Using Stochastic Comparison for Efficient Model Checking of Uncertain Markov Chains <sup>1</sup>

Serge Haddad (LSV), Nihal Pekergin (LACL)

QEST'09, 15th september 2009

# **Motivation**

### From probabilistic discrete-event systems to Markov chains (MCs)

- Probabilistic systems are not necessarily memoryless (timeouts, packet arrivals, etc.).
- However during the modeling and analysis process, one often encounters Markov chains (e.g. the embedded Markov chain of a semi-Markovian process).

## Why Interval Markov Chains (IMCs)?

- Estimation of the transition rates through statistical experiences leading to confidence intervals.
- Abstraction of events during the modeling step or abstraction of states during the analysis step.

# **Motivation**

### From probabilistic discrete-event systems to Markov chains (MCs)

- Probabilistic systems are not necessarily memoryless (timeouts, packet arrivals, etc.).
- However during the modeling and analysis process, one often encounters Markov chains (e.g. the embedded Markov chain of a semi-Markovian process).

## Why Interval Markov Chains (IMCs)?

- Estimation of the transition rates through statistical experiences leading to confidence intervals.
- Abstraction of events during the modeling step or abstraction of states during the analysis step.

# Analysis of IMC

### First works

- Introduction of the formalism and study of conformance relations between models. (Jonsson, Larsen LCS'91)
- Methods for computing the parameters of an IMC. (Kozine, Utkin Reliable Computing 2002)

## Probabilistic model-checking

- Analysis of the model checking of PCTL over IMCs: in PSPACE (via the existential theory of reals), NP-hard and coNP-hard. (Sen, Wiswanathan, Agha TACAS'06)
- Generalization for a new logic ω-PCTL: still in PSPACE. (Chatterjee, Sen, Henzinger FOSSACS'08).

# Handling efficiently model checking for IMC

Drawbacks: complexity and expressivity considerations

- Algorithms in PSPACE are impractical for large IMCs.
- Some useful properties cannot be expressed even with  $\omega$ -PCTL.

#### Goal: semi-decision procedures based on stochastic comparison

- Generally different magnitude orders between the requirement and implementation probabilities.
   Thus the *don't know* case should seldom occur.
- The problem is reduced to the model checking of MCs. This should lead to a significant improvement w.r.t. time complexity.

# Handling efficiently model checking for IMC

Drawbacks: complexity and expressivity considerations

- Algorithms in PSPACE are impractical for large IMCs.
- Some useful properties cannot be expressed even with  $\omega$ -PCTL.

### Goal: semi-decision procedures based on stochastic comparison

- Generally different magnitude orders between the requirement and implementation probabilities.
   Thus the *don't know* case should seldom occur.
- The problem is reduced to the model checking of MCs. This should lead to a significant improvement w.r.t. time complexity.

# Outline









<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の Q ↔ 5/24

# Outline



## PCTL

## Efficient Model Checking PCTL for IMCs

**Conclusion and perspectives** 

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ ○ Q ○ 6/24</p>

# Interval Markov Chain

### Syntax

An IMC  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) = (\mathcal{S}, \mathbf{P}^-, \mathbf{P}^+, L)$  is defined by:

- S, the finite set of states which are labelled by atomic properties through the mapping L;
- ▶  $\mathbf{P}^-$  (resp.  $\mathbf{P}^+$  with  $\mathbf{P}^+ \ge \mathbf{P}^-$ ), a sub-stochastic (resp. super-stochastic) matrix:

$$\forall s \in \mathcal{S} \ \sum_{t \in \mathcal{S}} \mathbf{P}^{-}[s, t] \le 1 \le \sum_{t \in \mathcal{S}} \mathbf{P}^{+}[s, t]$$

#### Semantic

A DTMC with transition probability matrix  $\mathbf{P}$  over S is said to belong to  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  (denoted  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ ), if:

$$\forall s, t \in \mathcal{S} \quad \mathbf{P}^{-}[s, t] \le \mathbf{P}[s, t] \le \mathbf{P}^{+}[s, t]$$

W.l.o.g. we assume that:

$$\mathbf{P}^{-}[s,t] \ge 1 - \sum_{t' \neq t} \mathbf{P}^{+}[s,t'] \land \mathbf{P}^{+}[s,t] \le 1 - \sum_{t' \neq t} \mathbf{P}^{-}[s,t']$$

▲□▶▲□▶▲≣▶▲≣▶ ≣ のへで 7/24

# Interval Markov Chain

### Syntax

An IMC  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) = (\mathcal{S}, \mathbf{P}^-, \mathbf{P}^+, L)$  is defined by:

- S, the finite set of states which are labelled by atomic properties through the mapping L;
- ▶  $\mathbf{P}^-$  (resp.  $\mathbf{P}^+$  with  $\mathbf{P}^+ \ge \mathbf{P}^-$ ), a sub-stochastic (resp. super-stochastic) matrix:

$$\forall s \in \mathcal{S} \ \sum_{t \in \mathcal{S}} \mathbf{P}^{-}[s, t] \le 1 \le \sum_{t \in \mathcal{S}} \mathbf{P}^{+}[s, t]$$

### Semantic

A DTMC with transition probability matrix  $\mathbf{P}$  over  $\mathcal{S}$  is said to belong to  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  (denoted  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ ), if:

$$\forall s, t \in \mathcal{S} \quad \mathbf{P}^{-}[s, t] \le \mathbf{P}[s, t] \le \mathbf{P}^{+}[s, t]$$

