Perfect Simulation and Non-monotone Markovian Systems

Ana Bušić ${ }^{3}$ Bruno Gaujal ${ }^{1}$ Jean-Marc Vincent ${ }^{2}$

${ }^{1}$ INRIA Grenoble - Rhône-Alpes
${ }^{2}$ Université Joseph Fourier, Grenoble
${ }^{3}$ LIAFA, Paris 7

ANR Checkbound meeting, October 2008

Discrete Event System

System description: $\left(\mathcal{X}, \pi^{0}, \mathcal{E}, p, \phi\right)$

- Finite state space \mathcal{X}.

Without loss of generality, $\mathcal{X}=\{1, \ldots, N\}$.

- Probability measure π^{0} on \mathcal{X} :
$\pi_{x}^{0} \geq 0, x \in \mathcal{X}$ is the probability that the system is in state x at time 0 .
- Finite set of events \mathcal{E}.
- Probability measure p on \mathcal{E} :
$p_{e}>0, e \in \mathcal{E}$ is the probability of event e.
- Transition function $\phi: \mathcal{X} \times \mathcal{E} \rightarrow \mathcal{X}$.

Discrete Event System (II)

Evolution of the system (over n steps):

1. Choose initial state X_{0} with probability measure π^{0}.
2. For $i=1$ to n do:

- Choose an event $e_{i} \in \mathcal{E}$ with probability measure p
- $X_{i}:=\phi\left(X_{i-1}, e_{i}\right)$

Example

Let $p_{a}=1 / 3, p_{b}=2 / 3$, and $\pi^{0}=(1 / 4,1 / 4,1 / 4,1 / 4)$.
A possible trajectory of the system is
$1-3-3-2-4-1-3-3-\cdots$ starting from state 1 and for sequence of events bbababb....

Remarks

Random sequence $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is a discrete time Markov chain (DTMC) with transition probability matrix:

$$
P_{i, j} \stackrel{\text { def }}{=} \mathbb{P}\left(X_{n}=j \mid X_{n-1}=i\right)=\sum_{e \in \mathcal{E}} p_{e} \mathbf{1}_{\phi(i, e)=j}
$$

Furthermore, every DTMC can be represented in a form $\left(\mathcal{X}, \pi^{0}, \mathcal{E}, p, \phi\right)$. For a chain with N states, we can construct an event representation with at most N^{2}, with complexity $O\left(N^{2}\right)$.

Sampling the Steady-state

Assumption: $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is ergodic.
Question
How to sample its stationary distribution π ?

Sampling the Steady-state

Assumption: $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is ergodic.

Question

How to sample its stationary distribution π ?
Answer: solve the linear system $\pi=\pi P$ to find π, then use discrete probability measure sampling.
Complexity of computing π : $O\left(N^{3}\right)$ (where $N=|\mathcal{X}|$).

Sampling the Steady-state

Assumption: $\left\{X_{n}\right\}_{n \in \mathbb{N}}$ is ergodic.

Question

How to sample its stationary distribution π ?
Answer: solve the linear system $\pi=\pi P$ to find π, then use discrete probability measure sampling.
Complexity of computing π : $O\left(N^{3}\right)$ (where $N=|\mathcal{X}|$).
Question
How to avoid computing π ?

Monte-Carlo Simulation

Algorithm:

- Sample X_{0} from π^{0}.
- For $i=1$ to n :
- Sample e_{i} from p.
- $X_{i}=\phi\left(X_{i-1}, e_{i}\right)$.

Output: a sample from the probability measure $\pi^{0} P^{n}$.
Complexity: $O(\mathcal{C}(\phi) n)$.
(Remark: sampling from discrete probability measure can be done in $O(1)$ using alias method [Walker, 74].)

Monte-Carlo Simulation

Algorithm:

- Sample X_{0} from π^{0}.
- For $i=1$ to n :
- Sample e_{i} from p.
- $X_{i}=\phi\left(X_{i-1}, e_{i}\right)$.

Output: a sample from the probability measure $\pi^{0} P^{n}$.
Complexity: $O(\mathcal{C}(\phi) n)$.
(Remark: sampling from discrete probability measure can be done in $O(1)$ using alias method [Walker, 74].)

Inconvenient: approximation.
Error estimation is difficult: depends on the second eigenvalue of P which is hard to compute [Brémaud, Glynn, Whitt, Hordijk].

Perfect Simulation

Goal:

- unbiaised samples of π without coputing it (nor P).
- finite stopping time.

First results (theoretical and existential) [Borovkov 75, Glynn 96]
Propp and Wilson (1996) proposed backward coupling algorithm.

Backward coupling

Backward coupling (II)

$\Phi^{n}\left(x, e_{1 \rightarrow n}\right) \stackrel{\text { def }}{=} \Phi\left(\ldots \Phi\left(\Phi\left(x, e_{1}\right), e_{2}\right), \ldots, e_{n}\right)$.
For $A \subset \mathcal{X}, \Phi^{n}\left(A, e_{1 \rightarrow n}\right) \stackrel{\text { def }}{=}\left\{\Phi^{n}\left(x, e_{1 \rightarrow n}\right), x \in A\right\}$.
Theorem ([Propp and Wilson (1996)])
There exists $\ell \in \mathbb{N}$ such that

$$
\lim _{n \rightarrow \infty}\left|\Phi^{n}\left(\mathcal{X}, e_{-n+1 \rightarrow 0}\right)\right|=\ell \text { almost surely. }
$$

The system couples if $\ell=1$. In that case, the value of $\Phi^{n}\left(\mathcal{X}, e_{-n+1 \rightarrow 0}\right)$ is steady state distributed.
Coupling time: $\tau^{b} \stackrel{\text { def }}{=} \min \left\{n \in \mathbb{N}:\left|\Phi^{n}\left(\mathcal{X}, e_{-n+1 \rightarrow 0}\right)\right|=1\right\}$.

