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The Model Checking approach

Labelled Transition System
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Temporal Logic formula
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CHECKER

True

False
(counter-example)
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The Probabilistic Model Checking approach

DTMC, CTMC, MDP

Probabilistic Model

Probabilistic 
Temporal Logic formula

Probabilistic
MODEL
CHECKER

True

False

P<0.9 threshold formula Threshold problem: 
to determine whether the probability of 
the formula to hold matches the given 
threshold
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The Probabilistic Model Checking approach

DTMC, CTMC, MDP

Probabilistic Model

Probabilistic 
Temporal Logic formula

Probabilistic
MODEL
CHECKER

Probability 
Measure

P=? quantitative formula
Approximation problem: 
to determine an approximation for the
probability of the formula to hold
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Numerical vs Statistical

numerical model checking: application of numerical methods for Model’s solution
(i.e. transient analysis), the approximation is in form of truncation error

+ : better when very accurate approximation are required
– : large memory requirements
– : many realistic models are numerically untreatable

statistical model checking: application of discrete-event simulation to sampling
model’s executions used to produced an approximated output

+ : small memory requirements (no need to store the state-space)
+ : only option for verification of many realistic models
– : very accurate approximations may be computationally harder
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Outline

Temporal Logic for CTMC Models

Statistical Model Checking
Threshold problem (Hypothesis Testing)
Approximation problem

Current work, future directions
Confidence Interval based Model Checking
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Temporal Queries for CTMC models
CTMCs are probabilistic and timed models, thus query languages for CTMCs must
allow for both probability measures and time bounds

S0 S1 S2

WORK DEGR FAIL

1

7

39

what is the probability that the system will FAIL (within time T )
(“unconditional" reachability)

what is the probability that the system will go from WORK to FAIL (within time T )
(“simple-conditional" reachability)

what is the probability that the system will go from WORK to DEGR to FAIL
(within time T )
(“sequential" reachability)

what is the probability that the system will go from WORK to DEGR within time
T1 and then from DEGR to FAIL within time T2
(“timed-sequential " reachability)
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Temporal Logic Taxonomy

Reachabilitysequential 
Reachabilitytimed-sequential

Reachability

CSL

asCSL

CSL-TA

CSL: Continuous Stochastic Logic

CSL-TA: CSL Timed Automata
asCSL: action-state CSL
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Reachabilitytimed-sequential

Reachability

CSL

asCSL

CSL-TA

CSL: Continuous Stochastic Logic

CSL-TA: CSL Timed Automata
asCSL: action-state CSL

LTL

Statistical MC

8



CSL (Continuous Stochastic Logic)

CSL: a branching time logic

φ := a | ¬φ | φ ∧ φ | S∼p(φ) | P∼p(ϕ)

ϕ := XI φ | φ UIφ

∼∈ {<,≤,≥, >,=, 6=}, I ⊆ R≥0 (time-bound)

characteristic of CSL: each temporal operator must be preceded by a probability
bound ∼ p

φ ≡ P≤0.9(WORK U [P<0.5(DEGR U FAIL)])
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Outline

Temporal Logic for CTMC Models

Statistical Model Checking
Threshold problem (Hypothesis Testing)
Approximation problem

Current work, future directions
Confidence Interval based Model Checking
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Statistical MC: two formulations
1 Threshold problem: does the probability measure of query Q meets the bound
∼ p ?

CSL
Younes, Simmons: YMER (sequential Acceptance sampling)
San et al: VESTA (simple hypothesis testing)
Katoen, Zapreev: MRMC (through Estimation)

LTL
Clarke et al.: (hypoth. Testing + Bayesian)

2 Estimation problem: what is the probability measure of query Q?

LTL
Peyronnet et al.: APMC (Chernoff-Hoeffding bound)

CSL
Parker et al.: PRISM (implementation of Peyronnet et al
method)
Katoen, Zapreev: MRMC (?)

LTL
Ballarini et al: OCEAN (Wilson Confidence Interval)
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Statistical MC: basic idea
Inputs:

a model M and property φ
a bound for the desired level of approximation:

hypothesis testing : error probability bounds < α, β > + width of
indifference region δ
error bounded estimation: the desired error ε + the confidence
level δ
confidence interval estimation: a confidence level α + and width
of the confidence interval ε

generate N (finite) sample trajectories σi through discrete-event stochastic
simulation

to each trajectory σi corresponds a Bernoulli variable Xi:
Xi = 1←→ (σi |= φ)
Xi = 0←→ (σi 6|= φ)

outcome:
an approximated answer to M |= φ with a bounded error probability.
an approximated estimate of Pr(φ,M)
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Hypothesis-testing based Statistical MC
the problem: decide whether Pr(φ,M) ∼ θ, for example:

P≤0.05(true U [0,3] FAIL)

(“there’s at most θ = 0.05% chance that system will FAIL within time 3")

principle: there’s no need to get an accurate estimate of Pr(φ,M) in order to
decide whether Pr(φ,M) ∼ θ: a “rough" estimate (resulting from small samples)
may be enough

hypothesis testing formulation: the decision on Pr(φ,M) ∼ θ can be
formulated in terms of an Hypothesis Testing problem, with

H :p ≥ θ
K :p < θ

where p = Pr(φ,M) is the actual probability.

