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co-NL = {ANDPM} = {NDPM} = {P+} = {P>0} = co-NL

(A)NDPM Observations
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Our framework: an algebra

(M6(S)⊗

=O︷ ︸︸ ︷

M6(C)⊗ . . .⊗M6(C)⊗Mk (C) )

︸ ︷︷ ︸
Observation

(M6(N0)⊗O)

︸ ︷︷ ︸
The input

Definition (Observations)
Let (N0,S) be a normative pair. An observation is an operator
φ ∈M6(S)⊗O, where O is a matrix algebra, i.e. O = Md (C) for d ∈ N,
called the algebra of states.

Definition (Binary representation of integers)
An operator Nn ∈M6(N0) is a binary representation of an integer n if . . .

? •S•E 1 •
o•i 1 •

o•i 0 •
o•i 1 •

o•i 0 •
o•i

The computation ends if ∃k ∈ N such that

(φ(Nn ⊗ 10))k = 0
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Normative pair and crossed product

Definition (Normative Pairs)
Let N0 and S be two subalgebras of a von Neumann algebra M. The pair
(N0,S) is a normative pair (in M) if:

• N0 is isomorphic to R;
• For all Φ ∈M6(S) and Nn,N ′n ∈M6(N0) two binary representations of n,

ΦNn is nilpotent⇔ ΦN ′n is nilpotent

Proposition
Let G be the group of finite permutations over N, α an action of G and for all
n ∈ N, Nn = R. The algebra(⊗n∈NNs) oα̂ G contains a subalgebra generated
by G that we will denote G.
(N0,G) is a normative pair in (⊗n∈NNs) oα̂ G (the type II1 hyperfinite factor).

(M6(S)⊗M6(C)⊗ . . .⊗M6(C)⊗Mk (C))(M6(N0)⊗O)



Normative pair and crossed product

Definition (Normative Pairs)
Let N0 and S be two subalgebras of a von Neumann algebra M. The pair
(N0,S) is a normative pair (in M) if:

• N0 is isomorphic to R;
• For all Φ ∈M6(S) and Nn,N ′n ∈M6(N0) two binary representations of n,

ΦNn is nilpotent⇔ ΦN ′n is nilpotent

Proposition
Let G be the group of finite permutations over N, α an action of G and for all
n ∈ N, Nn = R. The algebra(⊗n∈NNs) oα̂ G contains a subalgebra generated
by G that we will denote G.
(N0,G) is a normative pair in (⊗n∈NNs) oα̂ G (the type II1 hyperfinite factor).

(M6(S)⊗M6(C)⊗ . . .⊗M6(C)⊗Mk (C))(M6(N0)⊗O)



Sets and complexity classes

Definition (P>0 and P+)

Let (N0,G) be a normative pair, (φi,j )06i,j66d ∈M6(G)⊗Md (C) an
observation , we define:

[φ] = {n ∈ N | φ(Nn ⊗ 10) is nilpotent}

An observation is said to be positive (resp. boolean) when for all i , j ,

φi,j =
m∑

l=0

αlλ(gl ) with αl > 0 (resp. with αl = 1)

We then define:

P>0 = {φ | φ is a positive observation}
P+ = {φ | φ is a boolean observation}

{P} = {[φ] | φ ∈ P}

(M6(G)⊗M6(C)⊗ . . .⊗M6(C)⊗Mk (C))(M6(N0)⊗O)



Singularities of this framework

•Positive or boolean observations
No interference between the “branches” of the computation.
↪→ Non-deterministic computation.

•Nilpotency
All “branches” must reach 0 for the computation to stop.
↪→ Characterization of the complementary of a complexity class.

•Crossed product with the group of finite permutations
Permutations to chose where the bit currently read is stored.
↪→ The bit is stored only when the pointer moves.

+ circular input

(M6(G)⊗M6(C)⊗ . . .⊗M6(C)⊗Mk (C))(M6(N0)⊗O)
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Map (2 / 4)

co-NL ⊆ {ANDPM} ⊆ {NDPM} ⊆ {P+} ⊆ {P>0} ⊆ co-NL

(A)NDPM Observations

Theorem
A NDPM can decides a co-NL complete problem.

