
Reversible Computation
Classroom Presentation at Appalachian State University

Clément Aubert

06/02/2017

Reversible uoıʇɐʇndɯoↃ
Computation ǝןqısɹǝʌǝɹ

Abstract

Students know that the flow of a program is a combination of sequential processing, branches,
and loops. The introduction of exceptions and their handling, as well as of parallel threads,
gives a more fine-grained view on the variations in a program’s execution. There is one last
variation, of critical impact, that won’t be treated in the CS2440 lecture: reversibility. Indeed,
recently emerged a completely different way of handling the flow of a program, by allowing
the computation to go back and forth.

This requires every operation, i.e., statement, in the program to be invertible, so that any func-
tion, for instance, can seamlessly go from the input to the output, and from the output to the
input. Allowing a program to go back and forth offers several advantages:

1. As odd as it may seems, it saves energy, due to Landauer’s principle that states that “If no
information is erased, computation may in principle be achieved which is thermodynami-
cally reversible, and require no release of heat”, i.e., no consumption of energy.

2. It forces to adopt a programming discipline where no data is ever lost: given an output,
one may always ‘undo’ the computation to read back the input, so that the preservation
of information is guaranteed.

3. It allows to re-use code: for instance, the program that computes the nth element of the
Fibonacci sequence is the same as the one that, given a Fibonacci number, gives you its
position!

4. It also open the door to a completely new way of writing and thinking algorithms.
5. Bug tracking becomes easy!

1

http://cs.appstate.edu/~aam/classes/2440/index.html
https://en.wikipedia.org/wiki/Landauer's_principle
https://en.wikipedia.org/wiki/Fibonacci_number


I will provide a quick tour of the motivations and fundamentals of reversible computing and
sketch one of my contribution during ~30 minutes, and will happily answer your questions for
the rest of the lecture. Some material will be posted at https://lacl.fr/~caubert/ASU/cp.html.

When and Where?

When

Monday, February 6, 2017, 10:00 PM – 10:50 PM

Where

Appalachian State University, Anne Belk Hall, Room 325

Code Shown During the Lecture

The Fibonacci Pairs code, written in Janus, is a canonical example:

procedure fib(int x1, int x2, int n)
if n=0 then x1 += 1

x2 += 1
else n -= 1

call fib(x1, x2, n)
x1 += x2
x1 <=> x2

fi x1=x2

Register x1 x2 n (Comment)

Step 1 0 0 4 (call fib(0, 0 4))

Step 2 0 0 3 (call fib(0, 0, 3))

Step 3 0 0 2 (call fib(0, 0, 2))

Step 4 0 0 1 (call fib(0, 0, 1))

Step 5 0 0 0 (call fib(0, 0, 0))

Step 6 1 1 0 (terminate call fib(0, 0, 0))

Step 7 1 2 0 (terminate call fib(0, 0, 1))

2

https://lacl.fr/~caubert/ASU/cp.html
http://www.appstate.edu/
https://maps.appstate.edu/campus-map/16


Register x1 x2 n (Comment)

Step 8 2 3 0 (terminate call fib(0, 0, 2))

Step 9 3 5 0 (terminate call fib(0, 0, 3))

Step 10 5 8 0 (terminate call fib(0, 0, 4))

To Go Further

Reversible Programming Languages

• Janus is probably the oldest and most robust reversible programming language. Its
playground is unfortunately broken, but should be fixed soon.

• Joule is an object-oriented variation on Janus.
• rfun is an experimental, functional and reversible programming language, with an in-
terpreter for Haskell.

• Boomerang is a ‘bidirectional programming language for ad-hoc, textual data’.
• JsonGrammar is a bidirectional ‘Haskell library for converting between Haskell
datatypes and JSON ASTs’.

Libraries

Code for reversible programming languages is hard to find, with one notable exception: Sarah
Vang Nøhr, published the Janus code that resulted from her Master’s thesis (Reversible Graph
Algorithms, January 2015). Her pioneer work in the adaptation of graph algorithms for re-
versible computation is well-documented, solid, and enlightening.

