset{\mathsf{I}}{\underbrace{\bullet}} \underbrace{\bullet} \overset{\mathsf{I}}{\underbrace{\bullet}} \overset{\mathsf{I}} \overset{\mathsf{I}} \overset{\mathsf{$$

Definition (Observations)

Let $(\mathfrak{N}_0, \mathfrak{S})$ be a normative pair. An *observation* is an operator $\phi \in \mathfrak{M}_6(\mathfrak{S}) \otimes \mathfrak{O}$, where \mathfrak{O} is a matrix algebra, i.e. $\mathfrak{O} = \mathfrak{M}_d(\mathbb{C})$ for $d \in \mathbb{N}$, called the *algebra of states*.

Definition (Binary representation of integers)

An operator $N_n \in \mathfrak{M}_6(\mathfrak{N}_0)$ is a *binary representation* of an integer *n* if ...

$$\underbrace{\overset{\mathsf{E}}{\overset{\mathsf{\times}}}}_{\overset{\mathsf{\otimes}}{\overset{\mathsf{\circ}}}} \underbrace{\overset{\mathsf{i}}{\overset{\mathsf{\circ}}}}_{\overset{\mathsf{\circ}}{\overset{\mathsf{\circ}}}} \underbrace{\overset{\mathsf{i}}{\overset{\mathsf{\circ}}}}_{\overset{\mathsf{\circ}}} \underbrace{\overset{\mathsf{i}}{\overset{\mathsf{\circ}}}}_{\overset{\mathsf{\circ}}} \underbrace{\overset{\mathsf{i}}}_{\overset{\mathsf{\circ}}}}_{\overset{\mathsf{\circ}}} \underbrace{\overset{\mathsf{i}}}_{\overset{\mathsf{\circ}}} \underbrace{\overset{\mathsf{i}}}_{\overset{\mathsf{\circ}}} \underbrace{\overset{\mathsf{i}}}_{\overset{\mathsf{\circ}}} \underbrace{\overset{\mathsf{i}}}_{\overset{\mathsf{\circ}}} \underbrace{\overset{\mathsf{i}}}_{\overset{\mathsf{\circ}}}}_{\overset{\mathsf{\circ}}} \underbrace{\overset{\mathsf{i}}}_{\overset{\mathsf{\circ}}} \overset{\mathsf{i}}_{\overset{\mathsf{\circ}}} \overset{\mathsf{i}}} \overset{\mathsf{i}}_{\overset{\mathsf{\circ}}} \overset{\mathsf{i}}_{\overset{\mathsf{i}}} \overset{\mathsf{i}}_{\overset{\mathsf{i}}} \overset{\mathsf{i}}_{\overset{\mathsf{i}}} \overset{\mathsf{i}}} \overset{\mathsf{i}}_{\overset{\mathsf{i}}} \overset{\mathsf{i}} \overset{\mathsf{$$

The computation ends if $\exists k \in \mathbb{N}$ such that

$$(\phi(N_n\otimes 1_{\mathfrak{o}}))^k=0$$

$(\mathfrak{M}_6(\mathfrak{S})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Definition (Normative Pairs)

Let \mathfrak{N}_0 and \mathfrak{S} be two subalgebras of a von Neumann algebra \mathfrak{M} . The pair $(\mathfrak{N}_0, \mathfrak{S})$ is a *normative pair (in* \mathfrak{M}) if:

- \mathfrak{N}_0 is isomorphic to \mathfrak{R} ;
- For all Φ ∈ 𝔐₆(𝔅) and N_n, N'_n ∈ 𝔐₆(𝔅₀) two binary representations of n,

 ΦN_n is nilpotent $\Leftrightarrow \Phi N'_n$ is nilpotent

 $(\mathfrak{M}_6(\mathfrak{S})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Definition (Normative Pairs)

Let \mathfrak{N}_0 and \mathfrak{S} be two subalgebras of a von Neumann algebra \mathfrak{M} . The pair $(\mathfrak{N}_0, \mathfrak{S})$ is a *normative pair (in* \mathfrak{M}) if:

- \mathfrak{N}_0 is isomorphic to \mathfrak{R} ;
- For all Φ ∈ 𝔐₆(𝔅) and N_n, N'_n ∈ 𝔐₆(𝔅₀) two binary representations of n,

 ΦN_n is nilpotent $\Leftrightarrow \Phi N'_n$ is nilpotent

Proposition

Let G be the group of finite permutations over \mathbb{N} , α an action of G and for all $n \in \mathbb{N}$, $\mathfrak{N}_n = \mathfrak{R}$. The algebra($\otimes_{n \in \mathbb{N}} \mathfrak{N}_s$) $\rtimes_{\hat{\alpha}} G$ contains a subalgebra generated by G that we will denote \mathfrak{G} .

 $(\mathfrak{N}_0,\mathfrak{G})$ is a normative pair in $(\otimes_{n\in\mathbb{N}}\mathfrak{N}_s)\rtimes_{\hat{\alpha}} G$ (the type II₁ hyperfinite factor).