W.I.o.g. we assume that:

$$\mathbf{P}^{-}[s,t] \ge 1 - \sum_{t' \neq t} \mathbf{P}^{+}[s,t'] \land \mathbf{P}^{+}[s,t] \le 1 - \sum_{t' \neq t} \mathbf{P}^{-}[s,t']$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣 ◆ ○ へ ?/24

# Interval Markov Chain

### Syntax

An IMC  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) = (\mathcal{S}, \mathbf{P}^-, \mathbf{P}^+, L)$  is defined by:

- S, the finite set of states which are labelled by atomic properties through the mapping L;
- ▶  $\mathbf{P}^-$  (resp.  $\mathbf{P}^+$  with  $\mathbf{P}^+ \ge \mathbf{P}^-$ ), a sub-stochastic (resp. super-stochastic) matrix:

$$\forall s \in \mathcal{S} \ \sum_{t \in \mathcal{S}} \mathbf{P}^{-}[s, t] \le 1 \le \sum_{t \in \mathcal{S}} \mathbf{P}^{+}[s, t]$$

### Semantic

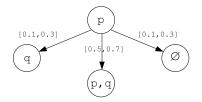
A DTMC with transition probability matrix  $\mathbf{P}$  over  $\mathcal{S}$  is said to belong to  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  (denoted  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ ), if:

$$\forall s, t \in \mathcal{S} \quad \mathbf{P}^{-}[s, t] \le \mathbf{P}[s, t] \le \mathbf{P}^{+}[s, t]$$

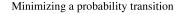
W.I.o.g. we assume that:

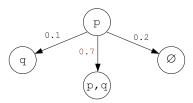
$$\mathbf{P}^{-}[s,t] \ge 1 - \sum_{t' \neq t} \mathbf{P}^{+}[s,t'] \land \mathbf{P}^{+}[s,t] \le 1 - \sum_{t' \neq t} \mathbf{P}^{-}[s,t']$$

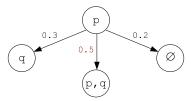
# An IMC with two associated DTMCs



Maximizing a probability transition







<ロト<回ト<三ト<三ト<三ト 三のへの 8/24

#### Individual transition probabilities

Bounds can always be reached. For every  $s, t \in S$ , there is a  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  with  $\mathbf{P}[s, t] = \mathbf{P}^+[s, t]$  and a  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  with  $\mathbf{P}[s, t] = \mathbf{P}^-[s, t]$ .

## Let $s \in \mathcal{S}$ and $\mathcal{S}' = \{s_1, \ldots, s_m\} \subset \mathcal{S} = \{s_1, \ldots, s_n\}$

How to maximize  $\sum_{t \in S'} \mathbf{P}[s, t]$  for possible  $\mathbf{P}$  in  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ ?

Maximize one by one the probability transition taking into account the constraints updated by the previous choices.

▶ More formally, let 
$$sum = \sum_{j < i} \mathbf{P}[s, s_j]$$
. Then:  
 $\mathbf{P}[s, s_i] = \min(\mathbf{P}^+[s, s_i], 1 - sum - \sum_{j > i} \mathbf{P}^-[s, s_j])$ 

#### Observations

- There is a similar algorithm for minimization.
- Different subrows  $\mathbf{P}[s,-]$  are possible depending on the ordering of  $\mathcal{S}'$ .

▲□▶▲□▶▲壹▶▲壹▶ 壹 約९℃ 9/24

### Individual transition probabilities

Bounds can always be reached. For every  $s, t \in S$ , there is a  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  with  $\mathbf{P}[s, t] = \mathbf{P}^+[s, t]$  and a  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  with  $\mathbf{P}[s, t] = \mathbf{P}^-[s, t]$ .

### Let $s \in \mathcal{S}$ and $\mathcal{S}' = \{s_1, \dots, s_m\} \subset \mathcal{S} = \{s_1, \dots, s_n\}$

How to maximize  $\sum_{t \in S'} \mathbf{P}[s, t]$  for possible  $\mathbf{P}$  in  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ ?

Maximize one by one the probability transition taking into account the constraints updated by the previous choices.

• More formally, let 
$$sum = \sum_{j < i} \mathbf{P}[s, s_j]$$
. Then:  
 $\mathbf{P}[s, s_i] = \min(\mathbf{P}^+[s, s_i], 1 - sum - \sum_{j > i} \mathbf{P}^-[s, s_j])$ :

Observations

- There is a similar algorithm for minimization.
- Different subrows  $\mathbf{P}[s,-]$  are possible depending on the ordering of  $\mathcal{S}'$ .

▲□▶▲□▶▲壹▶▲壹▶ 壹 約९℃ 9/24

#### Individual transition probabilities

Bounds can always be reached. For every  $s, t \in S$ , there is a  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  with  $\mathbf{P}[s, t] = \mathbf{P}^+[s, t]$  and a  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  with  $\mathbf{P}[s, t] = \mathbf{P}^-[s, t]$ .

# Let $s \in S$ and $S' = \{s_1, \ldots, s_m\} \subset S = \{s_1, \ldots, s_n\}$

How to maximize  $\sum_{t \in S'} \mathbf{P}[s, t]$  for possible  $\mathbf{P}$  in  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ ?

