Characterizing **co-NL** by a Group Action GdT Sémantique

Clément Aubert Joint work with Thomas Seiller (LAMA - Univ. de Savoie)

Institut Galilée - Université Paris-Nord 99, avenue Jean-Baptiste Clément 93430 Villetaneuse aubert@lipn.fr

October 9, 2012

co-NL =
$$\{ANDPM\} = \{NPPM\}$$
 = $\{P_+\} = \{P_{\leqslant 0}\}$ = co-NL
(A)NDPM Observations

Our framework: an algebra

$$(\mathfrak{M}_6(\mathfrak{S})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))\,(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$$

Our framework: an algebra

$$\underbrace{(\mathfrak{M}_{6}(\mathfrak{S})\otimes\overbrace{\mathfrak{M}_{6}(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_{6}(\mathbb{C})\otimes\mathfrak{M}_{k}(\mathbb{C})}^{=\mathfrak{D}})}_{\text{Observation}}\underbrace{(\mathfrak{M}_{6}(\mathfrak{N}_{0})\otimes\mathfrak{D})}_{\text{The input}}$$

Definition (Observations)

Let $(\mathfrak{N}_0,\mathfrak{S})$ be a normative pair. An *observation* is an operator $\phi \in \mathfrak{M}_6(\mathfrak{S}) \otimes \mathfrak{O}$, where \mathfrak{O} is a matrix algebra, i.e. $\mathfrak{O} = \mathfrak{M}_d(\mathbb{C})$ for $d \in \mathbb{N}$, called the *algebra of states*.

Definition (Binary representation of integers)

An operator $N_n \in \mathfrak{M}_6(\mathfrak{N}_0)$ is a *binary representation* of an integer n if . . .

Our framework: an algebra

$$\underbrace{(\mathfrak{M}_{6}(\mathfrak{S})\otimes \overbrace{\mathfrak{M}_{6}(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_{6}(\mathbb{C})\otimes\mathfrak{M}_{k}(\mathbb{C})}^{=\mathfrak{D}})}_{\text{Observation}}\underbrace{(\mathfrak{M}_{6}(\mathfrak{N}_{0})\otimes\mathfrak{D})}_{\text{The input}}$$

Definition (Observations)

Let $(\mathfrak{N}_0,\mathfrak{S})$ be a normative pair. An *observation* is an operator $\phi \in \mathfrak{M}_6(\mathfrak{S}) \otimes \mathfrak{O}$, where \mathfrak{O} is a matrix algebra, i.e. $\mathfrak{O} = \mathfrak{M}_d(\mathbb{C})$ for $d \in \mathbb{N}$, called the *algebra of states*.

Definition (Binary representation of integers)

An operator $N_n \in \mathfrak{M}_6(\mathfrak{N}_0)$ is a *binary representation* of an integer n if . . .

$$\overset{E}{\bullet} \underbrace{\hspace{0.1cm} \hspace{0.1cm} \hspace{0.1cm}$$

The computation ends if $\exists k \in \mathbb{N}$ such that

$$(\phi(N_n\otimes 1_o))^k=0$$

Normative pair and crossed product

$$(\mathfrak{M}_6(\mathfrak{S})\otimes \mathfrak{M}_6(\mathbb{C})\otimes \ldots \otimes \mathfrak{M}_6(\mathbb{C})\otimes \mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes \mathfrak{O})$$

Definition (Normative Pairs)

Let \mathfrak{N}_0 and \mathfrak{S} be two subalgebras of a von Neumann algebra \mathfrak{M} . The pair $(\mathfrak{N}_0,\mathfrak{S})$ is a *normative pair* $(in \mathfrak{M})$ if:

- η₀ is isomorphic to
 η;
- For all $\Phi \in \mathfrak{M}_6(\mathfrak{S})$ and $N_n, N'_n \in \mathfrak{M}_6(\mathfrak{N}_0)$ two binary representations of n,

