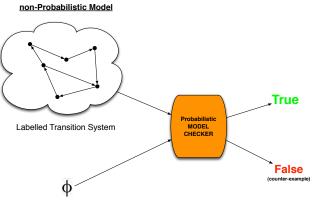
Statistical Model Checking (an overview)

Paolo Ballarini

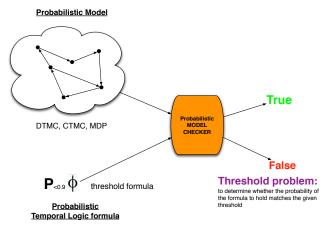
1

The Model Checking approach

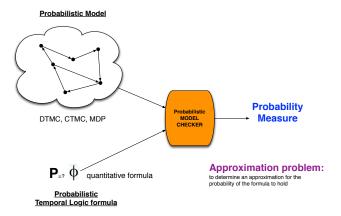


Temporal Logic formula

The Probabilistic Model Checking approach



The Probabilistic Model Checking approach



Numerical vs Statistical

 numerical model checking: application of numerical methods for Model's solution (i.e. *transient analysis*), the approximation is in form of truncation error

- + : better when very accurate approximation are required
- : large memory requirements
- - : many realistic models are numerically untreatable

- statistical model checking: application of discrete-event simulation to sampling model's executions used to produced an approximated output
 - + : small memory requirements (no need to store the state-space)
 - + : only option for verification of many realistic models
 - -: very accurate approximations may be computationally harder

Outline

Temporal Logic for CTMC Models

Statistical Model Checking Threshold problem (Hypothesis Testing) Approximation problem

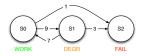
Current work, future directions Confidence Interval based Model Checking

Outline

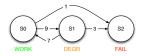
Temporal Logic for CTMC Models

Statistical Model Checking Threshold problem (Hypothesis Testing) Approximation problem

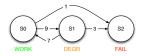
Current work, future directions Confidence Interval based Model Checking



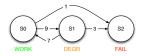
- what is the probability that the system will FAIL (within time T) ("unconditional" reachability)
- what is the probability that the system will go from WORK to FAIL (within time T) ("simple-conditional" reachability)
- what is the probability that the system will go from WORK to DEGR to FAIL (within time T) ("sequential" reachability)
- what is the probability that the system will go from WORK to DEGR within time T_1 and then from DEGR to FAIL within time T_2 ("timed-sequential" reachability)



- what is the probability that the system will FAIL (within time T) ("unconditional" reachability)
- what is the probability that the system will go from WORK to FAIL (within time T) ("simple-conditional" reachability)
- what is the probability that the system will go from WORK to DEGR to FAIL (within time T) ("sequential" reachability)
- what is the probability that the system will go from WORK to DEGR within time T_1 and then from DEGR to FAIL within time T_2 ("timed-sequential" reachability)



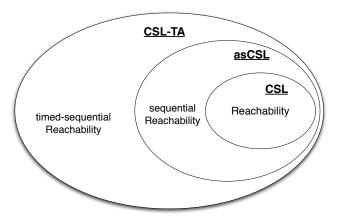
- what is the probability that the system will FAIL (within time T) ("unconditional" reachability)
- what is the probability that the system will go from WORK to FAIL (within time T) ("simple-conditional" reachability)
- what is the probability that the system will go from WORK to DEGR to FAIL (within time T) ("sequential" reachability)
- what is the probability that the system will go from WORK to DEGR within time T_1 and then from DEGR to FAIL within time T_2 ("timed-sequential" reachability)



- what is the probability that the system will FAIL (within time T) ("unconditional" reachability)
- what is the probability that the system will go from WORK to FAIL (within time T) ("simple-conditional" reachability)
- what is the probability that the system will go from WORK to DEGR to FAIL (within time T) ("sequential" reachability)
- what is the probability that the system will go from WORK to DEGR within time T_1 and then from DEGR to FAIL within time T_2 ("timed-sequential " reachability)

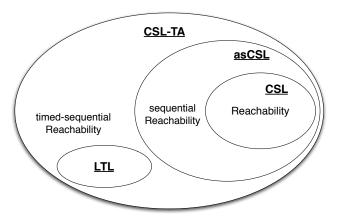
Temporal Logic Taxonomy

CSL: Continuous Stochastic Logic asCSL: action-state CSL CSL-TA: CSL Timed Automata



