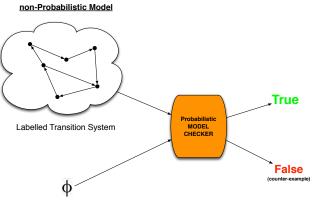
# Statistical Model Checking (an overview)

Paolo Ballarini

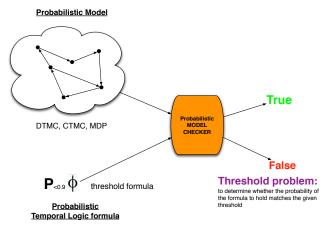
1

# The Model Checking approach

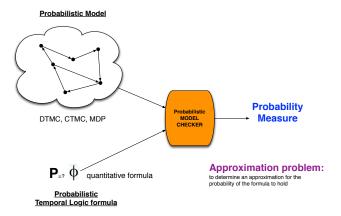


Temporal Logic formula

# The Probabilistic Model Checking approach



# The Probabilistic Model Checking approach



#### Numerical vs Statistical

 numerical model checking: application of numerical methods for Model's solution (i.e. *transient analysis*), the approximation is in form of truncation error

- + : better when very accurate approximation are required
- : large memory requirements
- - : many realistic models are numerically untreatable

- statistical model checking: application of discrete-event simulation to sampling model's executions used to produced an approximated output
  - + : small memory requirements (no need to store the state-space)
  - + : only option for verification of many realistic models
  - -: very accurate approximations may be computationally harder

### Outline

Temporal Logic for CTMC Models

Statistical Model Checking Threshold problem (Hypothesis Testing) Approximation problem

Current work, future directions Confidence Interval based Model Checking

## Outline

Temporal Logic for CTMC Models

Statistical Model Checking Threshold problem (Hypothesis Testing) Approximation problem

Current work, future directions Confidence Interval based Model Checking



- what is the probability that the system will FAIL (within time T) ("unconditional" reachability)
- what is the probability that the system will go from WORK to FAIL (within time T) ("simple-conditional" reachability)
- what is the probability that the system will go from WORK to DEGR to FAIL (within time T) ("sequential" reachability)
- what is the probability that the system will go from WORK to DEGR within time  $T_1$  and then from DEGR to FAIL within time  $T_2$  ("timed-sequential" reachability)



- what is the probability that the system will FAIL (within time T) ("unconditional" reachability)
- what is the probability that the system will go from WORK to FAIL (within time T) ("simple-conditional" reachability)
- what is the probability that the system will go from WORK to DEGR to FAIL (within time T) ("sequential" reachability)
- what is the probability that the system will go from WORK to DEGR within time  $T_1$  and then from DEGR to FAIL within time  $T_2$  ("timed-sequential" reachability)



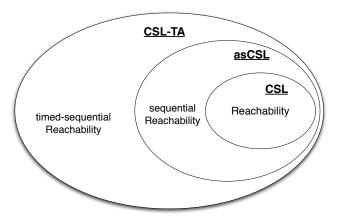
- what is the probability that the system will FAIL (within time T) ("unconditional" reachability)
- what is the probability that the system will go from WORK to FAIL (within time T) ("simple-conditional" reachability)
- what is the probability that the system will go from WORK to DEGR to FAIL (within time T) ("sequential" reachability)
- what is the probability that the system will go from WORK to DEGR within time  $T_1$  and then from DEGR to FAIL within time  $T_2$  ("timed-sequential" reachability)



- what is the probability that the system will FAIL (within time T) ("unconditional" reachability)
- what is the probability that the system will go from WORK to FAIL (within time T) ("simple-conditional" reachability)
- what is the probability that the system will go from WORK to DEGR to FAIL (within time T) ("sequential" reachability)
- what is the probability that the system will go from WORK to DEGR within time  $T_1$  and then from DEGR to FAIL within time  $T_2$  ("timed-sequential " reachability)

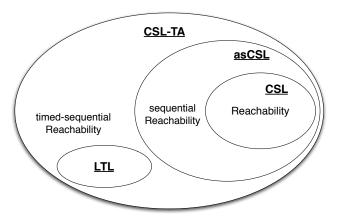
### Temporal Logic Taxonomy

CSL: Continuous Stochastic Logic asCSL: action-state CSL CSL-TA: CSL Timed Automata



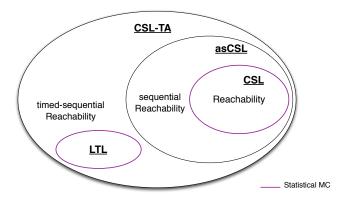
### Temporal Logic Taxonomy

CSL: Continuous Stochastic Logic asCSL: action-state CSL CSL-TA: CSL Timed Automata