 ΦN_n is nilpotent $\Leftrightarrow \Phi N'_n$ is nilpotent

Normative pair and crossed product

$$(\mathfrak{M}_6(\mathfrak{S}) \otimes \mathfrak{M}_6(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_6(\mathbb{C}) \otimes \mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0) \otimes \mathfrak{O})$$

Definition (Normative Pairs)

Let \mathfrak{N}_0 and \mathfrak{S} be two subalgebras of a von Neumann algebra \mathfrak{M} . The pair $(\mathfrak{N}_0,\mathfrak{S})$ is a *normative pair* $(in \mathfrak{M})$ if:

- η₀ is isomorphic to
 η;
- For all $\Phi \in \mathfrak{M}_6(\mathfrak{S})$ and $N_n, N'_n \in \mathfrak{M}_6(\mathfrak{N}_0)$ two binary representations of n,

 ΦN_n is nilpotent $\Leftrightarrow \Phi N'_n$ is nilpotent

Proposition

Let $\mathfrak G$ be the group of finite permutations over $\mathbb N$, α an action of $\mathfrak G$ and for all $n\in\mathbb N$, $\mathfrak N_n=\mathfrak R$. The algebra $(\otimes_{n\in\mathbb N}\mathfrak N_s)\rtimes_{\hat\alpha}\mathfrak G$ contains a subalgebra generated by $\mathfrak G$ that we will denote $\mathfrak G$.

 $(\mathfrak{N}_0,\mathfrak{S})$ is a normative pair in $(\otimes_{n\in\mathbb{N}}\mathfrak{N}_s)\rtimes_{\hat{\alpha}}\mathfrak{S}$ (the type II_1 hyperfinite factor).

$$(\mathfrak{M}_{6}(\mathfrak{S})\otimes\mathfrak{M}_{6}(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_{6}(\mathbb{C})\otimes\mathfrak{M}_{k}(\mathbb{C}))(\mathfrak{M}_{6}(\mathfrak{N}_{0})\otimes\mathfrak{O})$$

Definition ($P_{\geq 0}$ and P_+)

Let $(\mathfrak{N}_0,\mathfrak{S})$ be a normative pair, $(\phi_{i,j})_{0\leqslant i,j\leqslant 6d}\in\mathfrak{M}_6(\mathfrak{S})\otimes\mathfrak{M}_d(\mathbb{C})$ an observation , we define:

$$[\phi] = \{ n \in \mathbb{N} \mid \phi(N_n \otimes 1_{\circ}) \text{ is nilpotent} \}$$

An observation is said to be *positive* (resp. boolean) when for all i, j,

$$\phi_{i,j} = \sum_{l=0}^{m} \alpha_l \lambda(g_l)$$
 with $\alpha_l \geqslant 0$ (resp. with $\alpha_l = 1$)

We then define:

$$P_{\geqslant 0} = \{\phi \mid \phi \text{ is a positive observation}\}$$

 $P_{+} = \{\phi \mid \phi \text{ is a boolean observation}\}$
 $\{P\} = \{[\phi] \mid \phi \in P\}$

$$(\mathfrak{M}_6(\mathfrak{S})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$$

Positive or boolean observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

$$(\mathfrak{M}_6(\mathfrak{S})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$$

Positive or boolean observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

$$(\mathfrak{M}_6(\mathfrak{S})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$$

Positive or boolean observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

Crossed product with the group of finite permutations

Permutations to chose where the bit currently read is stored.

 \hookrightarrow The bit is stored only when the pointer moves.

$$(\mathfrak{M}_6(\mathfrak{S})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$$

Positive or boolean observations

No interference between the "branches" of the computation.

 \hookrightarrow Non-deterministic computation.

Nilpotency

All "branches" must reach 0 for the computation to stop.

Crossed product with the group of finite permutations

Permutations to chose where the bit currently read is stored.

