Using Stochastic Comparison for Efficient Model Checking of Uncertain Markov Chains ¹

Serge Haddad (LSV), Nihal Pekergin (LACL)

QEST'09, 15th september 2009

Motivation

From probabilistic discrete-event systems to Markov chains (MCs)

- Probabilistic systems are not necessarily memoryless (timeouts, packet arrivals, etc.).
- However during the modeling and analysis process, one often encounters Markov chains (e.g. the embedded Markov chain of a semi-Markovian process).

Why Interval Markov Chains (IMCs)?

- Estimation of the transition rates through statistical experiences leading to confidence intervals.
- Abstraction of events during the modeling step or abstraction of states during the analysis step.

Motivation

From probabilistic discrete-event systems to Markov chains (MCs)

- Probabilistic systems are not necessarily memoryless (timeouts, packet arrivals, etc.).
- However during the modeling and analysis process, one often encounters Markov chains (e.g. the embedded Markov chain of a semi-Markovian process).

Why Interval Markov Chains (IMCs)?

- Estimation of the transition rates through statistical experiences leading to confidence intervals.
- Abstraction of events during the modeling step or abstraction of states during the analysis step.

Analysis of IMC

First works

- Introduction of the formalism and study of conformance relations between models. (Jonsson, Larsen LCS'91)
- Methods for computing the parameters of an IMC. (Kozine, Utkin Reliable Computing 2002)

Probabilistic model-checking

- Analysis of the model checking of PCTL over IMCs: in PSPACE (via the existential theory of reals), NP-hard and coNP-hard. (Sen, Wiswanathan, Agha TACAS'06)
- Generalization for a new logic ω-PCTL: still in PSPACE. (Chatterjee, Sen, Henzinger FOSSACS'08).

Handling efficiently model checking for IMC

Drawbacks: complexity and expressivity considerations

- Algorithms in PSPACE are impractical for large IMCs.
- Some useful properties cannot be expressed even with ω -PCTL.

Goal: semi-decision procedures based on stochastic comparison

- Generally different magnitude orders between the requirement and implementation probabilities.
 Thus the *don't know* case should seldom occur.
- The problem is reduced to the model checking of MCs. This should lead to a significant improvement w.r.t. time complexity.

Handling efficiently model checking for IMC

Drawbacks: complexity and expressivity considerations

- Algorithms in PSPACE are impractical for large IMCs.
- Some useful properties cannot be expressed even with ω -PCTL.

Goal: semi-decision procedures based on stochastic comparison

- Generally different magnitude orders between the requirement and implementation probabilities.
 Thus the *don't know* case should seldom occur.
- The problem is reduced to the model checking of MCs. This should lead to a significant improvement w.r.t. time complexity.

Outline

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 5/24

Outline

PCTL

Efficient Model Checking PCTL for IMCs

Conclusion and perspectives

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ ○ Q ○ 6/24</p>

Interval Markov Chain

Syntax

An IMC $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) = (\mathcal{S}, \mathbf{P}^-, \mathbf{P}^+, L)$ is defined by:

- S, the finite set of states which are labelled by atomic properties through the mapping L;
- ▶ \mathbf{P}^- (resp. \mathbf{P}^+ with $\mathbf{P}^+ \ge \mathbf{P}^-$), a sub-stochastic (resp. super-stochastic) matrix:

$$\forall s \in \mathcal{S} \ \sum_{t \in \mathcal{S}} \mathbf{P}^{-}[s, t] \le 1 \le \sum_{t \in \mathcal{S}} \mathbf{P}^{+}[s, t]$$

Semantic

A DTMC with transition probability matrix \mathbf{P} over S is said to belong to $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ (denoted $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$), if:

$$\forall s, t \in \mathcal{S} \quad \mathbf{P}^{-}[s, t] \le \mathbf{P}[s, t] \le \mathbf{P}^{+}[s, t]$$

W.l.o.g. we assume that:

$$\mathbf{P}^{-}[s,t] \ge 1 - \sum_{t' \neq t} \mathbf{P}^{+}[s,t'] \land \mathbf{P}^{+}[s,t] \le 1 - \sum_{t' \neq t} \mathbf{P}^{-}[s,t']$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで 7/24

Interval Markov Chain

Syntax

An IMC $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) = (\mathcal{S}, \mathbf{P}^-, \mathbf{P}^+, L)$ is defined by:

- S, the finite set of states which are labelled by atomic properties through the mapping L;
- ▶ \mathbf{P}^- (resp. \mathbf{P}^+ with $\mathbf{P}^+ \ge \mathbf{P}^-$), a sub-stochastic (resp. super-stochastic) matrix:

$$\forall s \in \mathcal{S} \ \sum_{t \in \mathcal{S}} \mathbf{P}^{-}[s, t] \le 1 \le \sum_{t \in \mathcal{S}} \mathbf{P}^{+}[s, t]$$