## Temporal Logic Taxonomy

<u>CSL</u>: Continuous Stochastic Logic <u>asCSL</u>: action-state CSL <u>CSL-TA</u>: CSL Timed Automata



# CSL (Continuous Stochastic Logic)

CSL: a branching time logic

$$\phi := a \mid \neg \phi \mid \phi \land \phi \mid S_{\sim p}(\phi) \mid \mathcal{P}_{\sim p}(\varphi)$$
$$\varphi := X^{I} \phi \mid \phi U^{I} \phi$$

•  $\sim \in \{<, \leq, \geq, >, =, \neq\}, I \subseteq \mathbb{R}_{\geq 0}$  (time-bound)

 $\bullet\,$  characteristic of CSL: each temporal operator must be preceded by a probability bound  $\sim p\,$ 

$$\phi \equiv \mathcal{P}_{\leq 0.9}(WORK \ U \ [\mathcal{P}_{< 0.5}(DEGR \ U \ FAIL)])$$

# Outline

Temporal Logic for CTMC Models

#### Statistical Model Checking

Threshold problem (Hypothesis Testing) Approximation problem

Current work, future directions Confidence Interval based Model Checking

# Statistical MC: two formulations

Threshold problem: does the probability measure of query Q meets the bound  $\sim p$  ?

- CSL
  - Younes, Simmons: YMER (sequential Acceptance sampling)
  - San et al: VESTA (simple hypothesis testing)
  - Katoen, Zapreev: MRMC (through Estimation)
- LTL
  - Clarke et al.: (hypoth. Testing + Bayesian)

#### 2 Estimation problem: what is the probability measure of query Q?

- LTL
  - Peyronnet et al.: APMC (Chernoff-Hoeffding bound)
- CSL
  - Parker *et al.*: PRISM (implementation of Peyronnet *et al* method)
  - Katoen, Zapreev: MRMC (?)
- LTL
  - Ballarini et al: OCEAN (Wilson Confidence Interval)

# Statistical MC: two formulations

Threshold problem: does the probability measure of query Q meets the bound  $\sim p$  ?

- CSL
  - Younes, Simmons: YMER (sequential Acceptance sampling)
  - San et al: VESTA (simple hypothesis testing)
  - Katoen, Zapreev: MRMC (through Estimation)
- LTL
  - Clarke et al.: (hypoth. Testing + Bayesian)

2 Estimation problem: what is the probability measure of query Q?

- LTL
  - Peyronnet et al.: APMC (Chernoff-Hoeffding bound)
- CSL
  - Parker *et al.*: PRISM (implementation of Peyronnet *et al* method)
  - Katoen, Zapreev: MRMC (?)
- LTL
  - Ballarini et al: OCEAN (Wilson Confidence Interval)

# Statistical MC: two formulations

Threshold problem: does the probability measure of query Q meets the bound  $\sim p$  ?

- CSL
  - Younes, Simmons: YMER (sequential Acceptance sampling)
  - San et al: VESTA (simple hypothesis testing)
  - Katoen, Zapreev: MRMC (through Estimation)
- LTL
  - Clarke et al.: (hypoth. Testing + Bayesian)

2 Estimation problem: what is the probability measure of query Q?

- LTL
  - Peyronnet et al.: APMC (Chernoff-Hoeffding bound)
- CSL
  - Parker *et al.*: PRISM (implementation of Peyronnet *et al* method)
  - Katoen, Zapreev: MRMC (?)
- LTL
  - Ballarini et al: OCEAN (Wilson Confidence Interval)

### Statistical MC: basic idea

#### Inputs:

- a model M and property  $\phi$
- a bound for the desired level of approximation:
  - hypothesis testing : error probability bounds <  $\alpha, \beta$  > + width of indifference region  $\delta$
  - $\bullet$  error bounded estimation: the desired error  $\epsilon$  + the confidence level  $\delta$
  - confidence interval estimation: a confidence level  $\alpha$  + and width of the confidence interval  $\epsilon$
- generate N (finite) sample trajectories  $\sigma_i$  through discrete-event stochastic simulation
- to each trajectory  $\sigma_i$  corresponds a Bernoulli variable  $X_i$ :

$$\begin{cases} X_i = 1 \longleftrightarrow (\sigma_i \models \phi) \\ X_i = 0 \longleftrightarrow (\sigma_i \not\models \phi) \end{cases}$$