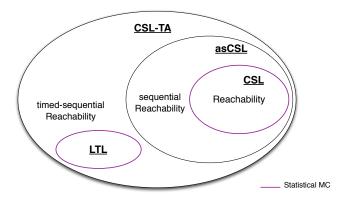
Temporal Logic Taxonomy

CSL: Continuous Stochastic Logic asCSL: action-state CSL CSL-TA: CSL Timed Automata



Temporal Logic Taxonomy

<u>CSL</u>: Continuous Stochastic Logic <u>asCSL</u>: action-state CSL <u>CSL-TA</u>: CSL Timed Automata



CSL (Continuous Stochastic Logic)

CSL: a branching time logic

$$\phi := a \mid \neg \phi \mid \phi \land \phi \mid S_{\sim p}(\phi) \mid \mathcal{P}_{\sim p}(\varphi)$$
$$\varphi := X^{I} \phi \mid \phi U^{I} \phi$$

• $\sim \in \{<, \leq, \geq, >, =, \neq\}, I \subseteq \mathbb{R}_{\geq 0}$ (time-bound)

 $\bullet\,$ characteristic of CSL: each temporal operator must be preceded by a probability bound $\sim p\,$

$$\phi \equiv \mathcal{P}_{\leq 0.9}(WORK \ U \ [\mathcal{P}_{< 0.5}(DEGR \ U \ FAIL)])$$

Outline

Temporal Logic for CTMC Models

Statistical Model Checking

Threshold problem (Hypothesis Testing) Approximation problem

Current work, future directions Confidence Interval based Model Checking

Statistical MC: two formulations

Threshold problem: does the probability measure of query Q meets the bound $\sim p$?

- CSL
 - Younes, Simmons: YMER (sequential Acceptance sampling)
 - San et al: VESTA (simple hypothesis testing)
 - Katoen, Zapreev: MRMC (through Estimation)
- LTL
 - Clarke et al.: (hypoth. Testing + Bayesian)

2 Estimation problem: what is the probability measure of query Q?

- LTL
 - Peyronnet et al.: APMC (Chernoff-Hoeffding bound)
- CSL
 - Parker *et al.*: PRISM (implementation of Peyronnet *et al* method)
 - Katoen, Zapreev: MRMC (?)
- LTL
 - Ballarini et al: OCEAN (Wilson Confidence Interval)

Statistical MC: two formulations

Threshold problem: does the probability measure of query Q meets the bound $\sim p$?

- CSL
 - Younes, Simmons: YMER (sequential Acceptance sampling)
 - San et al: VESTA (simple hypothesis testing)
 - Katoen, Zapreev: MRMC (through Estimation)
- LTL
 - Clarke et al.: (hypoth. Testing + Bayesian)

2 Estimation problem: what is the probability measure of query Q?

- LTL
 - Peyronnet et al.: APMC (Chernoff-Hoeffding bound)
- CSL
 - Parker *et al.*: PRISM (implementation of Peyronnet *et al* method)
 - Katoen, Zapreev: MRMC (?)
- LTL
 - Ballarini et al: OCEAN (Wilson Confidence Interval)

Statistical MC: two formulations

Threshold problem: does the probability measure of query Q meets the bound $\sim p$?

- CSL
 - Younes, Simmons: YMER (sequential Acceptance sampling)
 - San et al: VESTA (simple hypothesis testing)
 - Katoen, Zapreev: MRMC (through Estimation)
- LTL
 - Clarke et al.: (hypoth. Testing + Bayesian)

2 Estimation problem: what is the probability measure of query Q?

- LTL
 - Peyronnet et al.: APMC (Chernoff-Hoeffding bound)
- CSL
 - Parker *et al.*: PRISM (implementation of Peyronnet *et al* method)
 - Katoen, Zapreev: MRMC (?)
- LTL
 - Ballarini et al: OCEAN (Wilson Confidence Interval)

Statistical MC: basic idea

Inputs:

- a model M and property ϕ
- a bound for the desired level of approximation:
 - hypothesis testing : error probability bounds < α, β > + width of indifference region δ
 - \bullet error bounded estimation: the desired error ϵ + the confidence level δ
 - confidence interval estimation: a confidence level α + and width of the confidence interval ϵ
- generate N (finite) sample trajectories σ_i through discrete-event stochastic simulation
- to each trajectory σ_i corresponds a Bernoulli variable X_i :

$$\begin{cases} X_i = 1 \longleftrightarrow (\sigma_i \models \phi) \\ X_i = 0 \longleftrightarrow (\sigma_i \not\models \phi) \end{cases}$$

outcome:

- an approximated answer to $M \models \phi$ with a bounded error probability.
- an approximated estimate of $Pr(\phi, M)$

Hypothesis-testing based Statistical MC

• the problem: decide whether $Pr(\phi, M) \sim \theta$, for example:

 $\mathcal{P}_{<0.05}(true \ U^{[0,3]} \ FAIL)$

("there's at most $\theta = 0.05$ % chance that system will FAIL within time 3")

- **principle:** there's no need to get an accurate estimate of $Pr(\phi, M)$ in order to decide whether $Pr(\phi, M) \sim \theta$: a "rough" estimate (resulting from small samples) may be enough
- hypothesis testing formulation: the decision on $Pr(\phi, M) \sim \theta$ can be formulated in terms of an Hypothesis Testing problem, with

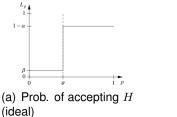
$$H:p \ge \theta$$
$$K:p < \theta$$

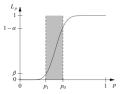
where $p = Pr(\phi, M)$ is the actual probability.

 α :probability of accepting *K* when *H* holds (false negative) β :probability of accepting *H* when *K* holds (false positive)

 $\langle \alpha, \beta \rangle$ is referred to as the strength of the test

Acceptance Sampling [Younes, Simmons]





(b) Prob. of accepting H (with indifference region)

- a) problems: requires exhaustive sample
- b) an indifference region is introduced and hypothesis testing is reformulated:

$$H_0: p \ge p_0 \qquad p_0 = \theta + \delta$$
$$H_1: p < p_1 \qquad p_1 = \theta - \delta$$

Acceptance Sampling (1): fixed-size samples

The number of successes $Y = \sum_i X_i$ is Binomial

$$Pr(Y \le c) = F(c, n, p) = \sum_{i=0}^{c} {n \choose i} p^{i} (1-p)^{n-i}$$

fixed-size samples

- H_0 is accepted if $\sum_i X_i > c$ (c is a constant)
- the acceptance problem corresponds to an optimization problem: "find n and c such that;"

$$F(c, n, p_0) \le \alpha$$
 $1 - F(c, n, p_1) \le \beta$

given the strength $\langle \alpha, \beta \rangle$ and the indifference region $IR = [p_1, p_0]$.

approximated sample size is:

$$\tilde{n} = \frac{\Phi^{-1}(\alpha)\sqrt{p_0(1-p_0)} + \Phi^{-1}(\beta)\sqrt{p_1(1-p_1)}}{(p_0-p_1)^2}$$

Note that: for a fixed width of IR the sample size is largest if IR is centered in p = 1/2 and decreases when moving towards the extremes 0 and 1.

Acceptance Sampling (2): sequential test

Wald sequential test: a fixed size sample n may be a waist

- if after m < n observations Y > c then we can accept H_0
- if after m < n observations Y cannot exceed n then we can accept H_1

$$f_m = \prod_{i=1}^m \frac{\Pr[X_i = x_i | p = p_1]}{\Pr[X_i = x_i | p = p_0]} = \frac{p_1^{d_m} (1 - p_1)^{m - d_m}}{p_0^{d_m} (1 - p_0)^{m - d_m}}$$

$$d_m = \sum_{i=1}^m x_i$$

•
$$H_0$$
 is accepted if $f_m \leq B$ with $B = \frac{\beta}{(1-\alpha)}$

•
$$H_1$$
 is accepted if $f_m \ge A$ with $A = \frac{1-\beta}{\alpha}$

CSL Model Checking through acceptance sampling

so far: given a simple formula ϕ we set the error bounds α and β and the method estimates whether ϕ holds with errors α and β

 $\mathcal{P}_{<}0.05(WORK U^{[0,3]} FAIL)$

problem: how do we set the error bounds for "complex formulae"?