Remark (Arnaud Durand)
In fact, NDPM are (slightly modified) 2NFA(k), and it is proven that
NL = ∪k>1L(2NFA(k)).
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NDPM: Presentation

Definition (Non-Deterministic Pointer Machines)
A non-deterministic pointer machine (NDPM) with p ∈ N pointers is a triplet
M = {Q,Σ,→} where

• Q is the set of states, Q = {q0,q1, . . . ,qe};
• Σ = {0, 1, ?} is the alphabet;
• →⊆ (Σp ×Q)× (℘((Pp ×Q)\∅) ∪ {accept, reject}) is the binary

transition relation.

where P is the set of instructions: P = {pi−, εi , pi + | i ∈ {1, . . . , p}}.

• Fixed (constant) number of pointers
• No access to the adresses
• Non-determinist

? •S•E 1 •
o•i 1 •

o•i 0 •
o•i

↓pi

. . . 0 •
o•i

↓pj



The NDPM characterizes co-NL

Theorem
There exists a NMDP that decides s-t-conn-Comp, a co-NL complete
problem.

Definition
Let {NDPM} (resp. {ANDPM}) be the class of sets S such that there exists a
NDPM (resp. an acyclic NDPM) that decides S.

Corollary

co-NL ⊆ {NDPM}



Map (3 / 4)

co-NL ⊆ {ANDPM} = {NDPM} ⊆ {P+} ⊆ {P>0} ⊆ co-NL

(A)NDPM Observations

Theorem
A ANDPM can be encoded in an observation.



Acyclic NDPM

Definition
A configuration (resp. a pseudo-configuration) is an element of the set
np × Σp ×Q (resp. Σp ×Q). The set of all possible pseudo-configurations of
a NDPM M is denoted cM .

Definition (Acyclicity)
A NDPM M is said to be acyclic when for all c ∈ CM and all entry n ∈ N,
Mc(n) halts.

Lemma

For all NDPM M that decides a set S there exists an acyclic NDPM M ′ that
decides S.

(M6(G)⊗M6(C)⊗ . . .⊗M6(C)⊗Mk (C))(M6(N0)⊗O)
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Encoding ANDPM

Proposition (Encoding Mc)

• →•=
∑

c∈CM

∑
t s.t. c→t

φc,t

• Q• is in the matrix algebra.
• P• by means of projections and permutations.
• accept• = 0
• reject• = “restore M with initial pseudo-configuration c”

Theorem
For any acyclic NDPM M and pseudo-configuration c ∈ CM , there exists an
observation M•c ∈M6(O)⊗QM such that for all Nn ∈M6(N0)

Mc(n) accepts iff M•c (Nn ⊗ 1QM ) is nilpotent.

Moreover, M•c ∈ P+.

(M6(G)⊗M6(C)⊗ . . .⊗M6(C)⊗Mk (C))(M6(N0)⊗O)
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co-NL ⊆ {ANDPM} = {NDPM} ⊆ {P+} ⊆ {P>0} ⊆ co-NL

(A)NDPM Observations

Theorem
A Turing Machine can decide if an observation accepts.



Some transformations

Lemma

There exist a morphism Φ and two matrices M and φ̄ such that
Φ(M ⊗ 1E) = Nn ⊗ 1E and Φ(φ̄) = φ. So we have φ(Nn ⊗ 1E) nilpotent if and
only if (M ⊗ 1E)φ̄ nilpotent.

Remark
It is equivalent to consider

M6(G)⊗M6(C)⊗ . . .⊗M6(C)︸ ︷︷ ︸
p times

⊗Mk (C)

and
M6(C)⊗ ((Mn+1(C)⊗ · · · ⊗Mn+1(C)︸ ︷︷ ︸

p times

) o Gp)⊗ E

whose basis contains elements of the form

(π, a1, . . . , ap;σ; e)



Checking the nilpotency in co-NL

φ̄(π, a1, . . . , ap;σ; e) =
K∑

i=0

αi (ρ, aτi (1), . . . , aτi (p); τiσ; ei )

bi00

b1
i0

b2
0 b2

p2
. . .

φ

b3
0 b3

p3

. . .

φ

. . .

φ

Nn

Nn Nn

︸ ︷︷ ︸
Bounded by k

Bounded by k

With bj
i the elements of the basis encountered.

and k the dimensions of the
underlying space, 6(n + 1)pp!d where d is the dimension of E.
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