- Maximize one by one the probability transition taking into account the constraints updated by the previous choices.
- More formally, let  $sum = \sum_{j < i} \mathbf{P}[s, s_j]$ . Then:  $\mathbf{P}[s, s_i] = \min(\mathbf{P}^+[s, s_i], 1 - sum - \sum_{j > i} \mathbf{P}^-[s, s_j]);$

#### Observations

- There is a similar algorithm for minimization.
- Different subrows  $\mathbf{P}[s, -]$  are possible depending on the ordering of  $\mathcal{S}'$ .

▲□▶▲□▶▲壹▶▲壹▶ 壹 約९℃ 9/24

#### Individual transition probabilities

Bounds can always be reached. For every  $s, t \in S$ , there is a  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  with  $\mathbf{P}[s, t] = \mathbf{P}^+[s, t]$  and a  $\mathbf{P} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$  with  $\mathbf{P}[s, t] = \mathbf{P}^-[s, t]$ .

# Let $s \in S$ and $S' = \{s_1, \ldots, s_m\} \subset S = \{s_1, \ldots, s_n\}$

How to maximize  $\sum_{t \in S'} \mathbf{P}[s, t]$  for possible  $\mathbf{P}$  in  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+)$ ?

- Maximize one by one the probability transition taking into account the constraints updated by the previous choices.
- More formally, let  $sum = \sum_{j < i} \mathbf{P}[s, s_j]$ . Then:  $\mathbf{P}[s, s_i] = \min(\mathbf{P}^+[s, s_i], 1 - sum - \sum_{j > i} \mathbf{P}^-[s, s_j]);$

### Observations

There is a similar algorithm for minimization.

Different subrows  $\mathbf{P}[s,-]$  are possible depending on the ordering of  $\mathcal{S}'$ .

# IMC for sub-stochastic matrices

When model checking MCs, one produces MCs with an absorbing state or equivalently sub-stochastic matrices. So:

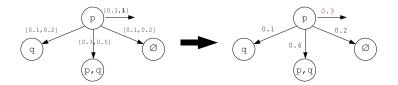
An IMC  $\mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})$  for sub-stochastic matrices is enlarged with a vector **out** over states such that  $\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out}$  fulfill for all  $s, t \in S$ :

▶ 
$$0 \leq \mathbf{P}^{-}[s,t] \leq \mathbf{P}^{+}[s,t] \land \sum_{t' \in S} \mathbf{P}^{-}[s,t'] + \mathbf{out}[s] \leq 1$$

• 
$$\mathbf{P}^+[s,t] \le 1 - \sum_{t' \ne t} \mathbf{P}^-[s,t'] - \mathbf{out}[s]$$

A sub-stochastic matrix **P** over S belongs to  $\mathcal{M}(\mathbf{P}^-, \mathbf{P}^+, \mathbf{out})$  if:

 $\forall s,t \in \mathcal{S} \quad \mathbf{P}^{-}[s,t] \leq \mathbf{P}[s,t] \leq \mathbf{P}^{+}[s,t] \wedge \sum_{t' \neq t} \mathbf{P}[s,t'] \leq 1 - \mathbf{out}[s]$ 



# **Stochastic bounds**

### The survival toolkit: definitions

▶ Let X, Y be two defective distributions over  $S = \{s_1, \ldots, s_n\}$  defined by  $p_X(i) = prob(X = s_i)$  and  $p_Y(i) = prob(Y = s_i)$ . Then:  $X \leq_{st} Y$  if  $\forall i \quad \sum_{k=1}^i p_X(k) \geq \sum_{k=1}^i p_Y(k)$ 

► Let  $\mathbf{P}, \mathbf{P}'$  be two sub-stochastic matrices over S. Then:  $\mathbf{P} \leq_{st} \mathbf{P}'$  if  $\forall i \ \mathbf{P}[s_i, -] \leq_{st} \mathbf{P}'[s_i, -]$ 

► Let P be a sub-stochastic matrix over S. Then: P is st-monotone if  $\forall i < n \ \mathbf{P}[s_i, -] \leq_{st} \mathbf{P}[s_{i+1}, -]$ 

#### The survival toolkit: some results

- ▶ Let X, Y be two defective distributions over S such that  $X \leq_{st} Y$  and r be a decreasing mapping over S. Then:  $E(r(X)) \geq E(r(Y))$
- ▶ Let  $\mathbf{P} \leq_{st} \mathbf{P}'$  be two sub-stochastic matrices over S such that either  $\mathbf{P}$  or  $\mathbf{P}'$  is *st*-monotone. Then:
  - 1. The inequality holds for every power of matrices:  $orall k \in \mathbb{N} \ \mathbf{P}^k \leq_{st} \mathbf{P}'^k$
  - 2. (as a corollary) the mean leaving time of  ${f P}$  is greater than the one of  ${f P}'$ :

 $(\sum_{k\in\mathbb{N}}\mathbf{P}^k)\mathbf{1}_n\geq_{el}(\sum_{k\in\mathbb{N}}\mathbf{P}'^k)\mathbf{1}_n$ 

