Iterative component-wise bounds for the steady-state distribution of a Markov chain

J.M. Fourneau

Laboratoire PRiSM, CNRS UMR 8144

Université de Versailles St-Quentin

joint work with Ana Bušić (INRIA)

Finite DTMC *P* with stationary solution

- Computation of the steady-state distribution π_P
- CTMC (same method after uniformization)
- Proved convergence (i.e. one can build S such that $\pi_P \in S$ and S as small as needed).
- Compute bounds rather than π_P

PRASN

Changing the point of view

- We consider non negative matrices (not stochastic)
- We use the element wise comparison of matrices and vectors (\preceq_{el})
- Dynamical systems (i.e. non stochastic) based on (max,+) or (min,+) sequences
- Convergence to π_P or bounds of π_P

PRASM

 $\bullet\,$ Depending on some quantities easily computed on P

Outline of the paper

• Definition of ∇_P .

- Algorithms and Results when $\nabla_P \neq \vec{0}$ (the easy case).
- Algorithms and Results when $\nabla_P = \vec{0}$ (the hard case).
- Aggregation and Bounds (a new solution).

An old and simple Idea

• Lemma 1 As $\pi_P = \pi_P P$, and as $\pi(j)$ is between 0 and 1 for all j, then we have:

$$Min_i P(i,j) \le \pi_P(j) = \sum_i \pi_P(i) P(i,j) \le Max_i P(i,j)$$

• Definition: $\nabla_P(j) = Min_iP(i,j)$ and $\Delta_P(j) = Max_iP(i,j)$

$\nabla_P \neq \vec{0}$, Lower Bound

- Algorithm Iterate ∇ Lower Bound $(I\nabla L)$ ————

- Parameters $d1 \leq_{el} \pi_P$, $d2 \leq_{el} \nabla_P$ and $d2 \neq \vec{0}$.
- Initialization $x^{(0)} = d1$

PRUSM

• Iteration $x^{(k+1)} = max(x^{(k)}, x^{(k)}P + d2(1 - ||x^{(k)}||_1))$

Theorem 1 Let P be an irreducible stochastic matrix. Assume that the steady-state probability distribution π_P exists. If $\nabla_P \neq \vec{0}$, Algorithm $(I\nabla L)$ provides lower bounds for all components of π_P and converges to π_P for any value of the parameters d1 and d2.

Algorithm $(I\nabla L)$ with $d1 = d2 = \nabla_{P1}$ gives the following sequence of lower bounds for the probabilities.

k	1	2	3	4	Residual
1	0.00000	0.28000	0.10000	0.26000	0.36000
5	0.04630	0.31643	0.29723	0.29338	0.04665
10	0.06236	0.31886	0.31770	0.29743	0.00362
15	0.06371	0.31912	0.31903	0.29783	0.00028
20	0.06382	0.31914	0.31914	0.29787	0.00002

ANR SetIn CheckBound and Network of Excellence EURO-NF

$\nabla_P \neq \vec{0}$, Upper Bound

Algorithm Iterate ∇ Upper Bound (I ∇ U) —

- Parameters $d3 \succeq_{el} \pi_P$, $d2 \preceq_{el} \nabla_P$ and $d2 \neq \vec{0}$.
- Initialize: $y^{(0)} = d3$.

PROSM

• Iterate: $y^{(k+1)} = min(y^{(k)}, y^{(k)}P + d2(1 - ||y^{(k)}||_1)).$

Theorem 2 Let P be an irreducible stochastic matrix. Assume that the steady-state probability distribution π_P exists. If $\nabla_P \neq \vec{0}$, Algorithm $I\nabla U$ provides a sequence of non increasing upper bounds for all the components of π_P and leads to π_P .

Convergence

• At every step $k, x^{(k)} \leq_{el} \pi_P \leq_{el} y^{(k)}$

- And $x^{(k)}$ is increasing, while $y^{(k)}$ is decreasing. $||y^{(k)} x^{(k)}||_1$ converges to 0.
- Example 2 Again P1 (Example 1), after 20 iterations, combining both algorithms we have the following intervals for the steady-state distribution:

1	(0.06382,0.06384)
2	(0.31914, 0.31915)
3	(0.31914, 0.31916)
4	(0.29787, 0.29787)

Complexity

- nz non zero entries, n size of the state space
- Computing $\nabla: \theta(nz)$,

PRAS

- Per Iteration: Vector Matrix multiplication $\theta(nz)$ for a sparse matrix. + Linear complexity operations.
- See also: Kronecker representation.
- Number of iterations: convergence upper bounded by a geometric with rate $||\nabla_P||_1$
- Speed of convergence: easily obtained from the matrix

Simplification of Matrices

• Assumes that computing P is too difficult...

PROSN

- Typically censoring, ideal aggregation, stochastic complement....
- But you know how to compute Q an element wise lower bound of P. Assume that $\nabla_Q \neq \vec{0}$.
- Property 1 Use Q instead of P in I∇L to obtain an increasing sequence upper bounded by π_P.
- **Property 2** Similarly, if $P \leq_{el} R$, use R instead of P in $I\nabla U$ to obtain (under some technical constraints) a decreasing sequence lower bounded by π_P .

The hard case: $\nabla_P = \vec{0}$, Lower bound

-Simple Lower Bound Algorithm—-(SLB)—

• Initialization: $x^{(0)} = d \preceq_{el} \pi_P$.

PRASM

• Iteration: $x^{(k+1)} = max(x^{(k)}, x^{(k)}P)$.

