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IntroductionIntroduction
 Model checking of stochastic systemsModel checking of stochastic systems

 Continuous-time Markov chainsContinuous-time Markov chains
 Continuous Stochastic Logic (CSL)Continuous Stochastic Logic (CSL)

 Probabilistic time-bounded propertiesProbabilistic time-bounded properties

 Comparison of two techniquesComparison of two techniques
 NumericalNumerical computation of probabilities computation of probabilities
 StatisticalStatistical hypothesis testing hypothesis testing



    

Probabilistic Model CheckingProbabilistic Model Checking
 Given a model Given a model MM, a state , a state ss, and a property , and a property 

ϕϕ, does , does ϕϕ hold in  hold in ss for  for MM??
 Model: continuous-time Markov ChainModel: continuous-time Markov Chain
 Property: Continuous Stochastic Logic (CSL) Property: Continuous Stochastic Logic (CSL) 

formulaformula



    

Continuous Stochastic Logic Continuous Stochastic Logic 
(CSL)(CSL)

 State formulasState formulas
 Truth value is determined in a single stateTruth value is determined in a single state

 Path formulasPath formulas
 Truth value is determined over a pathTruth value is determined over a path



    

State FormulasState Formulas

 Standard logic operators: Standard logic operators: ¬¬ϕϕ, , ϕϕ11∧ϕ∧ϕ22, …, …
 Probabilistic operator: Probabilistic operator: PrPr≥≥θθ((ρρ))

 Holds in state Holds in state ss iff probability is at least  iff probability is at least θθ that  that 
ρρ holds over paths starting in  holds over paths starting in ss



    

Numerical vs. Statistical Numerical vs. Statistical 
Probabilistic Model CheckingProbabilistic Model Checking

 Numerical MethodNumerical Method
 Highly accurate resultsHighly accurate results
 Expensive for systems with many statesExpensive for systems with many states

 Statistical MethodStatistical Method
 Low memory requirementsLow memory requirements
 Adapts to difficulty of problem (sequential)Adapts to difficulty of problem (sequential)
 Expensive if high accuracy is requiredExpensive if high accuracy is required



    

Numerical Solution MethodNumerical Solution Method

 Verify Verify PrPr≥≥θθ((ϕϕ11 U U≤T≤T  ϕϕ22)) using transient  using transient 
analysis analysis [Baier et al. 2000][Baier et al. 2000]
 Make states satisfying Make states satisfying ¬ϕ¬ϕ11∨ϕ∨ϕ22 absorbing absorbing
 Compute probability Compute probability pp of being in a state  of being in a state 

satisfying satisfying ϕϕ22 at time  at time TT in modified model in modified model
 PrPr≥≥θθ((ϕϕ11 U U≤T≤T  ϕϕ22) ) holds iffholds iff p ≥  p ≥ θθ



    

Probability ComputationProbability Computation
 Uniformization Uniformization [Jensen 1953][Jensen 1953]

 Transform model into discrete time Markov Transform model into discrete time Markov 
chain with transition matrix chain with transition matrix PP

 Compute Compute pp for all states as follows: for all states as follows:

 Truncated summation from Truncated summation from LLεε to  to RRεε with  with 
truncation error truncation error εε  [Fox & Glynn 1988][Fox & Glynn 1988]
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Role of Truncation ErrorRole of Truncation Error
 We know that We know that p ≥ pp ≥ p and  and p ≤ p + p ≤ p + εε

 If If p ≥ p ≥ θθ then  then p ≥ p ≥ θθ
 If If p + p + εε ≤  ≤ θθ then  then p ≤ p ≤ θθ
 Otherwise, can’t tell if Otherwise, can’t tell if PrPr≥≥θθ((ϕϕ11 U U≤T≤T  ϕϕ22)) holds holds

 Good news: Good news: εε = 10 = 10–10–10 possible without  possible without 
noticeable performance degradationnoticeable performance degradation
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Complexity ofComplexity of
Numerical Solution MethodNumerical Solution Method

 O(q·T)O(q·T) matrix vector multiplications matrix vector multiplications
 Rates, time bound, and number of statesRates, time bound, and number of states

 All states for same costAll states for same cost
 In practice, memory and time savings for In practice, memory and time savings for 

single statesingle state
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Speedup TechniquesSpeedup Techniques
 Steady-state detection Steady-state detection [Malhotra et al. 1994][Malhotra et al. 1994]

 If If PPkk ≈  ≈ PPk–1k–1 then stop after  then stop after kk iterations iterations
 Can lead to significant savingsCan lead to significant savings

 Sequential stopping ruleSequential stopping rule
 Stop if p ≥ Stop if p ≥ θθ after  after kk iterations iterations
 At most At most O(√q·T)O(√q·T) fewer iterations fewer iterations

~



    

Statistical Solution Method Statistical Solution Method 
[Younes & Simmons 2002][Younes & Simmons 2002]

 Use Use discrete event simulationdiscrete event simulation to generate  to generate 
sample pathssample paths

 Use Use sequential acceptance samplingsequential acceptance sampling to  to 
verify probabilistic propertiesverify probabilistic properties
 Hypothesis: Hypothesis: PrPr≥≥θθ((ρρ))

Not estimation!