 $(\mathfrak{M}_{6}(\mathfrak{G})\otimes\mathfrak{M}_{6}(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_{6}(\mathbb{C})\otimes\mathfrak{M}_{k}(\mathbb{C}))(\mathfrak{M}_{6}(\mathfrak{N}_{0})\otimes\mathfrak{O})$ Definition ($P_{\geq 0}$ and P_{+})

Let $(\mathfrak{N}_0, \mathfrak{G})$ be a normative pair, $(\phi_{i,j})_{0 \leq i,j \leq 6d} \in \mathfrak{M}_6(\mathfrak{G}) \otimes \mathfrak{M}_d(\mathbb{C})$ an observation , we define:

 $[\phi] = \{n \in \mathbb{N} \mid \phi(N_n \otimes 1_\circ) \text{ is nilpotent}\}$

An observation is said to be *positive* (resp. *boolean*) when for all *i*, *j*,

$$\phi_{i,j} = \sum_{l=0}^m lpha_l \lambda(g_l)$$
 with $lpha_l \geqslant 0$ (resp. with $lpha_l = 1$)

We then define:

 $\begin{array}{ll} P_{\geqslant 0} &=& \{\phi \mid \phi \text{ is a positive observation}\}\\ P_+ &=& \{\phi \mid \phi \text{ is a boolean observation}\}\\ && \{P\} = \{[\phi] \mid \phi \in P\} \end{array}$

 $(\mathfrak{M}_6(\mathfrak{G})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Positive or boolean observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

 $(\mathfrak{M}_6(\mathfrak{G})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Positive or boolean observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

 \hookrightarrow Characterization of the complementary of a complexity class.

 $(\mathfrak{M}_6(\mathfrak{G})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Positive or boolean observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

 \hookrightarrow Characterization of the complementary of a complexity class.

•Crossed product with the group of finite permutations

Permutations to chose where the bit currently read is stored.

 \hookrightarrow The bit is stored only when the pointer moves.

 $(\mathfrak{M}_6(\mathfrak{G})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Positive or boolean observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

 \hookrightarrow Characterization of the complementary of a complexity class.

•Crossed product with the group of finite permutations

Permutations to chose where the bit currently read is stored.

 \hookrightarrow The bit is stored only when the pointer moves.

+ circular input

Map (2 / 4)

co-NL
$$\subseteq$$
 $\{ANDPM\} \subseteq \{NDPM\}$ \subseteq $\{P_+\} \subseteq \{P_{\ge 0}\}$ \subseteq co-NL(A)NDPMObservations

Theorem

A NDPM can decides a **co-NL** complete problem.

Map (2 / 4)

co-NL
$$\subseteq$$
 $\{ANDPM\} \subseteq \{NDPM\}$ \subseteq $\{P_+\} \subseteq \{P_{\ge 0}\}$ \subseteq co-NL(A)NDPMObservations

Theorem

A NDPM can decides a **co-NL** complete problem.

Remark (Arnaud Durand)

In fact, NDPM are (slightly modified) 2NFA(k), and it is proven that $NL = \bigcup_{k \ge 1} \mathcal{L}(2NFA(k))$.

Definition (Non-Deterministic Pointer Machines)

A non-deterministic pointer machine (NDPM) with $p \in \mathbb{N}$ pointers is a triplet $M = \{Q, \Sigma, \rightarrow\}$ where

- *Q* is the set of *states*, $Q = {\mathbf{q}_0, \mathbf{q}_1, \dots, \mathbf{q}_e};$
- Σ = {0, 1, *} is the *alphabet*;
- →⊆ (Σ^ρ × Q) × (℘((P^ρ × Q)\Ø) ∪ {accept, reject}) is the binary transition relation.

where *P* is the set of instructions: $P = \{p_i -, \epsilon_i, p_i + | i \in \{1, \dots, p\}\}.$

- · Fixed (constant) number of pointers
- No access to the adresses
- Non-determinist

$$\overset{\mathsf{F}}{\underbrace{(\star)}^{\mathsf{S}}} \longleftrightarrow \overset{\mathsf{I}}{\longrightarrow} \overset{\mathsf{I}}{\underbrace{(1)}^{\mathfrak{S}}} \longleftrightarrow \overset{\mathsf{I}}{\underbrace{(1)}^{\mathfrak{S}}} \longleftrightarrow \overset{\mathsf{I}}{\underbrace{(0)}^{\mathfrak{S}}} \longleftrightarrow \cdots \longleftrightarrow \overset{\mathsf{I}}{\underbrace{(0)}^{\mathfrak{S}}} \overset{\mathsf{I}}{\underbrace{(0)}^{\mathfrak{S}}} \longleftrightarrow \cdots \longleftrightarrow \overset{\mathsf{I}}{\underbrace{(0)}^{\mathfrak{S}}} \overset{\mathsf{I}}{\underbrace{(0)}^{\mathfrak{S}}}$$

Theorem

There exists a NMDP that decides s-t-conn-Comp, a **co-NL** complete problem.