Theorem 3 For d such that $0 \leq_{el} d \leq_{el} \pi_P$, SLB Algorithm converges. Moreover, if $d \neq \vec{0}$, then the limit vector x of the sequence $x^{(k)}$, $k \geq 0$ is a multiple of π_P (i.e. $x = \frac{\pi_P}{||x||_1}$) and $||x||_1 \leq 1$.

ANR SetIn CheckBound and Network of Excellence EURO-NF

The hard case: $\nabla_P = \vec{0}$, Upper bound

-Simple Upper Bound Algorithm—(SUB)——

• Initialization: $z^{(0)} = d3 \succeq_{el} \pi_P$.

PROSN

• Iteration: $z^{(k+1)} = min(z^{(k)}, z^{(k)}P)$.

Remark 1 Again one can use $d3 = \Delta_P$ in the initialization step of this algorithm.

Theorem 4 Algorithm SUB gives a decreasing sequence of upper bound vector for π_P which converges to a multiple of π_P .

Problems

• How to find $d \leq_{el} \pi_P$ and $d \neq \vec{0}$

PRASN

- A solution is in the paper based on stochastic complement
- Test for convergence: difference between successive values of $z^{(k)}$ (same problem from $x^{(k)}$)
- Provides two approximations: $\frac{z^{(k)}}{||z^{(k)}||_1}$ and $\frac{x^{(k)}}{||x^{(k)}||_1}$.
- How to build an accurate bound from bounds of a multiple of π_P ?

 $\Delta_{P7} = (0.5, 0.6, 0.4, 0.4)$. Assume that we have found a lower bound of π_{P7} which is equal to (0.0, 0.0, 0.15, 0.0). The algorithms SLB and SUB provide the following lower (first table) and upper (second table) bounds:

k	1	2	Ŋ	4	Residual
1	0.000000	0.090000	0.150000	0.000000	0.760000
10	0.195324	0.161590	0.150000	0.166461	0.326625
20	0.234766	0.177670	0.150000	0.200543	0.237021
40	0.242429	0.180793	0.150000	0.207164	0.219614
60	0.242641	0.180880	0.150000	0.207348	0.219131

PR

ANR SetIn CheckBound and Network of Excellence EURO-NF

k	1	2	Ŋ	4	Residual
1	0.500000	0.450000	0.340000	0.400000	-0.690000
10	0.471310	0.352347	0.291323	0.400000	-0.514980
20	0.468221	0.349080	0.289445	0.400000	-0.506746
40	0.468085	0.348936	0.289362	0.400000	-0.506384
60	0.468085	0.348936	0.289362	0.400000	-0.506383

PRUSM

Improvements

• Gauss-Seidel effect

PRASM

Joined computation of lower and upper bound based on:
Lemma 2 For x^(k) ≤_{el} π_P ≤_{el} z^(k), we have:
1. x^(k)P + ∇(1 - ||x^(k)||₁) ≤_{el} π_P ≤_{el} z^(k)P + ∇(1 - ||z^(k)||₁)
2. Similarly,

 $z^{(k)}P + \Delta(1 - ||z^{(k)}||_1) \preceq_{el} \pi_P \preceq_{el} x^{(k)}P + \Delta(1 - ||x^{(k)}||_1)$

Aggregation

- Assume that P is finite, irreducible, and $\nabla_P = \vec{0}$.
- Assume that *P* is not lumpable.

PRASM

• Assume that we have found a partition $\mathcal{A}_1, \ldots, \mathcal{A}_m$ $(m \ge 2)$ of the state-space such it exists a non empty subset \mathcal{A}_k such that for all state j in the state space $P(j, \mathcal{A}_k) > 0$.

Ideal Aggregates

- R = WPV, V is a collector matrix, W a distributor matrix
- V(i,k) = 1 if state *i* is in subset \mathcal{A}_k

- Columns of W contains the conditional distribution of states for a subset
- We must know π_P to compute the aggregated matrix W and R
- If the aggregated Markov chain is an ideal aggregation of P, then $\pi_R = \pi_P V$.

Bounds on Matrices

- Entry (i, k) of matrix PV is $P(i, \mathcal{A}_k)$.
- Entry (k, j) of matrix W is the conditional distribution if state i is in subset \mathcal{A}_k and 0 otherwise.
- Entry (l, k) of matrix WPV is the convex sum of $P(i, \mathcal{A}_k)$ for $i \in \mathcal{A}_l$ and for all distributor matrix W we have:

 $Min_{i\in\mathcal{A}_l}P(i,\mathcal{A}_k) \le (WPV)(l,k) \le Max_{i\in\mathcal{A}_l}P(i,\mathcal{A}_k)$

• Finally,
$$L \leq_{el} WPV \leq_{el} U$$

where $L(l,k) = Min_{i \in \mathcal{A}_l} P(i, \mathcal{A}_k)$

Bounds on steady-state distribution

• $L \preceq_{el} WPV \preceq_{el} U$

- Because of the partition $\nabla_R \neq \vec{0}$,
- Apply Algorithm $I\nabla L$ on L (a lower bound of R) to obtain an increasing sequence upper bounded by $\pi_P V$.

Conclusion

- New computation scheme for the steady-state distribution of DTMC
- Compatible with tensor and sparse representation
- Provide bounds at every step
- Proved convergence if $\nabla \neq \vec{0}$
- Simplification of matrices implies component-wise bounds
- Mixed approach with 'Ideal Aggregates' to obtain component-wise bounds for the aggregates.
- Works well with Google matrix

PRAS