Semantic

A DTMC with transition probability matrix \mathbf{P} over \mathcal{S} is said to belong to $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ (denoted $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$), if:

$$\forall s, t \in \mathcal{S} \quad \mathbf{P}^{-}[s, t] \le \mathbf{P}[s, t] \le \mathbf{P}^{+}[s, t]$$

W.I.o.g. we assume that:

$$\mathbf{P}^{-}[s,t] \ge 1 - \sum_{t' \neq t} \mathbf{P}^{+}[s,t'] \land \mathbf{P}^{+}[s,t] \le 1 - \sum_{t' \neq t} \mathbf{P}^{-}[s,t']$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ◆ ○ へ ?/24

Interval Markov Chain

Syntax

An IMC $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) = (\mathcal{S}, \mathbf{P}^-, \mathbf{P}^+, L)$ is defined by:

- S, the finite set of states which are labelled by atomic properties through the mapping L;
- ▶ \mathbf{P}^- (resp. \mathbf{P}^+ with $\mathbf{P}^+ \ge \mathbf{P}^-$), a sub-stochastic (resp. super-stochastic) matrix:

$$\forall s \in \mathcal{S} \ \sum_{t \in \mathcal{S}} \mathbf{P}^{-}[s, t] \le 1 \le \sum_{t \in \mathcal{S}} \mathbf{P}^{+}[s, t]$$

Semantic

A DTMC with transition probability matrix \mathbf{P} over \mathcal{S} is said to belong to $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ (denoted $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$), if:

$$\forall s, t \in \mathcal{S} \quad \mathbf{P}^{-}[s, t] \le \mathbf{P}[s, t] \le \mathbf{P}^{+}[s, t]$$

W.I.o.g. we assume that:

$$\mathbf{P}^{-}[s,t] \ge 1 - \sum_{t' \neq t} \mathbf{P}^{+}[s,t'] \land \mathbf{P}^{+}[s,t] \le 1 - \sum_{t' \neq t} \mathbf{P}^{-}[s,t']$$

An IMC with two associated DTMCs

Maximizing a probability transition

<ロト<回ト<三ト<三ト<三ト 三のへの 8/24

Individual transition probabilities

Bounds can always be reached. For every $s, t \in S$, there is a $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ with $\mathbf{P}[s, t] = \mathbf{P}^+[s, t]$ and a $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ with $\mathbf{P}[s, t] = \mathbf{P}^-[s, t]$.

Let $s \in \mathcal{S}$ and $\mathcal{S}' = \{s_1, \ldots, s_m\} \subset \mathcal{S} = \{s_1, \ldots, s_n\}$

How to maximize $\sum_{t \in S'} \mathbf{P}[s, t]$ for possible \mathbf{P} in $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$?

Maximize one by one the probability transition taking into account the constraints updated by the previous choices.

▶ More formally, let
$$sum = \sum_{j < i} \mathbf{P}[s, s_j]$$
. Then:
 $\mathbf{P}[s, s_i] = \min(\mathbf{P}^+[s, s_i], 1 - sum - \sum_{j > i} \mathbf{P}^-[s, s_j])$

Observations

- There is a similar algorithm for minimization.
- Different subrows $\mathbf{P}[s,-]$ are possible depending on the ordering of \mathcal{S}' .

▲□▶▲□▶▲壹▶▲壹▶ 壹 約९℃ 9/24

Individual transition probabilities

Bounds can always be reached. For every $s, t \in S$, there is a $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ with $\mathbf{P}[s, t] = \mathbf{P}^+[s, t]$ and a $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ with $\mathbf{P}[s, t] = \mathbf{P}^-[s, t]$.

Let $s \in \mathcal{S}$ and $\mathcal{S}' = \{s_1, \dots, s_m\} \subset \mathcal{S} = \{s_1, \dots, s_n\}$

How to maximize $\sum_{t \in S'} \mathbf{P}[s, t]$ for possible \mathbf{P} in $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$?

Maximize one by one the probability transition taking into account the constraints updated by the previous choices.

• More formally, let
$$sum = \sum_{j < i} \mathbf{P}[s, s_j]$$
. Then:
 $\mathbf{P}[s, s_i] = \min(\mathbf{P}^+[s, s_i], 1 - sum - \sum_{j > i} \mathbf{P}^-[s, s_j])$:

Observations

- There is a similar algorithm for minimization.
- Different subrows $\mathbf{P}[s,-]$ are possible depending on the ordering of \mathcal{S}' .

▲□▶▲□▶▲壹▶▲壹▶ 壹 約९℃ 9/24

Individual transition probabilities

Bounds can always be reached. For every $s, t \in S$, there is a $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ with $\mathbf{P}[s, t] = \mathbf{P}^+[s, t]$ and a $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ with $\mathbf{P}[s, t] = \mathbf{P}^-[s, t]$.