α :probability of accepting K when H holds (false negative)

β :probability of accepting H when K holds (false positive)

〈α, β〉 is referred to as the strength of the test
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Acceptance Sampling [Younes, Simmons]

(a) Prob. of accepting H
(ideal)

(b) Prob. of accepting H
(with indifference region)

a) problems: requires exhaustive sample

b) an indifference region is introduced and hypothesis testing is reformulated:

H0 :p ≥ p0 p0 = θ + δ

H1 :p < p1 p1 = θ − δ
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Acceptance Sampling (1): fixed-size samples
The number of successes Y =

P
iXi is Binomial

Pr(Y ≤ c) = F (c, n, p) =
cX
i=0

“n
i

”
pi(1− p)n−i

fixed-size samples
H0 is accepted if

P
iXi > c (c is a constant)

the acceptance problem corresponds to an optimization problem: “find n
and c such that;"

F (c, n, p0) ≤ α 1− F (c, n, p1) ≤ β

given the strength 〈α, β〉 and the indifference region IR = [p1, p0].

approximated sample size is:

ñ =
Φ−1(α)

p
p0(1− p0) + Φ−1(β)

p
p1(1− p1)

(p0 − p1)2

Note that: for a fixed width of IR the sample size is largest if IR is centered in
p = 1/2 and decreases when moving towards the extremes 0 and 1.
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Acceptance Sampling (2): sequential test

Wald sequential test: a fixed size sample n may be a waist
if after m < n observations Y > c then we can accept H0

if after m < n observations Y cannot exceed n then we can accept H1

fm =
mY
i=1

Pr[Xi = xi|p = p1]

Pr[Xi = xi|p = p0]
=
pdm1 (1− p1)m−dm

pdm0 (1− p0)m−dm

dm =
Pm
i=1 xi

H0 is accepted if fm ≤ B with B = β
(1−α)

H1 is accepted if fm ≥ A with A = 1−β
α
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CSL Model Checking through acceptance sampling
so far: given a simple formula φ we set the error bounds α and β and the method
estimates whether φ holds with errors α and β

P≤0.05(WORK U [0,3] FAIL)

problem: how do we set the error bounds for “complex formulae"?

· P≤0.05(WORK U [0,3] FAIL) ∧ P≥0.6(WORK U [1,2] DEGR) (conjunction)

· P≤0.5(WORK U [0,3] P≥0.1(DEGR U [1,2] FAIL)) (nested UNTIL)

non-nested path formulae:

conjunction: to verify
Vn
i=1 Φi with strenght 〈α, β〉 it is sufficient to verify

each conjunct with strength 〈α/n, β/n〉.

nested path formulae:
the strength of the test for a property with nested prob. operators is a
function on the strength of the test of its nested prob. operators
in order to verify P∼θ(ϕ) with strength 〈α, β〉 set the IR to
p0 = (θ + δ(θ)(1− α′) and p1 = 1− (1− (θ − δ(θ)))(1− β′), where
〈α′, β′〉 is the strength of the test for ϕ.
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Statistical CSL threshold problem: summary

Approach: statistical solution to the “threshold problem" for (subset of) CSL

Featured properties:

time-bounded CSL (both simple and nested)

Non-Featured properties:

unbounded CSL (a tentative-solution has been proposed by Sen et al.
[2005])
steady-state formulae (on-going work by Pekergin, El Raib [2009])

Tools:
YMER (Younes, Simmons)
VESTA (Sen et al.)
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Statistical MC as an Approximation Problem
Problem: given a formula φ and probabilistic model M , calculate an approximation of
p = Pr(φ,M) based on N sampled trajectories of M .

the point estimator is p̂ =
P
iXi
N

there are 2 approaches:

1 error bounded estimation (Chernoff-Hoeffding bound):
ε: error
δ: confidence-level

Prob
“

(p− ε) ≤ p̂ ≤ (p+ ε)
”
≥ 1− δ

the probability that estimate p̂ is farther than ε from actual value is less than δ

2 confidence-interval estimation:
α: confidence-level
ε: interval-width

Prob
“
u(p̂) ≤ p ≤ v(p̂)

”
≥ 1− α

v(p̂)− u(p̂) = ε: functions of the sample
the probability that the actual value is farther than δ from the estimate p̂ is less
than α
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Approximate Probabilistic Model Checking

APMC tool [Peyronnet et al. ]: approximate LTL model checking tool

it calculates approximated probability measure for:
general time-bounded LTL
time-unbounded monotone LTL (i.e. formulae of the positive fragment of
LTL, i.e. negation only applied to atomic-propositions)

it supports two error bounded estimation schemes:

Randomized approximation with additive error

fixed sample-size: N = ln(
2

δ
)/2ε2

Randomized approximation with multiplicative error

complex 3-steps estimation procedure
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Outline

Temporal Logic for CTMC Models

Statistical Model Checking
Threshold problem (Hypothesis Testing)
Approximation problem

Current work, future directions
Confidence Interval based Model Checking
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Confidence Interval based Model Checking

OCEAN [Ballarini et al.]: a prototype tool for confidence-interval estimation of the
probability of time-bounded LTL formulae vs CTMC biological models expressed
in SBML

it is based on the Wilson-score interval (an alternative to the most popular Wald
interval) which guarantees a better coverage-probability than Wald’s

confidence interval

[L,U ]=
p̂+ 1

2N
z2
1−α/2 ∓ z1−α/2

r
p̂(1−p̂)
N

+
z21−α/2

4N2

1 + 1
N
z2
1−α/2

sample size N ≥ z21−α/2
p̂(1− p̂)− 2ε2 +

p
p̂2(1− p̂)2 + 4ε2(p̂− 0.5)2

2ε2
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The Iterative Wilson Procedure

WILSON PROCEDURE

1 Ntot = 0
2 N = Wilson_sample(p̂0, ε, α)
3 Perform N experiments (σ |= φ)
4 Ntot = Ntot +N ; p̂ =

|Y ES|
Ntot

5 if p̂ ≤ 0.5
6 p′ = p̂ + ε
7 else p′ = p̂− ε
8 N′ = Wilson_sample(p′, ε, α); Nnew = N′ −Ntot
9 if Nnew > 0

10 N = Nnew ; goto 3
11 else return p̂ and Wilson_interval(p̂, Ntot, α)

property: the number of iterations depends on the chosen initial estimate p̂0

conservative approach (p̂0 = 0.5): worst case

iterative approach (p̂0 = 1 or p̂0 = 0): better case

Minimum sample size approach (p̂0 =actual p): best case

23



Performance of Wilson interval method

Minimum sample size
Conservative approach
Iterative Wilson

result: the iterative approach outperforms the (most popular)
conservative approach particularly with extreme (actual) probability
(up to 88% fewer iterations required)
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Software Prototype: parallel on-the-fly verification

Prepare Executions

⁃ Replicas number 
estimation

⁃ RNG initialization

DG serialization

MRiP

Stochastic 
Simulation

Concurrent States

Wilson 
check

Stochastic 
Simulation

A

B

C

D

master

#yes

(c) Wilson-driven computational
loop

Server Client

A Async (start)

B

Sync (#yes)

Async (start)

nproc, seeds, serialized input, target folder, formula

nproc, seeds, serialized input, target folder, formula

rnd

Client

C

Client

yes?

master

yes?C
rnd

rnd

C
rnd

yes?

yes?C

(d) Inter-process and client-server
communications
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Case study: the Cell-Cycle regulatory network
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CELL-CYCLE 
control network simulation of X, Y, and A species
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transition

G1
(growth)
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(synthesis)

G2
(growth)

M
(mythosis)

division
CELL_CYCLE

Cdk/CycB (X) APC/Cdh1 (Y, Yin) Cdc20 (A)
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k1α−−−→ X Yin

k∗3−−→ Y ∅
k′5α−−−→ A

X
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′′′
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k∗5−−→ X + A

X + Y
k
′′
2 α−−−−→ Y X + Y

k∗4−−→ X + Yin A
k6−−→ ∅
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Statistical Verification of Cell-Cycle model

Relevant property: ‘‘the influence of A (Cdc20) on Y (APC)
during the S/G2/M transition"

φ ≡ (A ≤ 4) U≤t (Y ≥ 5)
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Threshold Problem vs Approximation Problem

point: what statistical MC approach is better, Threshold Problem (Hypothesis Testing)
or Approximation Problem (Error bounded estimation/Confidence Interval)?

Hypothesis Testing MC is generally cheaper to run (smaller sample size)

however Hypothesis Testing MC does not provide a probability measure

it depends on the application

Hypothesis Testing is preferable if strict Safety/Dependability constraints are
known

e.g. “the prob. of a breakdown must not exceeds 10−2"

Approximation based MC is preferable for applications which require a lot of
SENSITIVITY ANALYSIS

e.g. “to check the effect of a model’s parameter (e.g. a rate of a transition)
has on a given property φ"

this is the case for example in Biological Modeling
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Future Work, Open Issues

CSL-TA statistical model checking (starting now)

Approximation problem
Threshold problem ?

Error bound approximation vs Confidence Interval approximation

how do they compare?

Time-unbounded properties: verification through finite length experiments

Combination of Numerical and Statistical methods as a way to improve
performances
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