# **Stochastic bounds**

### The survival toolkit: definitions

▶ Let X, Y be two defective distributions over  $S = \{s_1, \ldots, s_n\}$  defined by  $p_X(i) = prob(X = s_i)$  and  $p_Y(i) = prob(Y = s_i)$ . Then:  $X \leq_{st} Y$  if  $\forall i \quad \sum_{k=1}^i p_X(k) \geq \sum_{k=1}^i p_Y(k)$ 

► Let  $\mathbf{P}, \mathbf{P}'$  be two sub-stochastic matrices over S. Then:  $\mathbf{P} \leq_{st} \mathbf{P}'$  if  $\forall i \ \mathbf{P}[s_i, -] \leq_{st} \mathbf{P}'[s_i, -]$ 

► Let **P** be a sub-stochastic matrix over S. Then: **P** is st-monotone if  $\forall i < n$   $\mathbf{P}[s_i, -] \leq_{st} \mathbf{P}[s_{i+1}, -]$ 

### The survival toolkit: some results

- ▶ Let X, Y be two defective distributions over S such that  $X \leq_{st} Y$  and r be a decreasing mapping over S. Then:  $E(r(X)) \geq E(r(Y))$
- ▶ Let  $\mathbf{P} \leq_{st} \mathbf{P}'$  be two sub-stochastic matrices over S such that either  $\mathbf{P}$  or  $\mathbf{P}'$  is *st*-monotone. Then:
  - 1. The inequality holds for every power of matrices:  $\forall k \in \mathbb{N} \ \mathbf{P}^k \leq_{st} \mathbf{P}'^k$
  - 2. (as a corollary) the mean leaving time of  ${\bf P}$  is greater than the one of  ${\bf P}'$ :

 $(\sum_{k\in\mathbb{N}}\mathbf{P}^k)\mathbf{1}_n\geq_{el}(\sum_{k\in\mathbb{N}}\mathbf{P}'^k)\mathbf{1}_n$ 

# Stochastic bounds and IMCs

### Motivation

How to compute (accurate) bounds for leaving time  $\mathbf{m}[s]$  and  $\mathbf{M}[s]$ ?  $\mathbf{m}[s] \leq \min_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\}$  $\max_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\} \leq \mathbf{M}[s]$ 

Computing the best  $\mathbf{m}[s]$  is straightforward.

 $\min_{\mathbf{P}\in\mathcal{M}(\mathbf{P}^{-},\mathbf{P}^{+},\mathbf{out})}\{(\sum_{k\in\mathbb{N}}\mathbf{P}^{k})\mathbf{1}_{n})[s]\}=(\sum_{k\in\mathbb{N}}(\mathbf{P}^{-})^{k})\mathbf{1}_{n})[s]$ 

### Computing a bound $\mathbf{M}[s]$ via stochastic order (Haddad, Moreaux EJOR 2007)

- ▶ There is a unique greatest lower bound  $\mathbf{P}^{\bullet}$  w.r.t.  $\leq_{st}$  for  $\mathcal{M}(\mathbf{P}^{-},\mathbf{P}^{+},\mathbf{out})$
- which admits a unique greatest *monotone* lower bounding matrix  $\mathbf{P}^{\star} \leq_{st} \mathbf{P}^{\bullet}$ .
- ▶ M[s] = (∑<sub>k∈ℕ</sub>(P<sup>\*</sup>)<sup>k</sup>)1<sub>n</sub>)[s] (different bounds are possible depending on the ordering of states)
- Furthermore a priori detecting states s for which  $\mathbf{M}[s] = \infty$  can be performed in very efficient way without computing the strongly connected components of the underlying graph (*this paper*).

# **Stochastic bounds and IMCs**

### Motivation

How to compute (accurate) bounds for leaving time  $\mathbf{m}[s]$  and  $\mathbf{M}[s]$ ?  $\mathbf{m}[s] \leq \min_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\}$  $\max_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\} \leq \mathbf{M}[s]$ 

Computing the best m[s] is straightforward.

 $\min_{\mathbf{P}\in\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})}\{(\sum_{k\in\mathbb{N}}\mathbf{P}^k)\mathbf{1}_n)[s]\}=(\sum_{k\in\mathbb{N}}(\mathbf{P}^-)^k)\mathbf{1}_n)[s]$ 

### Computing a bound $\mathbf{M}[s]$ via stochastic order (Haddad, Moreaux EJOR 2007)

- ▶ There is a unique greatest lower bound  $\mathbf{P}^{\bullet}$  w.r.t.  $\leq_{st}$  for  $\mathcal{M}(\mathbf{P}^{-},\mathbf{P}^{+},\mathbf{out})$
- which admits a unique greatest *monotone* lower bounding matrix  $\mathbf{P}^{\star} \leq_{st} \mathbf{P}^{\bullet}$ .
- M[s] = (∑<sub>k∈ℕ</sub>(P<sup>\*</sup>)<sup>k</sup>)1<sub>n</sub>)[s] (different bounds are possible depending on the ordering of states)
- Furthermore a priori detecting states s for which  $\mathbf{M}[s] = \infty$  can be performed in very efficient way without computing the strongly connected components of the underlying graph (*this paper*).

# **Stochastic bounds and IMCs**

### Motivation

How to compute (accurate) bounds for leaving time  $\mathbf{m}[s]$  and  $\mathbf{M}[s]$ ?  $\mathbf{m}[s] \leq \min_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\}$  $\max_{\mathbf{P} \in \mathcal{M}(\mathbf{P}^{-}, \mathbf{P}^{+}, \mathbf{out})} \{(\sum_{k \in \mathbb{N}} \mathbf{P}^{k}) \mathbf{1}_{n})[s]\} \leq \mathbf{M}[s]$ 

Computing the best m[s] is straightforward.