Let $s \in S$ and $S' = \{s_1, \ldots, s_m\} \subset S = \{s_1, \ldots, s_n\}$

How to maximize $\sum_{t \in S'} \mathbf{P}[s, t]$ for possible \mathbf{P} in $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$?

- Maximize one by one the probability transition taking into account the constraints updated by the previous choices.
- More formally, let $sum = \sum_{j < i} \mathbf{P}[s, s_j]$. Then: $\mathbf{P}[s, s_i] = \min(\mathbf{P}^+[s, s_i], 1 - sum - \sum_{j > i} \mathbf{P}^-[s, s_j]);$

Observations

- There is a similar algorithm for minimization.
- Different subrows $\mathbf{P}[s, -]$ are possible depending on the ordering of \mathcal{S}' .

▲□▶▲□▶▲壹▶▲壹▶ 壹 約९℃ 9/24

Individual transition probabilities

Bounds can always be reached. For every $s, t \in S$, there is a $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ with $\mathbf{P}[s, t] = \mathbf{P}^+[s, t]$ and a $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ with $\mathbf{P}[s, t] = \mathbf{P}^-[s, t]$.

Let $s \in S$ and $S' = \{s_1, \ldots, s_m\} \subset S = \{s_1, \ldots, s_n\}$

How to maximize $\sum_{t \in S'} \mathbf{P}[s, t]$ for possible \mathbf{P} in $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$?

- Maximize one by one the probability transition taking into account the constraints updated by the previous choices.
- More formally, let $sum = \sum_{j < i} \mathbf{P}[s, s_j]$. Then: $\mathbf{P}[s, s_i] = \min(\mathbf{P}^+[s, s_i], 1 - sum - \sum_{j > i} \mathbf{P}^-[s, s_j]);$

Observations

There is a similar algorithm for minimization.

Different subrows $\mathbf{P}[s,-]$ are possible depending on the ordering of \mathcal{S}' .

IMC for sub-stochastic matrices

When model checking MCs, one produces MCs with an absorbing state or equivalently sub-stochastic matrices. So:

An IMC $\mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})$ for sub-stochastic matrices is enlarged with a vector **out** over states such that $\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out}$ fulfill for all $s, t \in S$:

▶
$$0 \leq \mathbf{P}^{-}[s,t] \leq \mathbf{P}^{+}[s,t] \land \sum_{t' \in S} \mathbf{P}^{-}[s,t'] + \mathbf{out}[s] \leq 1$$

•
$$\mathbf{P}^+[s,t] \le 1 - \sum_{t' \ne t} \mathbf{P}^-[s,t'] - \mathbf{out}[s]$$

A sub-stochastic matrix **P** over S belongs to $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+, \mathbf{out})$ if:

 $\forall s,t \in \mathcal{S} \quad \mathbf{P}^{-}[s,t] \leq \mathbf{P}[s,t] \leq \mathbf{P}^{+}[s,t] \wedge \sum_{t' \neq t} \mathbf{P}[s,t'] \leq 1 - \mathbf{out}[s]$

Stochastic bounds

The survival toolkit: definitions

▶ Let X, Y be two defective distributions over $S = \{s_1, \ldots, s_n\}$ defined by $p_X(i) = prob(X = s_i)$ and $p_Y(i) = prob(Y = s_i)$. Then: $X \leq_{st} Y$ if $\forall i \quad \sum_{k=1}^i p_X(k) \geq \sum_{k=1}^i p_Y(k)$

► Let \mathbf{P}, \mathbf{P}' be two sub-stochastic matrices over S. Then: $\mathbf{P} \leq_{st} \mathbf{P}'$ if $\forall i \ \mathbf{P}[s_i, -] \leq_{st} \mathbf{P}'[s_i, -]$

► Let P be a sub-stochastic matrix over S. Then: P is st-monotone if $\forall i < n \ \mathbf{P}[s_i, -] \leq_{st} \mathbf{P}[s_{i+1}, -]$

The survival toolkit: some results

- ▶ Let X, Y be two defective distributions over S such that $X \leq_{st} Y$ and r be a decreasing mapping over S. Then: $E(r(X)) \geq E(r(Y))$
- ▶ Let $\mathbf{P} \leq_{st} \mathbf{P}'$ be two sub-stochastic matrices over S such that either \mathbf{P} or \mathbf{P}' is *st*-monotone. Then:
 - 1. The inequality holds for every power of matrices: $orall k \in \mathbb{N} \ \mathbf{P}^k \leq_{st} \mathbf{P}'^k$
 - 2. (as a corollary) the mean leaving time of ${f P}$ is greater than the one of ${f P}'$:

 $(\sum_{k\in\mathbb{N}}\mathbf{P}^k)\mathbf{1}_n\geq_{el}(\sum_{k\in\mathbb{N}}\mathbf{P}'^k)\mathbf{1}_n$

Stochastic bounds

The survival toolkit: definitions

▶ Let X, Y be two defective distributions over $S = \{s_1, \ldots, s_n\}$ defined by $p_X(i) = prob(X = s_i)$ and $p_Y(i) = prob(Y = s_i)$. Then: $X \leq_{st} Y$ if $\forall i \quad \sum_{k=1}^i p_X(k) \geq \sum_{k=1}^i p_Y(k)$

► Let \mathbf{P}, \mathbf{P}' be two sub-stochastic matrices over S. Then: $\mathbf{P} \leq_{st} \mathbf{P}'$ if $\forall i \ \mathbf{P}[s_i, -] \leq_{st} \mathbf{P}'[s_i, -]$

► Let **P** be a sub-stochastic matrix over S. Then: **P** is st-monotone if $\forall i < n$ $\mathbf{P}[s_i, -] \leq_{st} \mathbf{P}[s_{i+1}, -]$

The survival toolkit: some results

- ▶ Let X, Y be two defective distributions over S such that $X \leq_{st} Y$ and r be a decreasing mapping over S. Then: $E(r(X)) \geq E(r(Y))$
- ▶ Let $\mathbf{P} \leq_{st} \mathbf{P}'$ be two sub-stochastic matrices over S such that either \mathbf{P} or \mathbf{P}' is *st*-monotone. Then:
 - 1. The inequality holds for every power of matrices: $\forall k \in \mathbb{N} \ \mathbf{P}^k \leq_{st} \mathbf{P}'^k$
 - 2. (as a corollary) the mean leaving time of ${\bf P}$ is greater than the one of ${\bf P}'$:

 $(\sum_{k\in\mathbb{N}}\mathbf{P}^k)\mathbf{1}_n\geq_{el}(\sum_{k\in\mathbb{N}}\mathbf{P}'^k)\mathbf{1}_n$

Stochastic bounds and IMCs

Motivation

How to compute (accurate) bounds for leaving time $\mathbf{m}[s]$ and $\mathbf{M}[s]$? $\mathbf{m}[s] \leq \min_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\}$ $\max_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\} \leq \mathbf{M}[s]$

Computing the best $\mathbf{m}[s]$ is straightforward.

 $\min_{\mathbf{P}\in\mathcal{M}(\mathbf{P}^{-},\mathbf{P}^{+},\mathbf{out})}\{(\sum_{k\in\mathbb{N}}\mathbf{P}^{k})\mathbf{1}_{n})[s]\}=(\sum_{k\in\mathbb{N}}(\mathbf{P}^{-})^{k})\mathbf{1}_{n})[s]$

Computing a bound $\mathbf{M}[s]$ via stochastic order (Haddad, Moreaux EJOR 2007)

- ▶ There is a unique greatest lower bound \mathbf{P}^{\bullet} w.r.t. \leq_{st} for $\mathcal{M}(\mathbf{P}^{-},\mathbf{P}^{+},\mathbf{out})$
- which admits a unique greatest *monotone* lower bounding matrix $\mathbf{P}^{\star} \leq_{st} \mathbf{P}^{\bullet}$.
- ▶ M[s] = (∑_{k∈ℕ}(P^{*})^k)1_n)[s] (different bounds are possible depending on the ordering of states)
- Furthermore a priori detecting states s for which $\mathbf{M}[s] = \infty$ can be performed in very efficient way without computing the strongly connected components of the underlying graph (*this paper*).

Stochastic bounds and IMCs

Motivation

How to compute (accurate) bounds for leaving time $\mathbf{m}[s]$ and $\mathbf{M}[s]$? $\mathbf{m}[s] \leq \min_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\}$ $\max_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\} \leq \mathbf{M}[s]$

Computing the best m[s] is straightforward.

 $\min_{\mathbf{P}\in\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})}\{(\sum_{k\in\mathbb{N}}\mathbf{P}^k)\mathbf{1}_n)[s]\}=(\sum_{k\in\mathbb{N}}(\mathbf{P}^-)^k)\mathbf{1}_n)[s]$

Computing a bound $\mathbf{M}[s]$ via stochastic order (Haddad, Moreaux EJOR 2007)

- ▶ There is a unique greatest lower bound \mathbf{P}^{\bullet} w.r.t. \leq_{st} for $\mathcal{M}(\mathbf{P}^{-},\mathbf{P}^{+},\mathbf{out})$
- which admits a unique greatest *monotone* lower bounding matrix $\mathbf{P}^{\star} \leq_{st} \mathbf{P}^{\bullet}$.
- M[s] = (∑_{k∈ℕ}(P^{*})^k)1_n)[s] (different bounds are possible depending on the ordering of states)
- Furthermore a priori detecting states s for which $\mathbf{M}[s] = \infty$ can be performed in very efficient way without computing the strongly connected components of the underlying graph (*this paper*).