#### outcome:

- an approximated answer to  $M \models \phi$  with a bounded error probability.
- an approximated estimate of  $Pr(\phi, M)$

### Hypothesis-testing based Statistical MC

• the problem: decide whether  $Pr(\phi, M) \sim \theta$ , for example:

 $\mathcal{P}_{<0.05}(true \ U^{[0,3]} \ FAIL)$ 

("there's at most  $\theta = 0.05$ % chance that system will FAIL within time 3")

- **principle:** there's no need to get an accurate estimate of  $Pr(\phi, M)$  in order to decide whether  $Pr(\phi, M) \sim \theta$ : a "rough" estimate (resulting from small samples) may be enough
- hypothesis testing formulation: the decision on  $Pr(\phi, M) \sim \theta$  can be formulated in terms of an Hypothesis Testing problem, with

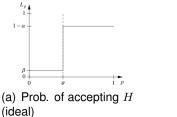
$$H:p \ge \theta$$
$$K:p < \theta$$

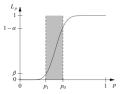
where  $p = Pr(\phi, M)$  is the actual probability.

 $\alpha$  :probability of accepting *K* when *H* holds (false negative)  $\beta$  :probability of accepting *H* when *K* holds (false positive)

 $\langle \alpha, \beta \rangle$  is referred to as the strength of the test

# Acceptance Sampling [Younes, Simmons]





(b) Prob. of accepting H (with indifference region)

- a) problems: requires exhaustive sample
- b) an indifference region is introduced and hypothesis testing is reformulated:

$$H_0: p \ge p_0 \qquad p_0 = \theta + \delta$$
$$H_1: p < p_1 \qquad p_1 = \theta - \delta$$

### Acceptance Sampling (1): fixed-size samples

The number of successes  $Y = \sum_i X_i$  is Binomial

$$Pr(Y \le c) = F(c, n, p) = \sum_{i=0}^{c} {n \choose i} p^{i} (1-p)^{n-i}$$

#### fixed-size samples

- $H_0$  is accepted if  $\sum_i X_i > c$  (c is a constant)
- the acceptance problem corresponds to an optimization problem: "find n and c such that;"

$$F(c, n, p_0) \le \alpha$$
  $1 - F(c, n, p_1) \le \beta$ 

given the strength  $\langle \alpha, \beta \rangle$  and the indifference region  $IR = [p_1, p_0]$ .

approximated sample size is:

$$\tilde{n} = \frac{\Phi^{-1}(\alpha)\sqrt{p_0(1-p_0)} + \Phi^{-1}(\beta)\sqrt{p_1(1-p_1)}}{(p_0-p_1)^2}$$

Note that: for a fixed width of IR the sample size is largest if IR is centered in p = 1/2 and decreases when moving towards the extremes 0 and 1.

#### Acceptance Sampling (2): sequential test

Wald sequential test: a fixed size sample n may be a waist

- if after m < n observations Y > c then we can accept  $H_0$
- if after m < n observations Y cannot exceed n then we can accept  $H_1$

$$f_m = \prod_{i=1}^m \frac{\Pr[X_i = x_i | p = p_1]}{\Pr[X_i = x_i | p = p_0]} = \frac{p_1^{d_m} (1 - p_1)^{m - d_m}}{p_0^{d_m} (1 - p_0)^{m - d_m}}$$

$$d_m = \sum_{i=1}^m x_i$$

• 
$$H_0$$
 is accepted if  $f_m \leq B$  with  $B = \frac{\beta}{(1-\alpha)}$ 

• 
$$H_1$$
 is accepted if  $f_m \ge A$  with  $A = \frac{1-\beta}{\alpha}$ 

# CSL Model Checking through acceptance sampling

so far: given a simple formula  $\phi$  we set the error bounds  $\alpha$  and  $\beta$  and the method estimates whether  $\phi$  holds with errors  $\alpha$  and  $\beta$ 

 $\mathcal{P}_{<}0.05(WORK U^{[0,3]} FAIL)$ 

problem: how do we set the error bounds for "complex formulae"?

 $\begin{array}{l} \cdot \mathcal{P}_{\leq} 0.05 (WORK \ U^{[0,3]} \ FAIL) \land \mathcal{P}_{\geq} 0.6 (WORK \ U^{[1,2]} \ DEGR) \quad \text{(conjunction)} \\ \cdot \mathcal{P}_{<} 0.5 (WORK \ U^{[0,3]} \ \mathcal{P}_{>} 0.1 (DEGR \ U^{[1,2]} \ FAIL)) \quad \text{(nested UNTIL)} \end{array}$ 

#### non-nested path formulae:

• conjunction: to verify  $\bigwedge_{i=1}^{n} \Phi_i$  with strenght  $\langle \alpha, \beta \rangle$  it is sufficient to verify each conjunct with strength  $\langle \alpha/n, \beta/n \rangle$ .