Readings and Viewings

Video Holger Bock Axelsen, from the University of Copenhagen, gave an excellent
10-minutes introduction to Reversible Computing.

Textbook

• Introduction to Reversible Computing, by Kalyan S. Perumalla, is ‘envisioned to be suitable
at the senior undergraduate and graduate levels.’

The same author gave a tutorial in 2014, that gives a rough idea of the extend of the topic,
along with some useful references.

• An excellent introduction and panorama of the field is covered by Michael Kirkedal
Carøe’s Ph.D. thesis Design of Reversible Computing Systems.

3

https://en.wikipedia.org/wiki/Janus_%28time-reversible_computing_programming_language%29
http://topps.diku.dk/pirc/janus-playground/
https://github.com/joule-lang/joule
https://github.com/kirkedal/rfun
https://www.seas.upenn.edu/~harmony/
https://github.com/MedeaMelana/JsonGrammar2
http://www.ekima.dk/
http://www.ekima.dk/
https://github.com/Ekima/Reversible-Graph-Algorithms-Janus-
http://www.ekima.dk/files/Report.pdf
https://www.youtube.com/watch?v=rVmZTGeIwnc
https://www.crcpress.com/Introduction-to-Reversible-Computing/Perumalla/p/book/9781439873403
http://kalper.net/kp/people/kalyan/
https://pdfs.semanticscholar.org/1276/1002db749debab3602f1e4d1c5436d8a05c2.pdf
http://www.diku.dk/~shapper/
http://www.diku.dk/~shapper/
http://www.diku.dk/forskning/phd-studiet/phd/PhDThesis_VladlenaGorbunova_2010_part1.pdf/Dissertation_public.pdf


Research Papers

• Reversible Computation and Reversible Programming Languages is a clear and accessible
tutorial to reversible programming, presenting and using Janus through simple exam-
ples (but you should probably skip Section 2.3, which is a bit difficult).

• Elements of a Reversible Object-Oriented Language gives elements to extend Janus with
object-oriented features.

• Time, space, and energy in reversible computing covers the broad and complex topic of
how tomeasure complexity on reversible machines, alongwith an excellent introduction
that surveys results of a quarter century of work on reversible computation.

• Interpretation and Programming of the Reversible Functional Language RFUN lays the
foundation of the first purely reversible and functional programming language.

Traveling

Make sure to submit yourwork to the international conference Reversible Computation, whose
next edition will take place in India!

Misc.

• Download a pdf version or the md source of this page
• HTML5 and CSS3 valid
• Creative Commons Attribution 4.0 International License
• Contact: aubertc@appstate.edu
• Created with debian, pandoc, latex and emacs.

4

http://dx.doi.org/10.1016/j.entcs.2010.02.007
https://dx.doi.org/10.1007/978-3-319-40578-0_10
https://doi.org/10.1145/1062261.1062335
http://dx.doi.org/10.1145/2897336.2897345
http://www.reversible-computation.org
cp.md
https://validator.w3.org/check?uri=http%3A%2F%2Flacl.fr%2F~caubert%2Fnotes%2Fexemples_cand_tt%2FASU%2Fcp.html&charset=%28detect+automatically%29&doctype=Inline&group=0
https://jigsaw.w3.org/css-validator/validator?uri=http%3A%2F%2Flacl.fr%2F~caubert%2Fnotes%2Fexemples_cand_tt%2FASU%2Fcp.html&profile=css3&usermedium=all&warning=1&vextwarning=&lang=en
http://creativecommons.org/licenses/by/4.0/
mailto:aubertc@appstate.edu
https://www.debian.org/
http://pandoc.org/
https://www.latex-project.org/
https://www.gnu.org/software/emacs/

	Abstract
	When and Where?
	When
	Where

	Code Shown During the Lecture
	To Go Further
	Reversible Programming Languages
	Libraries
	Readings and Viewings
	Traveling

	Misc.