Stochastic bounds and IMCs

Motivation

How to compute (accurate) bounds for leaving time $\mathbf{m}[s]$ and $\mathbf{M}[s]$? $\mathbf{m}[s] \leq \min_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\}$ $\max_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\} \leq \mathbf{M}[s]$

Computing the best m[s] is straightforward.

 $\min_{\mathbf{P}\in\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})}\{(\sum_{k\in\mathbb{N}}\mathbf{P}^k)\mathbf{1}_n)[s]\}=(\sum_{k\in\mathbb{N}}(\mathbf{P}^-)^k)\mathbf{1}_n)[s]$

Computing a bound $\mathbf{M}[s]$ via stochastic order (Haddad, Moreaux EJOR 2007)

- ▶ There is a unique greatest lower bound \mathbf{P}^{\bullet} w.r.t. \leq_{st} for $\mathcal{M}(\mathbf{P}^{-},\mathbf{P}^{+},\mathbf{out})$
- which admits a unique greatest monotone lower bounding matrix $\mathbf{P}^{\star} \leq_{st} \mathbf{P}^{\bullet}$.
- M[s] = (∑_{k∈ℕ}(P^{*})^k)1_n)[s] (different bounds are possible depending on the ordering of states)
- Furthermore a priori detecting states s for which $\mathbf{M}[s] = \infty$ can be performed in very efficient way without computing the strongly connected components of the underlying graph *(this paper)*.

Outline

IMC model

Efficient Model Checking PCTL for IMCs

Conclusion and perspectives

<□ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ = の < ⊙ 13/24

PCTL for MCs

Syntax

$$\phi ::= true \mid a \mid \phi \land \phi \mid \neg \phi \mid \mathcal{P}_{\triangleleft p}(\mathcal{X}\phi) \mid \mathcal{P}_{\triangleleft p}(\phi_1 \ \mathcal{U}^{[\alpha,\beta]}\phi_2) \mid \mathcal{D}_{\triangleleft r}(\phi)$$

Semantic: path formulas

A path $\sigma \equiv s_0, s_1, \ldots$ is an infinite sequence of states of the Markov chain.

- $\sigma \models \mathcal{X}\phi$ iff $s_1 \models \phi$
- $\sigma \models \phi_1 \mathcal{U} \phi_2$ iff there exists i such that $s_i \models \phi_2$ and $\forall j < i \; s_j \models \phi_1$

Semantic: state formulas

Threshold formulas

based on $Prob^{\mathcal{M}}(s,\varphi)$ the probability that a random path in \mathcal{M} starting from s satisfies φ

$$s \models \mathcal{P}_{\triangleleft p}(\varphi) \text{ iff } Prob^{\mathcal{M}}(s,\varphi) \triangleleft p$$

Duration formulas

based on $\mathbb{E}^{\mathcal{M}}(FTime(s,\phi))$ the mean of the first time that a random path in \mathcal{M} starting from s satisfies ϕ

 $s \models \mathcal{D}_{\triangleleft r}(\phi) \text{ iff } \mathbf{E}^{\mathcal{M}}(FTime(s,\phi)) \triangleleft r$

PCTL for MCs

Syntax

$$\phi ::= true \mid a \mid \phi \land \phi \mid \neg \phi \mid \mathcal{P}_{\triangleleft p}(\mathcal{X}\phi) \mid \mathcal{P}_{\triangleleft p}(\phi_1 \ \mathcal{U}^{[\alpha,\beta]}\phi_2) \mid \mathcal{D}_{\triangleleft r}(\phi)$$

Semantic: path formulas

A path $\sigma \equiv s_0, s_1, \ldots$ is an infinite sequence of states of the Markov chain.

- $\sigma \models \mathcal{X}\phi$ iff $s_1 \models \phi$
- $\sigma \models \phi_1 \mathcal{U} \phi_2$ iff there exists *i* such that $s_i \models \phi_2$ and $\forall j < i \ s_j \models \phi_1$

Semantic: state formulas

Threshold formulas

based on $Prob^{\mathcal{M}}(s,\varphi)$ the probability that a random path in \mathcal{M} starting from s satisfies φ

$$s \models \mathcal{P}_{\triangleleft p}(\varphi) \text{ iff } Prob^{\mathcal{M}}(s,\varphi) \triangleleft p$$

Duration formulas

based on $\mathbb{E}^{\mathcal{M}}(FTime(s,\phi))$ the mean of the first time that a random path in \mathcal{M} starting from s satisfies ϕ