#### nested path formulae:

- the strength of the test for a property with nested prob. operators is a function on the strength of the test of its nested prob. operators
- in order to verify  $\mathcal{P}_{\sim \theta}(\varphi)$  with strength  $\langle \alpha, \beta \rangle$  set the IR to

 $p_0 = (\theta + \delta(\theta)(1 - \alpha') \text{ and } p_1 = 1 - (1 - (\theta - \delta(\theta)))(1 - \beta'), \text{ where } \langle \alpha', \beta' \rangle \text{ is the strength of the test for } \varphi.$ 

### Statistical CSL threshold problem: summary

• Approach: statistical solution to the "threshold problem" for (subset of) CSL

#### • Featured properties:

• time-bounded CSL (both simple and nested)

#### Non-Featured properties:

- unbounded CSL (a tentative-solution has been proposed by Sen *et al.* [2005])
- steady-state formulae (on-going work by Pekergin, El Raib [2009])

#### Tools:

- YMER (Younes, Simmons)
- VESTA (Sen et al.)

### Statistical MC as an Approximation Problem

**Problem:** given a formula  $\phi$  and probabilistic model M, calculate an approximation of  $p = Pr(\phi, M)$  based on N sampled trajectories of M.

• the point estimator is 
$$\hat{p} = \frac{\sum_i X_i}{N}$$

there are 2 approaches:

#### error bounded estimation (Chernoff-Hoeffding bound):

- δ: confidence-level

$$Prob\Big((p-\epsilon) \leq \hat{p} \leq (p+\epsilon)\Big) \geq 1-\delta$$

the probability that estimate  $\hat{p}$  is farther than  $\epsilon$  from actual value is less than  $\delta$ 

#### 2 confidence-interval estimation:

- α: confidence-level

$$Prob\Big(u(\hat{p}) \leq p \leq v(\hat{p})\Big) \geq 1-\alpha$$

 $v(\hat{p}) - u(\hat{p}) = \epsilon$ : functions of the sample

the probability that the actual value is farther than  $\delta$  from the estimate  $\hat{p}$  is less than  $\alpha$ 

## Approximate Probabilistic Model Checking

- APMC tool [Peyronnet et al. ]: approximate LTL model checking tool
- it calculates approximated probability measure for:
  - general time-bounded LTL
  - time-unbounded monotone LTL (i.e. formulae of the *positive fragment* of LTL, i.e. negation only applied to atomic-propositions)

• it supports two *error bounded estimation* schemes:

Randomized approximation with additive error

• fixed sample-size: 
$$N = \ln(\frac{2}{\delta})/2\epsilon^2$$

- Randomized approximation with multiplicative error
  - complex 3-steps estimation procedure

# Outline

Temporal Logic for CTMC Models

Statistical Model Checking Threshold problem (Hypothesis Testing) Approximation problem

Current work, future directions

Confidence Interval based Model Checking

#### Confidence Interval based Model Checking

- OCEAN [Ballarini et al.]: a prototype tool for confidence-interval estimation of the probability of time-bounded LTL formulae vs CTMC biological models expressed in SBML
- it is based on the *Wilson-score interval* (an alternative to the most popular *Wald interval*) which guarantees a better coverage-probability than Wald's

$$\begin{split} & \underbrace{ [L,U] = \frac{\hat{p} + \frac{1}{2N} z_{1-\alpha/2}^2 \mp z_{1-\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{N} + \frac{z_{1-\alpha/2}^2}{4N^2}}}_{1 + \frac{1}{N} z_{1-\alpha/2}^2} \\ \\ & \text{sample size} \boxed{ N \geq z_{1-\alpha/2}^2 \frac{\hat{p}(1-\hat{p}) - 2\epsilon^2 + \sqrt{\hat{p}^2(1-\hat{p})^2 + 4\epsilon^2(\hat{p} - 0.5)^2}}{2\epsilon^2} \end{split} \end{split} \end{split}$$