 $\begin{array}{l} \cdot \mathcal{P}_{\leq} 0.05 (WORK \ U^{[0,3]} \ FAIL) \land \mathcal{P}_{\geq} 0.6 (WORK \ U^{[1,2]} \ DEGR) \quad \text{(conjunction)} \\ \cdot \mathcal{P}_{<} 0.5 (WORK \ U^{[0,3]} \ \mathcal{P}_{>} 0.1 (DEGR \ U^{[1,2]} \ FAIL)) \quad \text{(nested UNTIL)} \end{array}$

non-nested path formulae:

• conjunction: to verify $\bigwedge_{i=1}^{n} \Phi_i$ with strenght $\langle \alpha, \beta \rangle$ it is sufficient to verify each conjunct with strength $\langle \alpha/n, \beta/n \rangle$.

nested path formulae:

- the strength of the test for a property with nested prob. operators is a function on the strength of the test of its nested prob. operators
- in order to verify $\mathcal{P}_{\sim \theta}(\varphi)$ with strength $\langle \alpha, \beta \rangle$ set the IR to

 $p_0 = (\theta + \delta(\theta)(1 - \alpha') \text{ and } p_1 = 1 - (1 - (\theta - \delta(\theta)))(1 - \beta'), \text{ where } \langle \alpha', \beta' \rangle \text{ is the strength of the test for } \varphi.$

Statistical CSL threshold problem: summary

• Approach: statistical solution to the "threshold problem" for (subset of) CSL

• Featured properties:

• time-bounded CSL (both simple and nested)

Non-Featured properties:

- unbounded CSL (a tentative-solution has been proposed by Sen *et al.* [2005])
- steady-state formulae (on-going work by Pekergin, El Raib [2009])

Tools:

- YMER (Younes, Simmons)
- VESTA (Sen et al.)

Statistical MC as an Approximation Problem

Problem: given a formula ϕ and probabilistic model M, calculate an approximation of $p = Pr(\phi, M)$ based on N sampled trajectories of M.

• the point estimator is
$$\hat{p} = \frac{\sum_i X_i}{N}$$

there are 2 approaches:

error bounded estimation (Chernoff-Hoeffding bound):

- δ: confidence-level

$$Prob\Big((p-\epsilon) \leq \hat{p} \leq (p+\epsilon)\Big) \geq 1-\delta$$

the probability that estimate \hat{p} is farther than ϵ from actual value is less than δ

2 confidence-interval estimation:

- α: confidence-level

$$Prob\Big(u(\hat{p}) \leq p \leq v(\hat{p})\Big) \geq 1-\alpha$$

 $v(\hat{p}) - u(\hat{p}) = \epsilon$: functions of the sample

the probability that the actual value is farther than δ from the estimate \hat{p} is less than α

Approximate Probabilistic Model Checking

- APMC tool [Peyronnet et al.]: approximate LTL model checking tool
- it calculates approximated probability measure for:
 - general time-bounded LTL
 - time-unbounded monotone LTL (i.e. formulae of the *positive fragment* of LTL, i.e. negation only applied to atomic-propositions)

• it supports two *error bounded estimation* schemes:

Randomized approximation with additive error

• fixed sample-size:
$$N = \ln(\frac{2}{\delta})/2\epsilon^2$$

- Randomized approximation with multiplicative error
 - complex 3-steps estimation procedure

Outline

Temporal Logic for CTMC Models

Statistical Model Checking Threshold problem (Hypothesis Testing) Approximation problem

Current work, future directions

Confidence Interval based Model Checking

Confidence Interval based Model Checking

- OCEAN [Ballarini et al.]: a prototype tool for confidence-interval estimation of the probability of time-bounded LTL formulae vs CTMC biological models expressed in SBML
- it is based on the *Wilson-score interval* (an alternative to the most popular *Wald interval*) which guarantees a better coverage-probability than Wald's

$$\begin{split} & \underbrace{ [L,U] = \frac{\hat{p} + \frac{1}{2N} z_{1-\alpha/2}^2 \mp z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{N} + \frac{z_{1-\alpha/2}^2}{4N^2}}}_{1 + \frac{1}{N} z_{1-\alpha/2}^2} \\ \\ & \text{sample size} \boxed{ N \geq z_{1-\alpha/2}^2 \frac{\hat{p}(1-\hat{p}) - 2\epsilon^2 + \sqrt{\hat{p}^2(1-\hat{p})^2 + 4\epsilon^2(\hat{p} - 0.5)^2}}{2\epsilon^2} \end{split} \end{split} \end{split}$$