 $s \models \mathcal{D}_{\triangleleft r}(\phi) \text{ iff } \mathbf{E}^{\mathcal{M}}(FTime(s,\phi)) \triangleleft r$

PCTL for MCs

Syntax

$$\phi ::= true \mid a \mid \phi \land \phi \mid \neg \phi \mid \mathcal{P}_{\triangleleft p}(\mathcal{X}\phi) \mid \mathcal{P}_{\triangleleft p}(\phi_1 \ \mathcal{U}^{[\alpha,\beta]}\phi_2) \mid \mathcal{D}_{\triangleleft r}(\phi)$$

Semantic: path formulas

A path $\sigma \equiv s_0, s_1, \ldots$ is an infinite sequence of states of the Markov chain.

- $\sigma \models \mathcal{X}\phi$ iff $s_1 \models \phi$
- $\sigma \models \phi_1 \mathcal{U} \phi_2$ iff there exists *i* such that $s_i \models \phi_2$ and $\forall j < i \ s_j \models \phi_1$

Semantic: state formulas

• Threshold formulas based on $Prob^{\mathcal{M}}(s,\varphi)$ the probability that a random path in \mathcal{M} starting from s satisfies φ

$$s \models \mathcal{P}_{\triangleleft p}(\varphi) \text{ iff } Prob^{\mathcal{M}}(s,\varphi) \triangleleft p$$

Duration formulas

based on $\mathsf{E}^{\mathcal{M}}(FTime(s,\phi))$ the mean of the first time that a random path in $\mathcal M$ starting from s satisfies ϕ

$$s \models \mathcal{D}_{\triangleleft r}(\phi) \text{ iff } \mathbf{E}^{\mathcal{M}}(FTime(s,\phi)) \triangleleft r$$

PCTL for IMCs

Exact semantic

- 1. $\forall \mathcal{M} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) \ \mathcal{M}, s \models \phi \text{ (always satisfied)}$
- 2. $\forall \mathcal{M} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) \ \mathcal{M}, s \models \neg \phi \text{ (never satisfied)}$
- ∃M, M' ∈ M(P⁻, P⁺) M, s ⊨ φ ∧ M', s ⊨ ¬φ (sometimes satisfied and sometimes not)

Approximate semantic induced by a semi-decisional procedure

Six possible alternative information labels for s w.r.t. ϕ

- $s.\phi = \forall^+$ when it is known that case 1 holds.
- $s.\phi = \forall^-$ when it is known that case 2 holds.
- $s.\phi = \exists^{+-}$ when it is known that case 3 holds.
- $s.\phi = \exists^+$ when it is known that cases 1 or 3 hold.
- s.φ = ∃[−] when it is known that cases 2 or 3 hold.
- ▶ s.φ =? when no information has been obtained.

PCTL for IMCs

Exact semantic

- 1. $\forall \mathcal{M} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) \ \mathcal{M}, s \models \phi \text{ (always satisfied)}$
- 2. $\forall \mathcal{M} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) \ \mathcal{M}, s \models \neg \phi \text{ (never satisfied)}$
- ∃M, M' ∈ M(P⁻, P⁺) M, s ⊨ φ ∧ M', s ⊨ ¬φ (sometimes satisfied and sometimes not)

Approximate semantic induced by a semi-decisional procedure

Six possible alternative information labels for s w.r.t. ϕ

- $s.\phi = \forall^+$ when it is known that case 1 holds.
- $s.\phi = \forall^-$ when it is known that case 2 holds.
- $s.\phi = \exists^{+-}$ when it is known that case 3 holds.
- $s.\phi = \exists^+$ when it is known that cases 1 or 3 hold.
- $s.\phi = \exists^-$ when it is known that cases 2 or 3 hold.
- $s.\phi = ?$ when no information has been obtained.

Outline

IMC model

PCTL

3 Efficient Model Checking PCTL for IMCs

Conclusion and perspectives

<□ ▶ < □ ▶ < 臣 ▶ < 臣 ▶ 目 の < ⊙ 16/24

General principles

First step. Split the set of states depending on:

- the current label (\forall^+, \ldots) to be assigned to states;
- the labels of states w.r.t. the sub-formulas occurring in the formula;
- the external path operator of the formula;
- the kind of comparison \leq, \geq .

Second step. Build one or more sub-stochastic matrices

- by (appropriately) ordering the states inside the subsets;
- and applying an algorithm for IMC to compute the coefficients (maximizing cumulative probabilities, st-monotone glb matrix, etc.).

Third step. Perform a standard computation for Markov chains.

General principles

First step. Split the set of states depending on:

- ▶ the current label (\forall^+, \ldots) to be assigned to states;
- the labels of states w.r.t. the sub-formulas occurring in the formula;
- the external path operator of the formula;
- the kind of comparison \leq, \geq .