# The Iterative Wilson Procedure

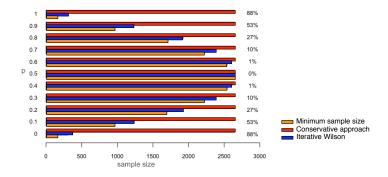
WILSON PROCEDURE

 $\begin{array}{ll} 1 & N_{tot} = 0 \\ 2 & N = \text{Wilson_sample}(\hat{p}_0, \epsilon, \alpha) \\ 3 & \text{Perform $N$ experiments } (\sigma \models \phi) \\ 4 & N_{tot} = N_{tot} + N; \hat{p} = \frac{|YES|}{N_{tot}} \\ 5 & \text{if } \hat{p} \leq 0.5 \\ 6 & p' = \hat{p} + \epsilon \\ 7 & \text{else } p' = \hat{p} - \epsilon \\ 8 & N' = \text{Wilson_sample}(p', \epsilon, \alpha); N_{new} = N' - N_{tot} \\ 9 & \text{if } N_{new} > 0 \\ 10 & N = N_{new}; \text{goto } 3 \\ 11 & \text{else return } \hat{p} \text{ and Wilson_interval}(\hat{p}, N_{tot}, \alpha) \end{array}$ 

**property:** the number of iterations depends on the chosen initial estimate  $\hat{p}_0$ 

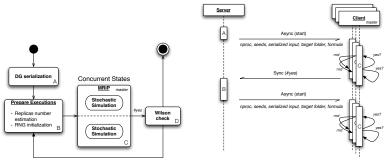
- conservative approach ( $\hat{p}_0 = 0.5$ ): worst case
- iterative approach ( $\hat{p}_0 = 1$  or  $\hat{p}_0 = 0$ ): better case
- Minimum sample size approach ( $\hat{p}_0 = \text{actual } p$ ): best case

# Performance of Wilson interval method



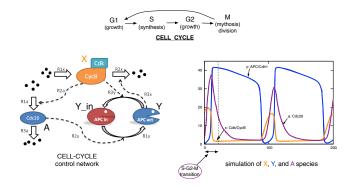
**result:** the iterative approach outperforms the (most popular) conservative approach particularly with *extreme* (actual) probability (up to 88% fewer iterations required)

# Software Prototype: parallel on-the-fly verification



(c) Wilson-driven computational (d) Inter-process and client-server loop communications

### Case study: the Cell-Cycle regulatory network

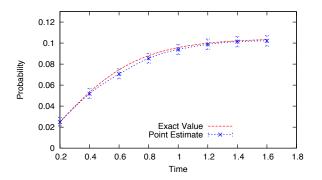


| Cdk/CycB (X) |                            |   | APC/Cdh1 $(Y, Y_{in})$ |                       |              | Cdc20 (A) |                             |       |
|--------------|----------------------------|---|------------------------|-----------------------|--------------|-----------|-----------------------------|-------|
| Ø            | $\xrightarrow{k_1\alpha}$  | X | Yin                    | $\xrightarrow{k_3^*}$ | Y            | Ø         | $\xrightarrow{k'_5 \alpha}$ | A     |
| X            | $\xrightarrow{k_2'}$       | Ø | $Y_{in} + a$           | $\xrightarrow{k_3''}$ | Y + A        | X         | $\xrightarrow{k_5^*}$       | X + A |
| X + Y        | $\xrightarrow{k_2 \alpha}$ | Y | X + Y                  | $\xrightarrow{k_4^*}$ | $X + Y_{in}$ | A         | $\xrightarrow{k_6}$         | Ø     |

#### Statistical Verification of Cell-Cycle model

 Relevant property: "the influence of A (Cdc20) on Y(APC) during the S/G2/M transition"

$$\phi \equiv (A \leq 4) \; U^{\leq t} \; (Y \geq 5)$$



# Threshold Problem vs Approximation Problem

**point:** what statistical MC approach is better, Threshold Problem (Hypothesis Testing) or Approximation Problem (Error bounded estimation/Confidence Interval)?

- Hypothesis Testing MC is generally cheaper to run (smaller sample size)
- however Hypothesis Testing MC does not provide a probability measure

it depends on the application

- Hypothesis Testing is preferable if strict Safety/Dependability constraints are known
  - e.g. "the prob. of a breakdown must not exceeds  $10^{-2}$  "
- Approximation based MC is preferable for applications which require a lot of SENSITIVITY ANALYSIS
  - e.g. "to check the effect of a model's parameter (e.g. a rate of a transition) has on a given property φ"

this is the case for example in Biological Modeling

# Future Work, Open Issues

- CSL-TA statistical model checking (starting now)
  - Approximation problem
  - Threshold problem ?
- Error bound approximation vs Confidence Interval approximation
  - how do they compare?
- Time-unbounded properties: verification through finite length experiments
- Combination of Numerical and Statistical methods as a way to improve performances