 \hookrightarrow The bit is stored only when the pointer moves.

+ circular input

Theorem

A NDPM can decides a co-NL complete problem.

Definition (Non-Deterministic Pointer Machines)

A non-deterministic pointer machine (NDPM) with $p \in \mathbb{N}$ pointers is a triplet $M = \{Q, \Sigma, \rightarrow\}$ where

- Q is the set of *states*, $Q = \{\mathbf{q}_0, \mathbf{q}_1, \dots, \mathbf{q}_e\}$;
- $\Sigma = \{0, 1, \star\}$ is the *alphabet*;
- →⊆ (Σ^ρ × Q) × (℘((P^ρ × Q)\∅) ∪ {accept, reject}) is the binary transition relation.

where *P* is the set of instructions: $P = \{p_i -, \epsilon_i, p_i + \mid i \in \{1, \dots, p\}\}.$

- · Fixed (constant) number of pointers
- No access to the adresses
- Non-determinist

The NDPM characterizes co-NL

Theorem

There exists a NMDP that decides s-t-conn-Comp, a **co-NL** complete problem.

Definition

Let {NDPM} (resp. {ANDPM}) be the class of sets S such that there exists a NDPM (resp. an acyclic NDPM) that decides S.

Corollary

 $\textit{co-NL} \subseteq \{\textit{NDPM}\}$

co-NL
$$\subseteq$$
 $\{ANDPM\} = \{NPPM\}$ \subseteq $\{P_+\} \subseteq \{P_{\leqslant 0}\}$ \subseteq **co-NL** (A)NDPM Observations

Theorem

A ANDPM can be encoded in an observation.

$$(\mathfrak{M}_6(\mathfrak{S})\otimes\mathfrak{M}_6(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_6(\mathbb{C})\otimes\mathfrak{M}_k(\mathbb{C}))(\mathfrak{M}_6(\mathfrak{N}_0)\otimes\mathfrak{O})$$

Definition

A configuration (resp. a pseudo-configuration) is an element of the set $n^{\rho} \times \Sigma^{\rho} \times Q$ (resp. $\Sigma^{\rho} \times Q$). The set of all possible pseudo-configurations of a NDPM M is denoted c_{M} .

$$(\mathfrak{M}_{6}(\mathfrak{S})\otimes\mathfrak{M}_{6}(\mathbb{C})\otimes\ldots\otimes\mathfrak{M}_{6}(\mathbb{C})\otimes\mathfrak{M}_{k}(\mathbb{C}))(\mathfrak{M}_{6}(\mathfrak{N}_{0})\otimes\mathfrak{O})$$

Definition

A configuration (resp. a pseudo-configuration) is an element of the set $n^{\rho} \times \Sigma^{\rho} \times Q$ (resp. $\Sigma^{\rho} \times Q$). The set of all possible pseudo-configurations of a NDPM M is denoted c_{M} .

Proposition (Encoding M_c)

- $\bullet \to^{\bullet} = \sum_{c \in C_M} \sum_{t \text{ s.t. } c \to t} \phi_{c,t}$
- Q[•] is in the matrix algebra.
- P* by means of projections and permutations.
- accept* = 0
- reject* = "restore M with initial pseudo-configuration c"

Definition (Acyclicity)

A NDPM M is said to be *acyclic* when for all $c \in C_M$ and all entry $n \in \mathbb{N}$, $M_c(n)$ halts.

Lemma

For all NDPM M that decides a set S there exists an acyclic NDPM M' that decides S.

Definition (Acyclicity)

A NDPM M is said to be *acyclic* when for all $c \in C_M$ and all entry $n \in \mathbb{N}$, $M_c(n)$ halts.

Lemma

For all NDPM M that decides a set S there exists an acyclic NDPM M' that decides S.