Second step. Build one or more sub-stochastic matrices

- by (appropriately) ordering the states inside the subsets;
- and applying an algorithm for IMC to compute the coefficients (maximizing cumulative probabilities, st-monotone glb matrix, etc.).

Third step. Perform a standard computation for Markov chains.

General principles

First step. Split the set of states depending on:

- the current label (\forall^+, \ldots) to be assigned to states;
- the labels of states w.r.t. the sub-formulas occurring in the formula;
- the external path operator of the formula;
- the kind of comparison \leq, \geq .

Second step. Build one or more sub-stochastic matrices

- by (appropriately) ordering the states inside the subsets;
- ▶ and applying an algorithm for IMC to compute the coefficients (maximizing cumulative probabilities, *st*-monotone glb matrix, etc.).

Third step. Perform a standard computation for Markov chains.

First step.

The semi-decision procedure implies a conservative approach. Thus:

- S \ (S₁ ∪ S₂) = {s ∈ S | s.p ≠ ∀⁺ ∧ s.q ≠ ∀⁺} is the set of states such that one cannot assign ∀⁻.
 (the probability of satisfaction for the random path could be 0)
- ▶ $S_2 = \{s \in S \mid s.q = \forall^+\}$ is the set of states such that one can surely assign \forall^- .

(the probability of satisfaction for the random path is 1)

S₁ = {s ∈ S | s.p = ∀⁺ ∧ s.q ≠ ∀⁺} is the set of states that requires a (conservative) computation.

Second step.

What is the quantity to lower bound?

The probability to reach S_2 from S_1 without leaving S_1 in at most β steps:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

where $\mathbf{r}[s]$ is the probability to immediately reach \mathcal{S}_2 from s.

So we perform the following substitutions:

- Matrice \mathbf{P}^- is substituted to \mathbf{P} .
- ▶ Vector **r** is substituted by $\mathbf{r}^- = \max(\sum_{s' \in S_2} \mathbf{P}^-[s, s'], 1 \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$

Third step. Compute
$$\mathbf{m} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}^-$$

and assign \forall^- to s iff $\mathbf{m}[s] > p$.

Second step.

What is the quantity to lower bound?

The probability to reach S_2 from S_1 without leaving S_1 in at most β steps:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

where $\mathbf{r}[s]$ is the probability to immediately reach \mathcal{S}_2 from s.

So we perform the following substitutions:

- Matrice \mathbf{P}^- is substituted to \mathbf{P} .
- Vector **r** is substituted by $\mathbf{r}^- = \max(\sum_{s' \in S_2} \mathbf{P}^-[s, s'], 1 \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$

Third step. Compute $\mathbf{m} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k\right) \cdot \mathbf{r}^$ and assign \forall^- to *s* iff $\mathbf{m}[s] > p$.

Second step.

What is the quantity to lower bound?

The probability to reach S_2 from S_1 without leaving S_1 in at most β steps:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

where $\mathbf{r}[s]$ is the probability to immediately reach \mathcal{S}_2 from s.

So we perform the following substitutions:

- Matrice \mathbf{P}^- is substituted to \mathbf{P} .
- Vector **r** is substituted by $\mathbf{r}^- = \max(\sum_{s' \in S_2} \mathbf{P}^-[s, s'], 1 \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$

Third step. Compute $\mathbf{m} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}^$ and assign \forall^- to s iff $\mathbf{m}[s] > p$.

First step.

The semi-decision procedure implies a conservative approach. Thus:

- S \ (S₁ ∪ S₂) = {s ∈ S | s.p = ∀⁻ ∧ s.q = ∀⁻} is the set of states such that one can surely assign ∀⁺.
 (the probability of satisfaction for the random path is 0)
- S₂ = {s ∈ S | s.q ≠ ∀⁻} is the set of states such that one cannot assign ∀⁺. (the probability of satisfaction for the random path could be 1)
- ▶ $S_1 = \{s \in S \mid s.p \neq \forall^- \land s.q = \forall^-\}$ is the set of states that requires a (conservative) computation.

Second step.

We now upper bound

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 imes \mathcal{S}_1})^k
ight) \cdot \mathbf{r}$$

So we define an appropriate $\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})$ over \mathcal{S}_1 :

- Matrices $\mathbf{P}^+, \mathbf{P}^-$ are the original matrices restricted to \mathcal{S}_1 .
- ▶ Vector out is defined by: $\mathbf{out}[s] = \max(\sum_{s' \notin S_1} \mathbf{P}^-[s, s'], 1 - \sum_{s' \in S_1} \mathbf{P}^+[s, s'])$

• Moreover we upper bound
$$\mathbf{r}$$
 by
 $\mathbf{r}^+ = \min(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^-[s, s'])$

Warning In order to apply stochastic bound, ${f r}^+$ must be decreasing. So it implies a re-ordering of states of \mathcal{S}_1 before computing ${f P}^\star.$

Third step. Compute
$$\left| \mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}^{\star})^k \right) \cdot \mathbf{r}^+
ight|$$

and assign \forall^+ to s iff $\mathbf{M}[s] \leq p$.