The Iterative Wilson Procedure

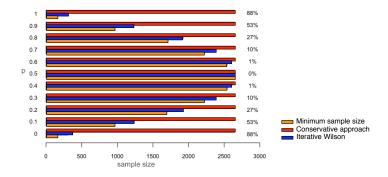
WILSON PROCEDURE

 $\begin{array}{ll} 1 & N_{tot} = 0 \\ 2 & N = \text{Wilson_sample}(\hat{p}_0, \epsilon, \alpha) \\ 3 & \text{Perform N experiments } (\sigma \models \phi) \\ 4 & N_{tot} = N_{tot} + N; \hat{p} = \frac{|YES|}{N_{tot}} \\ 5 & \text{if } \hat{p} \leq 0.5 \\ 6 & p' = \hat{p} + \epsilon \\ 7 & \text{else } p' = \hat{p} - \epsilon \\ 8 & N' = \text{Wilson_sample}(p', \epsilon, \alpha); N_{new} = N' - N_{tot} \\ 9 & \text{if } N_{new} > 0 \\ 10 & N = N_{new}; \text{goto } 3 \\ 11 & \text{else return } \hat{p} \text{ and Wilson_interval}(\hat{p}, N_{tot}, \alpha) \end{array}$

property: the number of iterations depends on the chosen initial estimate \hat{p}_0

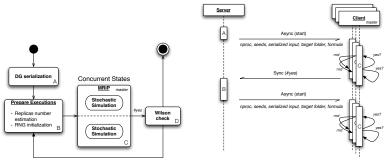
- conservative approach ($\hat{p}_0 = 0.5$): worst case
- iterative approach ($\hat{p}_0 = 1$ or $\hat{p}_0 = 0$): better case
- Minimum sample size approach ($\hat{p}_0 = \text{actual } p$): best case

Performance of Wilson interval method



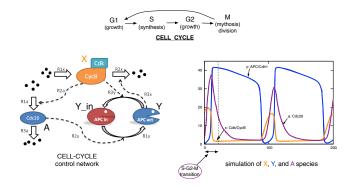
result: the iterative approach outperforms the (most popular) conservative approach particularly with *extreme* (actual) probability (up to 88% fewer iterations required)

Software Prototype: parallel on-the-fly verification



(c) Wilson-driven computational (d) Inter-process and client-server loop communications

Case study: the Cell-Cycle regulatory network

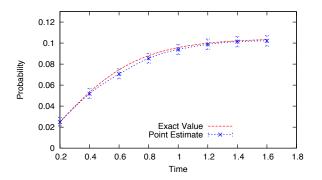


Cdk/CycB (X)			APC/Cdh1 (Y, Y_{in})			Cdc20 (A)		
Ø	$\xrightarrow{k_1\alpha}$	X	Yin	$\xrightarrow{k_3^*}$	Y	Ø	$\xrightarrow{k'_5 \alpha}$	A
X	$\xrightarrow{k_2'}$	Ø	$Y_{in} + a$	$\xrightarrow{k_3''}$	Y + A	X	$\xrightarrow{k_5^*}$	X + A
X + Y	$\xrightarrow{k_2 \alpha}$	Y	X + Y	$\xrightarrow{k_4^*}$	$X + Y_{in}$	A	$\xrightarrow{k_6}$	Ø

Statistical Verification of Cell-Cycle model

 Relevant property: "the influence of A (Cdc20) on Y(APC) during the S/G2/M transition"

$$\phi \equiv (A \leq 4) \; U^{\leq t} \; (Y \geq 5)$$



Threshold Problem vs Approximation Problem

point: what statistical MC approach is better, Threshold Problem (Hypothesis Testing) or Approximation Problem (Error bounded estimation/Confidence Interval)?

- Hypothesis Testing MC is generally cheaper to run (smaller sample size)
- however Hypothesis Testing MC does not provide a probability measure

it depends on the application

- Hypothesis Testing is preferable if strict Safety/Dependability constraints are known
 - e.g. "the prob. of a breakdown must not exceeds 10^{-2} "
- Approximation based MC is preferable for applications which require a lot of SENSITIVITY ANALYSIS
 - e.g. "to check the effect of a model's parameter (e.g. a rate of a transition) has on a given property φ"

this is the case for example in Biological Modeling

Future Work, Open Issues

- CSL-TA statistical model checking (starting now)
 - Approximation problem
 - Threshold problem ?
- Error bound approximation vs Confidence Interval approximation
 - how do they compare?
- Time-unbounded properties: verification through finite length experiments
- Combination of Numerical and Statistical methods as a way to improve performances