 $\min_{\mathbf{P}\in\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})}\{(\sum_{k\in\mathbb{N}}\mathbf{P}^k)\mathbf{1}_n)[s]\}=(\sum_{k\in\mathbb{N}}(\mathbf{P}^-)^k)\mathbf{1}_n)[s]$ 

Computing a bound  $\mathbf{M}[s]$  via stochastic order (Haddad, Moreaux EJOR 2007)

- ▶ There is a unique greatest lower bound  $\mathbf{P}^{\bullet}$  w.r.t.  $\leq_{st}$  for  $\mathcal{M}(\mathbf{P}^{-},\mathbf{P}^{+},\mathbf{out})$
- which admits a unique greatest monotone lower bounding matrix  $\mathbf{P}^{\star} \leq_{st} \mathbf{P}^{\bullet}$ .
- M[s] = (∑<sub>k∈ℕ</sub>(P<sup>\*</sup>)<sup>k</sup>)1<sub>n</sub>)[s] (different bounds are possible depending on the ordering of states)
- Furthermore a priori detecting states s for which  $\mathbf{M}[s] = \infty$  can be performed in very efficient way without computing the strongly connected components of the underlying graph *(this paper)*.

# Outline

**IMC model** 



## Efficient Model Checking PCTL for IMCs

**Conclusion and perspectives** 

<□ ▶ < □ ▶ < ≧ ▶ < ≧ ▶ = の < ⊙ 13/24

# PCTL for MCs

### Syntax

$$\phi ::= true \mid a \mid \phi \land \phi \mid \neg \phi \mid \mathcal{P}_{\triangleleft p}(\mathcal{X}\phi) \mid \mathcal{P}_{\triangleleft p}(\phi_1 \ \mathcal{U}^{[\alpha,\beta]}\phi_2) \mid \mathcal{D}_{\triangleleft r}(\phi)$$

#### Semantic: path formulas

A path  $\sigma \equiv s_0, s_1, \ldots$  is an infinite sequence of states of the Markov chain.

- $\sigma \models \mathcal{X}\phi$  iff  $s_1 \models \phi$
- $\sigma \models \phi_1 \mathcal{U} \phi_2$  iff there exists i such that  $s_i \models \phi_2$  and  $\forall j < i \; s_j \models \phi_1$

#### Semantic: state formulas

#### Threshold formulas

based on  $Prob^{\mathcal{M}}(s,\varphi)$  the probability that a random path in  $\mathcal{M}$  starting from s satisfies  $\varphi$ 

$$s \models \mathcal{P}_{\triangleleft p}(\varphi) \text{ iff } Prob^{\mathcal{M}}(s,\varphi) \triangleleft p$$

#### Duration formulas

based on  $\mathbb{E}^{\mathcal{M}}(FTime(s,\phi))$  the mean of the first time that a random path in  $\mathcal{M}$  starting from s satisfies  $\phi$ 

 $s \models \mathcal{D}_{\triangleleft r}(\phi) \text{ iff } \mathbf{E}^{\mathcal{M}}(FTime(s,\phi)) \triangleleft r$ 

# PCTL for MCs

### Syntax

$$\phi ::= true \mid a \mid \phi \land \phi \mid \neg \phi \mid \mathcal{P}_{\triangleleft p}(\mathcal{X}\phi) \mid \mathcal{P}_{\triangleleft p}(\phi_1 \ \mathcal{U}^{[\alpha,\beta]}\phi_2) \mid \mathcal{D}_{\triangleleft r}(\phi)$$

### Semantic: path formulas

A path  $\sigma \equiv s_0, s_1, \ldots$  is an infinite sequence of states of the Markov chain.

- $\sigma \models \mathcal{X}\phi$  iff  $s_1 \models \phi$
- $\sigma \models \phi_1 \mathcal{U} \phi_2$  iff there exists *i* such that  $s_i \models \phi_2$  and  $\forall j < i \ s_j \models \phi_1$

#### Semantic: state formulas

#### Threshold formulas

based on  $Prob^{\mathcal{M}}(s,\varphi)$  the probability that a random path in  $\mathcal{M}$  starting from s satisfies  $\varphi$ 

$$s \models \mathcal{P}_{\triangleleft p}(\varphi) \text{ iff } Prob^{\mathcal{M}}(s,\varphi) \triangleleft p$$

#### Duration formulas

based on  $\mathbb{E}^{\mathcal{M}}(FTime(s,\phi))$  the mean of the first time that a random path in  $\mathcal{M}$  starting from s satisfies  $\phi$ 

 $s \models \mathcal{D}_{\triangleleft r}(\phi) \text{ iff } \mathbf{E}^{\mathcal{M}}(FTime(s,\phi)) \triangleleft r$ 

# PCTL for MCs

### Syntax

$$\phi ::= true \mid a \mid \phi \land \phi \mid \neg \phi \mid \mathcal{P}_{\triangleleft p}(\mathcal{X}\phi) \mid \mathcal{P}_{\triangleleft p}(\phi_1 \ \mathcal{U}^{[\alpha,\beta]}\phi_2) \mid \mathcal{D}_{\triangleleft r}(\phi)$$

#### Semantic: path formulas

A path  $\sigma \equiv s_0, s_1, \ldots$  is an infinite sequence of states of the Markov chain.