Theorem

For any acyclic NDPM M and pseudo-configuration $c \in C_M$, there exists an observation $M_c^{\bullet} \in \mathfrak{M}_6(\mathfrak{O}) \otimes \mathfrak{Q}_M$ such that for all $N_n \in \mathfrak{M}_6(\mathfrak{N}_0)$

$$M_c(n)$$
 accepts iff $M_c^{\bullet}(N_n \otimes 1_{\mathfrak{Q}_M})$ is nilpotent.

Moreover, $M_c^{\bullet} \in P_+$.

Proposition

$$\textit{co-NL} \subseteq \{\textit{ANDPM}\} = \{\textit{NDPM}\} \subseteq \{\textit{P}_{+}\} \subseteq \{\textit{P}_{\geqslant 0}\}$$

Theorem

A Turing Machine can decide if an observation accepts.

Lemma

There exist a morphism Φ and two matrices M and $\bar{\phi}$ such that $\Phi(M \otimes 1_{\mathfrak{E}}) = N_n \otimes 1_{\mathfrak{E}}$ and $\Phi(\bar{\phi}) = \phi$. So we have $\phi(N_n \otimes 1_{\mathfrak{E}})$ nilpotent if and only if $(M \otimes 1_{\mathfrak{E}})\bar{\phi}$ nilpotent.

Remark

It is equivalent to consider

$$\mathfrak{M}_6(\mathfrak{S}) \otimes \underbrace{\mathfrak{M}_6(\mathbb{C}) \otimes \ldots \otimes \mathfrak{M}_6(\mathbb{C})}_{p \text{ times}} \otimes \mathfrak{M}_k(\mathbb{C})$$

and

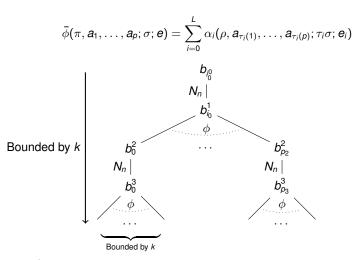
$$\mathfrak{M}_{6}(\mathbb{C}) \otimes ((\underbrace{\mathfrak{M}_{n+1}(\mathbb{C}) \otimes \cdots \otimes \mathfrak{M}_{n+1}(\mathbb{C})}_{p \text{ times}}) \rtimes \mathfrak{S}) \otimes \mathfrak{E}$$

whose basis contains elements of the form

$$(\pi, a_1, \ldots, a_p; \sigma; e)$$

Checking the nilpotency in co-NL

$$\bar{\phi}(\pi, a_1, \dots, a_{\rho}; \sigma; \mathbf{e}) = \sum_{i=0}^{L} \alpha_i(\rho, a_{\tau_i(1)}, \dots, a_{\tau_i(\rho)}; \tau_i \sigma; \mathbf{e}_i)$$


$$\begin{array}{c} b_{00} \\ N_n \mid \\ b_{00}^2 \\ N_n \mid \\ b_{00}^3 \\ \end{pmatrix}$$

$$\begin{array}{c} b_{01}^2 \\ N_n \mid \\ b_{03}^3 \\ \end{pmatrix}$$

$$\begin{array}{c} b_{03}^3 \\ b_{03}^3 \\ \end{array}$$

With b_i^j the elements of the basis encountered.

Checking the nilpotency in co-NL

With b_i^j the elements of the basis encountered and k the dimensions of the underlying space, $6(n+1)^p p! d$ where d is the dimension of \mathfrak{E} .

Jean-Yves Girard.
Normativity in logic.

Epistemology vs. Ontology, 2011.

Thomas Seiller.

Interaction graphs: Multiplicatives.

Appals of Pure and Applied Logic 163:1808–1837. De

Annals of Pure and Applied Logic, 163:1808–1837, December 2012.

Ulrich Schöpp and Martin Hofmann.

Pointer programs and undirected reachability.

In Electronic Colloquium on Computational Complexity (ECCC), volume 15, page 090, 2008.

lipn.fr/~aubert/
aubert@lipn.fr