    

Error BoundsError Bounds
 Probability of false negative: Probability of false negative: ≤≤αα

 We say that We say that ϕϕ is false when it is true is false when it is true
 Probability of false positive: Probability of false positive: ≤≤ββ

 We say that We say that ϕϕ is true when it is false is true when it is false



    

Statistical ApproachStatistical Approach

Model or 
Implementation

Model-Checker

Yes

Error: α,β

No

No: α

Model-Checker

Yes: α

Don’t Know

Monte-Carlo 
Simulator

Model

•Decoupled from the tool

• Run implementation to 
generate samples, or

• Get Samples from Monte-
Carlo simulation of model



    

Performance of TestPerformance of Test

Actual probability of ρ holding
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Ideal PerformanceIdeal Performance
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Actual PerformanceActual Performance

θ – δ θ + δ

Indifference region
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SequentialSequential
Acceptance Sampling Acceptance Sampling [Wald 1945][Wald 1945]

 Hypothesis: Hypothesis: PrPr≥≥θθ((ρρ))

True, false,
or another
sample?



    

Graphical Representation of Graphical Representation of 
Sequential TestSequential Test
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Graphical Representation of Graphical Representation of 
Sequential TestSequential Test

 We can find an We can find an acceptance lineacceptance line and a  and a 
rejection linerejection line given  given θθ, , δδ, , αα, and , and ββ
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Verifying Probabilistic Verifying Probabilistic 
PropertiesProperties

 Verify Verify PrPr≥≥θθ((ρρ) ) with error bounds with error bounds αα and  and ββ
 Generate sample paths using simulationGenerate sample paths using simulation
 Verify Verify ρρ over each sample path over each sample path

 If If ρρ is true, then we have a positive sample is true, then we have a positive sample
 If If ρρ is false, then we have a negative sample is false, then we have a negative sample

 Use sequential acceptance sampling to test Use sequential acceptance sampling to test 
the hypothesis the hypothesis PrPr≥≥θθ((ρρ))



    

Complexity ofComplexity of
Statistical Solution MethodStatistical Solution Method

 Number of samplesNumber of samples
 Complex dependency on Complex dependency on θθ, , δδ, , αα, and , and ββ

 Length of sample pathsLength of sample paths
 Expected length at most Expected length at most q·Tq·T
 Shorter paths if Shorter paths if ¬ϕ¬ϕ11∨ϕ∨ϕ22 is satisfied early is satisfied early

 No direct dependence on size of state No direct dependence on size of state 
spacespace



    

Nested QueriesNested Queries

 PrPr≥0.9≥0.9(Pr(Pr≥0.5≥0.5(true U(true U≤5≤5 comm.) U comm.) U≤20≤20 gold) gold)
 Statistical method: hypothesis testing Statistical method: hypothesis testing 

problem in each state along a path!problem in each state along a path!



    

Nested Queries:Nested Queries:
Combining the MethodsCombining the Methods

 Verify inner probabilistic statement for all Verify inner probabilistic statement for all 
states using numerical methodstates using numerical method

 Verify outer probabilistic statement using Verify outer probabilistic statement using 
statistical methodstatistical method



    

Examples (1)Examples (1)
 Ymer SMC Tool
 Ymer implements the statistical model checking techniques, based on 

discrete event simulation and acceptance sampling, for CSL model 
checking developed by Younes and Simmons [12]. 

 To verify a CSL path formula, Ymer uses discrete event simulation to 
generate sample execution paths and verifies the path formula ' over 
each execution path. 

 The verification result over a sample execution path is the outcome of 
a chance experiment (Bernoulli trial), which is used as an observation 
for an acceptance sampling procedure. Ymer implements both 
sampling with a fixed number of observations and sequential 
acceptance sampling. 

 Ymer includes support for distributed acceptance sampling, i.e. the 
use of multiple machines to generate observations, which can result in 
significant speedup as each observation can be generated 
independently.



    

Examples (2)Examples (2)
 VESTA SMC ToolVESTA SMC Tool
     The statistical model-checking algorithm developed on this tool for 

stochastic models has at least three advantages over previous work. 
      
     1-The algorithm can model check CSL formulas which have unbounded 

untils.
     2-The algorithm is inherently parallel; this parallelism is facilitated by the fact 

that we use simple statistical hypothesis testing rather than sequential 
hypothesis testing.

     3-The algorithm does not suer from the state-space explosion problem since 
it is not needed to store the intermediate states of an execution. 

     However, this algorithm also has at least two limitations. 
      1-The algorithm cannot guarantee the accuracy that numerical techniques 

achieve. 
      2-if we try to increase the accuracy by making the error bounds very small, 

the running time increases considerably. Thus this technique should be 
seen as an alternative to numerical techniques to be used only when it is 
infeasible to use numerical techniques, for example, in large-scale systems.



    

SummarySummary
 Benefits of numerical methodBenefits of numerical method

 All states at the price of oneAll states at the price of one
 Steady-state detectionSteady-state detection
 High accuracyHigh accuracy

 Benefits of statistical methodBenefits of statistical method
 Easy to trade accuracy for speedEasy to trade accuracy for speed
 Scales well with size of state spaceScales well with size of state space
 ParallelizableParallelizable
 Model independentModel independent
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