Second step.

We now upper bound

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 imes \mathcal{S}_1})^k
ight) \cdot \mathbf{r}$$

So we define an appropriate $\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})$ over $\mathcal{S}_1{:}$

- Matrices $\mathbf{P}^+, \mathbf{P}^-$ are the original matrices restricted to \mathcal{S}_1 .
- ▶ Vector **out** is defined by: $\mathbf{out}[s] = \max(\sum_{s' \notin S_1} \mathbf{P}^-[s, s'], 1 - \sum_{s' \in S_1} \mathbf{P}^+[s, s'])$

• Moreover we upper bound \mathbf{r} by $\mathbf{r}^+ = \min(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^-[s, s'])$

Warning In order to apply stochastic bound, \mathbf{r}^+ must be decreasing. So it implies a re-ordering of states of S_1 before computing \mathbf{P}^* .

Third step. Compute
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}^{\star})^k\right) \cdot \mathbf{r}^+$$

and assign \forall^+ to *s* iff $\mathbf{M}[s] \leq n$.

Second step.

We now upper bound

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

So we define an appropriate $\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})$ over $\mathcal{S}_1{:}$

- Matrices $\mathbf{P}^+, \mathbf{P}^-$ are the original matrices restricted to \mathcal{S}_1 .
- ▶ Vector out is defined by: $\mathbf{out}[s] = \max(\sum_{s' \notin S_1} \mathbf{P}^-[s, s'], 1 - \sum_{s' \in S_1} \mathbf{P}^+[s, s'])$

• Moreover we upper bound \mathbf{r} by $\mathbf{r}^+ = \min(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^-[s, s'])$

Warning In order to apply stochastic bound, \mathbf{r}^+ must be decreasing. So it implies a re-ordering of states of S_1 before computing \mathbf{P}^* .

Third step. Compute
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}^{\star})^k\right) \cdot \mathbf{r}^+$$

and assign \forall^+ to s iff $\mathbf{M}[s] \leq p$.

First step as in the previous case.

Second step.

Here we guess one (or more) matrix \mathbf{P} with a small value of:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

• We order the states of S: first S_2 then S_1 and $S \setminus (S_1 \cup S_2)$

- ▶ Inside S_1 , order the states w.r.t. $\mathbf{r}[s] = \max(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$
- \blacktriangleright Build ${\bf P}$ by minimizing the transition probabilities following that order.

Warning All the choices above are heuristics and should be tuned by experiments.

Third step. Compute
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k\right) \cdot \mathbf{r}$$

and assign \exists^+ to s iff $\mathbf{m}[s] \leq p$.

First step as in the previous case.

Second step.

Here we guess one (or more) matrix \mathbf{P} with a small value of:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

• We order the states of S: first S_2 then S_1 and $S \setminus (S_1 \cup S_2)$

- ▶ Inside S_1 , order the states w.r.t. $\mathbf{r}[s] = \max(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$
- \blacktriangleright Build ${\bf P}$ by minimizing the transition probabilities following that order.

Warning All the choices above are heuristics and should be tuned by experiments.

Third step. Compute
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k\right) \cdot \mathbf{r}$$

and assign \exists^+ to s iff $\mathbf{m}[s] \leq p$.

First step as in the previous case.

Second step.

Here we guess one (or more) matrix \mathbf{P} with a small value of:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

• We order the states of S: first S_2 then S_1 and $S \setminus (S_1 \cup S_2)$

- ▶ Inside S_1 , order the states w.r.t. $\mathbf{r}[s] = \max(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$
- \blacktriangleright Build ${\bf P}$ by minimizing the transition probabilities following that order.

Warning All the choices above are heuristics and should be tuned by experiments.

Third step. Compute
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k\right) \cdot \mathbf{r}$$

and assign \exists^+ to s iff $\mathbf{m}[s] \leq p$.

Outline

IMC model

PCTL

Efficient Model Checking PCTL for IMCs

<□▶<□→<□→<量▶<=> = つへで 23/24

Conclusion and perspectives

Summary of results

- Efficient semi-decision procedure for model checking IMCs
- ► Application of stochastic comparisons for model checking PCTL over IMCs
- Handling the interval constrained until and the mean reachability time operators
- Providing partial answers \exists^+, \exists^-

Perspectives

- Development of a prototype for high level formalisms with IMC as possible semantic
- Accuracy of bounds and impact of heuristics
- One year post-doc position available for this project