- $\sigma \models \mathcal{X}\phi$  iff  $s_1 \models \phi$
- $\sigma \models \phi_1 \mathcal{U} \phi_2$  iff there exists *i* such that  $s_i \models \phi_2$  and  $\forall j < i \ s_j \models \phi_1$

### Semantic: state formulas

• Threshold formulas based on  $Prob^{\mathcal{M}}(s,\varphi)$  the probability that a random path in  $\mathcal{M}$  starting from s satisfies  $\varphi$ 

$$s \models \mathcal{P}_{\triangleleft p}(\varphi) \text{ iff } Prob^{\mathcal{M}}(s,\varphi) \triangleleft p$$

#### Duration formulas

based on  $\mathsf{E}^{\mathcal{M}}(FTime(s,\phi))$  the mean of the first time that a random path in  $\mathcal M$  starting from s satisfies  $\phi$ 

$$s \models \mathcal{D}_{\triangleleft r}(\phi) \text{ iff } \mathbf{E}^{\mathcal{M}}(FTime(s,\phi)) \triangleleft r$$

# PCTL for IMCs

### Exact semantic

- 1.  $\forall \mathcal{M} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) \ \mathcal{M}, s \models \phi \text{ (always satisfied)}$
- 2.  $\forall \mathcal{M} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) \ \mathcal{M}, s \models \neg \phi \text{ (never satisfied)}$
- ∃M, M' ∈ M(P<sup>-</sup>, P<sup>+</sup>) M, s ⊨ φ ∧ M', s ⊨ ¬φ (sometimes satisfied and sometimes not)

#### Approximate semantic induced by a semi-decisional procedure

Six possible alternative information labels for s w.r.t.  $\phi$ 

- $s.\phi = \forall^+$  when it is known that case 1 holds.
- $s.\phi = \forall^-$  when it is known that case 2 holds.
- $s.\phi = \exists^{+-}$  when it is known that case 3 holds.
- $s.\phi = \exists^+$  when it is known that cases 1 or 3 hold.
- s.φ = ∃<sup>−</sup> when it is known that cases 2 or 3 hold.
- ▶ s.φ =? when no information has been obtained.

# PCTL for IMCs

### Exact semantic

- 1.  $\forall \mathcal{M} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) \ \mathcal{M}, s \models \phi \text{ (always satisfied)}$
- 2.  $\forall \mathcal{M} \in \mathcal{M}(\mathbf{P}^-, \mathbf{P}^+) \ \mathcal{M}, s \models \neg \phi \text{ (never satisfied)}$
- ∃M, M' ∈ M(P<sup>-</sup>, P<sup>+</sup>) M, s ⊨ φ ∧ M', s ⊨ ¬φ (sometimes satisfied and sometimes not)

### Approximate semantic induced by a semi-decisional procedure

Six possible alternative information labels for s w.r.t.  $\phi$ 

- $s.\phi = \forall^+$  when it is known that case 1 holds.
- $s.\phi = \forall^-$  when it is known that case 2 holds.
- $s.\phi = \exists^{+-}$  when it is known that case 3 holds.
- $s.\phi = \exists^+$  when it is known that cases 1 or 3 hold.
- $s.\phi = \exists^-$  when it is known that cases 2 or 3 hold.
- $s.\phi = ?$  when no information has been obtained.

# Outline

IMC model

PCTL

3 Efficient Model Checking PCTL for IMCs

**Conclusion and perspectives** 

<□ ▶ < □ ▶ < 臣 ▶ < 臣 ▶ 目 の < ⊙ 16/24

# **General principles**

## First step. Split the set of states depending on:

- the current label  $(\forall^+, \ldots)$  to be assigned to states;
- the labels of states w.r.t. the sub-formulas occurring in the formula;
- the external path operator of the formula;
- the kind of comparison  $\leq, \geq$ .

#### Second step. Build one or more sub-stochastic matrices

- by (appropriately) ordering the states inside the subsets;
- and applying an algorithm for IMC to compute the coefficients (maximizing cumulative probabilities, st-monotone glb matrix, etc.).

#### Third step. Perform a standard computation for Markov chains.

# **General principles**

### First step. Split the set of states depending on:

- ▶ the current label  $(\forall^+, \ldots)$  to be assigned to states;
- the labels of states w.r.t. the sub-formulas occurring in the formula;
- the external path operator of the formula;
- the kind of comparison  $\leq, \geq$ .

### Second step. Build one or more sub-stochastic matrices

- by (appropriately) ordering the states inside the subsets;
- and applying an algorithm for IMC to compute the coefficients (maximizing cumulative probabilities, st-monotone glb matrix, etc.).

### Third step. Perform a standard computation for Markov chains.

# **General principles**

### First step. Split the set of states depending on:

- the current label  $(\forall^+, \ldots)$  to be assigned to states;
- the labels of states w.r.t. the sub-formulas occurring in the formula;
- the external path operator of the formula;
- the kind of comparison  $\leq, \geq$ .