Definition

Let {NDPM} (resp. {ANDPM}) be the class of sets S such that there exists a NDPM (resp. an acyclic NDPM) that decides S.

Corollary

 $\textit{co-NL} \subseteq \{\textit{NDPM}\}$

Map (3 / 4)

co-NL
$$\subseteq$$
 $\{ANDPM\} = \{NDPM\}$ \subseteq $\{P_+\} \subseteq \{P_{\ge 0}\}$ \subseteq co-NL(A)NDPMObservations

Theorem

A ANDPM can be encoded in an observation.

Acyclic NDPM

 $(\mathfrak{M}_6(\mathfrak{G})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Definition

A configuration (resp. a pseudo-configuration) is an element of the set $n^{\rho} \times \Sigma^{\rho} \times Q$ (resp. $\Sigma^{\rho} \times Q$). The set of all possible pseudo-configurations of a NDPM *M* is denoted c_M .

Acyclic NDPM

 $(\mathfrak{M}_6(\mathfrak{G})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Definition

A configuration (resp. a pseudo-configuration) is an element of the set $n^{\rho} \times \Sigma^{\rho} \times Q$ (resp. $\Sigma^{\rho} \times Q$). The set of all possible pseudo-configurations of a NDPM *M* is denoted c_M .

Definition (Acyclicity)

A NDPM *M* is said to be *acyclic* when for all $c \in C_M$ and all entry $n \in \mathbb{N}$, $M_c(n)$ halts.

Lemma

For all NDPM M that decides a set S there exists an acyclic NDPM M' that decides S.

 $(\mathfrak{M}_6(\mathfrak{G})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Proposition (Encoding *M_c*)

•
$$\rightarrow^{\bullet} = \sum_{c \in C_M} \sum_{t \text{ s.t. } c \to t} \phi_{c,t}$$

- Q[•] is in the matrix algebra.
- P[•] by means of projections and permutations.
- *accept** = 0
- **reject** = "restore M with initial pseudo-configuration c"

 $(\mathfrak{M}_6(\mathfrak{G})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$

Proposition (Encoding M_c)

•
$$\rightarrow^{\bullet} = \sum_{c \in C_M} \sum_{t \text{ s.t. } c \to t} \phi_{c,t}$$

- Q[•] is in the matrix algebra.
- P[•] by means of projections and permutations.
- *accept** = 0
- **reject** = "restore M with initial pseudo-configuration c"

Theorem

For any acyclic NDPM M and pseudo-configuration $c \in C_M$, there exists an observation $M_c^{\bullet} \in \mathfrak{M}_6(\mathfrak{I}) \otimes \mathfrak{Q}_M$ such that for all $N_n \in \mathfrak{M}_6(\mathfrak{N}_0)$

 $M_c(n)$ accepts iff $M_c^{\bullet}(N_n \otimes 1_{\mathfrak{Q}_M})$ is nilpotent.

Moreover, $M_c^{\bullet} \in P_+$.

Map (4 / 4)

$\begin{array}{rcl} \textbf{co-NL} & \subseteq & \{\textit{ANDPM}\} = \{\textit{NDPM}\} & \subseteq & \{\textit{P}_+\} \subseteq \{\textit{P}_{\geqslant 0}\} & \subseteq & \textbf{co-NL} \\ \\ & & (A) \text{NDPM} & & \textbf{Observations} \end{array}$

Theorem

A Turing Machine can decide if an observation accepts.

Lemma

There exist a morphism Φ and two matrices M and $\overline{\phi}$ such that $\Phi(M \otimes 1_{\mathfrak{E}}) = N_n \otimes 1_{\mathfrak{E}}$ and $\Phi(\overline{\phi}) = \phi$. So we have $\phi(N_n \otimes 1_{\mathfrak{E}})$ nilpotent if and only if $(M \otimes 1_{\mathfrak{E}})\overline{\phi}$ nilpotent.

Remark

It is equivalent to consider

$$\mathfrak{M}_{6}(\mathfrak{G}) \otimes \underbrace{\mathfrak{M}_{6}(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_{6}(\mathbb{C})}_{\mathfrak{C}} \otimes \mathfrak{M}_{k}(\mathbb{C})$$

p times

and

$$\mathfrak{M}_{6}(\mathbb{C})\otimes((\underbrace{\mathfrak{M}_{n+1}(\mathbb{C})\otimes\cdots\otimes\mathfrak{M}_{n+1}(\mathbb{C})}_{\mathsf{N}})\rtimes G_{p})\otimes\mathfrak{E}$$

p times

whose basis contains elements of the form

 $(\pi, a_1, ..., a_p; \sigma; e)$

Checking the nilpotency in co-NL

With b_i^j the elements of the basis encountered.

Checking the nilpotency in co-NL

With b_i^j the elements of the basis encountered and k the dimensions of the underlying space, $6(n+1)^p p! d$ where d is the dimension of \mathfrak{E} .

Conclusion

lipn.fr/~aubert/
aubert@lipn.fr