### Second step. Build one or more sub-stochastic matrices

- by (appropriately) ordering the states inside the subsets;
- ▶ and applying an algorithm for IMC to compute the coefficients (maximizing cumulative probabilities, *st*-monotone glb matrix, etc.).

## Third step. Perform a standard computation for Markov chains.

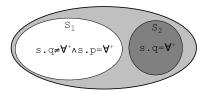
#### First step.

The semi-decision procedure implies a conservative approach. Thus:

- S \ (S<sub>1</sub> ∪ S<sub>2</sub>) = {s ∈ S | s.p ≠ ∀<sup>+</sup> ∧ s.q ≠ ∀<sup>+</sup>} is the set of states such that one cannot assign ∀<sup>-</sup>.
   (the probability of satisfaction for the random path could be 0)
- ▶  $S_2 = \{s \in S \mid s.q = \forall^+\}$  is the set of states such that one can surely assign  $\forall^-$ .

(the probability of satisfaction for the random path is 1)

S<sub>1</sub> = {s ∈ S | s.p = ∀<sup>+</sup> ∧ s.q ≠ ∀<sup>+</sup>} is the set of states that requires a (conservative) computation.



#### Second step.

#### What is the quantity to lower bound?

The probability to reach  $S_2$  from  $S_1$  without leaving  $S_1$  in at most  $\beta$  steps:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

where  $\mathbf{r}[s]$  is the probability to immediately reach  $\mathcal{S}_2$  from s.

So we perform the following substitutions:

- Matrice  $\mathbf{P}^-$  is substituted to  $\mathbf{P}$ .
- ▶ Vector **r** is substituted by  $\mathbf{r}^- = \max(\sum_{s' \in S_2} \mathbf{P}^-[s, s'], 1 \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$

Third step. Compute 
$$\mathbf{m} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}^-$$
  
and assign  $\forall^-$  to  $s$  iff  $\mathbf{m}[s] > p$ .

#### Second step.

What is the quantity to lower bound?

The probability to reach  $S_2$  from  $S_1$  without leaving  $S_1$  in at most  $\beta$  steps:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

where  $\mathbf{r}[s]$  is the probability to immediately reach  $\mathcal{S}_2$  from s.

So we perform the following substitutions:

- Matrice  $\mathbf{P}^-$  is substituted to  $\mathbf{P}$ .
- Vector **r** is substituted by  $\mathbf{r}^- = \max(\sum_{s' \in S_2} \mathbf{P}^-[s, s'], 1 \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$

Third step. Compute  $\mathbf{m} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k\right) \cdot \mathbf{r}^$ and assign  $\forall^-$  to *s* iff  $\mathbf{m}[s] > p$ .

#### Second step.

What is the quantity to lower bound?

The probability to reach  $S_2$  from  $S_1$  without leaving  $S_1$  in at most  $\beta$  steps:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

where  $\mathbf{r}[s]$  is the probability to immediately reach  $\mathcal{S}_2$  from s.

So we perform the following substitutions:

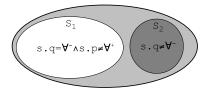
- Matrice  $\mathbf{P}^-$  is substituted to  $\mathbf{P}$ .
- Vector **r** is substituted by  $\mathbf{r}^- = \max(\sum_{s' \in S_2} \mathbf{P}^-[s, s'], 1 \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$

Third step. Compute  $\mathbf{m} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}^$ and assign  $\forall^-$  to s iff  $\mathbf{m}[s] > p$ .

#### First step.

The semi-decision procedure implies a conservative approach. Thus:

- S \ (S<sub>1</sub> ∪ S<sub>2</sub>) = {s ∈ S | s.p = ∀<sup>-</sup> ∧ s.q = ∀<sup>-</sup>} is the set of states such that one can surely assign ∀<sup>+</sup>.
   (the probability of satisfaction for the random path is 0)
- S<sub>2</sub> = {s ∈ S | s.q ≠ ∀<sup>-</sup>} is the set of states such that one cannot assign ∀<sup>+</sup>. (the probability of satisfaction for the random path could be 1)
- ▶  $S_1 = \{s \in S \mid s.p \neq \forall^- \land s.q = \forall^-\}$  is the set of states that requires a (conservative) computation.



#### Second step.

We now upper bound

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 imes \mathcal{S}_1})^k 
ight) \cdot \mathbf{r}$$

So we define an appropriate  $\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})$  over  $\mathcal{S}_1$ :

- Matrices  $\mathbf{P}^+, \mathbf{P}^-$  are the original matrices restricted to  $\mathcal{S}_1$ .
- ▶ Vector out is defined by:  $\mathbf{out}[s] = \max(\sum_{s' \notin S_1} \mathbf{P}^-[s, s'], 1 - \sum_{s' \in S_1} \mathbf{P}^+[s, s'])$

• Moreover we upper bound 
$$\mathbf{r}$$
 by  
 $\mathbf{r}^+ = \min(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^-[s, s'])$ 

Warning In order to apply stochastic bound,  ${f r}^+$  must be decreasing. So it implies a re-ordering of states of  $\mathcal{S}_1$  before computing  ${f P}^\star.$ 

Third step. Compute 
$$\left| \mathbf{M} = \left( \sum_{k=0}^{\beta-1} (\mathbf{P}^{\star})^k \right) \cdot \mathbf{r}^+ 
ight|$$

and assign  $\forall^+$  to s iff  $\mathbf{M}[s] \leq p$ .

#### Second step.

We now upper bound

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 imes \mathcal{S}_1})^k 
ight) \cdot \mathbf{r}$$

So we define an appropriate  $\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})$  over  $\mathcal{S}_1{:}$ 

- Matrices  $\mathbf{P}^+, \mathbf{P}^-$  are the original matrices restricted to  $\mathcal{S}_1$ .
- ▶ Vector **out** is defined by:  $\mathbf{out}[s] = \max(\sum_{s' \notin S_1} \mathbf{P}^-[s, s'], 1 - \sum_{s' \in S_1} \mathbf{P}^+[s, s'])$

## • Moreover we upper bound $\mathbf{r}$ by $\mathbf{r}^+ = \min(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^-[s, s'])$

Warning In order to apply stochastic bound,  $\mathbf{r}^+$  must be decreasing. So it implies a re-ordering of states of  $S_1$  before computing  $\mathbf{P}^*$ .

Third step. Compute 
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}^{\star})^k\right) \cdot \mathbf{r}^+$$
  
and assign  $\forall^+$  to *s* iff  $\mathbf{M}[s] \leq n$ .

#### Second step.

We now upper bound

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

So we define an appropriate  $\mathcal{M}(\mathbf{P}^-,\mathbf{P}^+,\mathbf{out})$  over  $\mathcal{S}_1{:}$ 

- Matrices  $\mathbf{P}^+, \mathbf{P}^-$  are the original matrices restricted to  $\mathcal{S}_1$ .
- ▶ Vector out is defined by:  $\mathbf{out}[s] = \max(\sum_{s' \notin S_1} \mathbf{P}^-[s, s'], 1 - \sum_{s' \in S_1} \mathbf{P}^+[s, s'])$

## • Moreover we upper bound $\mathbf{r}$ by $\mathbf{r}^+ = \min(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^-[s, s'])$

Warning In order to apply stochastic bound,  $\mathbf{r}^+$  must be decreasing. So it implies a re-ordering of states of  $S_1$  before computing  $\mathbf{P}^*$ .

Third step. Compute 
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}^{\star})^k\right) \cdot \mathbf{r}^+$$
  
and assign  $\forall^+$  to  $s$  iff  $\mathbf{M}[s] \leq p$ .

First step as in the previous case.

Second step.

Here we guess one (or more) matrix  $\mathbf{P}$  with a small value of:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

• We order the states of S: first  $S_2$  then  $S_1$  and  $S \setminus (S_1 \cup S_2)$ 

- ▶ Inside  $S_1$ , order the states w.r.t.  $\mathbf{r}[s] = \max(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$
- $\blacktriangleright$  Build  ${\bf P}$  by minimizing the transition probabilities following that order.

Warning All the choices above are heuristics and should be tuned by experiments.

Third step. Compute 
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k\right) \cdot \mathbf{r}$$
  
and assign  $\exists^+$  to  $s$  iff  $\mathbf{m}[s] \leq p$ .

First step as in the previous case.

Second step.

Here we guess one (or more) matrix  $\mathbf{P}$  with a small value of:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

• We order the states of S: first  $S_2$  then  $S_1$  and  $S \setminus (S_1 \cup S_2)$ 

- ▶ Inside  $S_1$ , order the states w.r.t.  $\mathbf{r}[s] = \max(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$
- $\blacktriangleright$  Build  ${\bf P}$  by minimizing the transition probabilities following that order.

Warning All the choices above are heuristics and should be tuned by experiments.

Third step. Compute 
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k\right) \cdot \mathbf{r}$$
  
and assign  $\exists^+$  to  $s$  iff  $\mathbf{m}[s] \leq p$ .

First step as in the previous case.

Second step.

Here we guess one (or more) matrix  $\mathbf{P}$  with a small value of:

$$\left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k \right) \cdot \mathbf{r}$$

• We order the states of S: first  $S_2$  then  $S_1$  and  $S \setminus (S_1 \cup S_2)$ 

- ▶ Inside  $S_1$ , order the states w.r.t.  $\mathbf{r}[s] = \max(\sum_{s' \in S_2} \mathbf{P}^+[s, s'], 1 - \sum_{s' \notin S_2} \mathbf{P}^+[s, s'])$
- $\blacktriangleright$  Build  ${\bf P}$  by minimizing the transition probabilities following that order.

Warning All the choices above are heuristics and should be tuned by experiments.

Third step. Compute 
$$\mathbf{M} = \left(\sum_{k=0}^{\beta-1} (\mathbf{P}_{|\mathcal{S}_1 \times \mathcal{S}_1})^k\right) \cdot \mathbf{r}$$
  
and assign  $\exists^+$  to  $s$  iff  $\mathbf{m}[s] \leq p$ .

# Outline

IMC model

PCTL

Efficient Model Checking PCTL for IMCs



<□▶<□→<□→<量▶<=> = つへで 23/24

# **Conclusion and perspectives**

### Summary of results

- Efficient semi-decision procedure for model checking IMCs
- ► Application of stochastic comparisons for model checking PCTL over IMCs
- Handling the interval constrained until and the mean reachability time operators
- Providing partial answers  $\exists^+, \exists^-$

#### Perspectives

- Development of a prototype for high level formalisms with IMC as possible semantic
- Accuracy of bounds and impact of heuristics
- One year post-doc position available for this project