Backward coupling (II)

$\Phi^{n}\left(x, e_{1 \rightarrow n}\right) \stackrel{\text { def }}{=} \Phi\left(\ldots \Phi\left(\Phi\left(x, e_{1}\right), e_{2}\right), \ldots, e_{n}\right)$.
For $A \subset \mathcal{X}, \Phi^{n}\left(A, e_{1 \rightarrow n}\right) \stackrel{\text { def }}{=}\left\{\Phi^{n}\left(x, e_{1 \rightarrow n}\right), x \in A\right\}$.
Theorem ([Propp and Wilson (1996)])
There exists $\ell \in \mathbb{N}$ such that

$$
\lim _{n \rightarrow \infty}\left|\Phi^{n}\left(\mathcal{X}, e_{-n+1 \rightarrow 0}\right)\right|=\ell \text { almost surely. }
$$

The system couples if $\ell=1$. In that case, the value of $\Phi^{n}\left(\mathcal{X}, e_{-n+1 \rightarrow 0}\right)$ is steady state distributed.
Coupling time: $\tau^{b} \stackrel{\text { def }}{=} \min \left\{n \in \mathbb{N}:\left|\Phi^{n}\left(\mathcal{X}, e_{-n+1 \rightarrow 0}\right)\right|=1\right\}$. Inconvenient: Complexity $O\left(\tau^{b} \mathcal{C}(\phi) N\right)$.

Monotone systems

Assumption: state space is partially ordered (\prec) and transition function is monotone:

$$
x \prec y \Rightarrow \forall e \in \mathcal{E}, \phi(x, e) \prec \phi(y, e)
$$

Monotone systems

Assumption: state space is partially ordered (\prec) and transition function is monotone:

$$
x \prec y \Rightarrow \forall e \in \mathcal{E}, \phi(x, e) \prec \phi(y, e)
$$

Non-monotone case

Question

What to do with non-monotone events?

Non-monotone case (II)

Assumption: (\mathcal{X}, \prec) is a complete lattice.
Let $T \stackrel{\text { def }}{=} \sup \mathcal{X}$ and $B \stackrel{\text { def }}{=} \inf \mathcal{X}$.
New transition function $\Gamma: \mathcal{X} \times \mathcal{X} \times \mathcal{E} \rightarrow \mathcal{X} \times \mathcal{X}$

$$
\begin{array}{ll}
\Gamma_{1}(m, M, e) & \stackrel{\text { def }}{=} \inf _{m \prec x \prec M} \phi(x, e) \\
\Gamma_{2}(m, M, e) \stackrel{\text { def }}{=} \sup _{m \prec x \prec M} \phi(x, e) .
\end{array}
$$

Theorem
If $\Gamma^{n}\left(B, T, e_{-n+1 \rightarrow 0}\right)$ hits the diagonal \mathcal{D} (i.e. states of the form $(x, x))$ in finite time: $\tau^{e} \stackrel{\text { def }}{=} \min \left\{n: \Gamma^{n}\left(B, T, e_{-n+1 \rightarrow 0}\right) \in \mathcal{D}\right\}$, then $\Gamma^{\tau_{e}}\left(B, T, e_{-\tau_{e}+1 \rightarrow 0}\right)$ has the steady state distribution π.

Non-monotone case (II)

Assumption: (\mathcal{X}, \prec) is a complete lattice.
Let $T \stackrel{\text { def }}{=} \sup \mathcal{X}$ and $B \stackrel{\text { def }}{=} \inf \mathcal{X}$.
New transition function $\Gamma: \mathcal{X} \times \mathcal{X} \times \mathcal{E} \rightarrow \mathcal{X} \times \mathcal{X}$

$$
\begin{array}{ll}
\Gamma_{1}(m, M, e) & \stackrel{\text { def }}{=} \inf _{m \prec x \prec M} \phi(x, e) \\
\Gamma_{2}(m, M, e) \stackrel{\text { def }}{=} \sup _{m \prec x \prec M} \phi(x, e) .
\end{array}
$$

Theorem
If $\Gamma^{n}\left(B, T, e_{-n+1 \rightarrow 0}\right)$ hits the diagonal \mathcal{D} (i.e. states of the form $(x, x))$ in finite time: $\tau^{e} \stackrel{\text { def }}{=} \min \left\{n: \Gamma^{n}\left(B, T, e_{-n+1 \rightarrow 0}\right) \in \mathcal{D}\right\}$, then $\Gamma^{\tau_{e}}\left(B, T, e_{-\tau_{e}+1 \rightarrow 0}\right)$ has the steady state distribution π.
Proof: If $\left(m_{0}, M_{0}\right) \stackrel{\text { def }}{=} \Gamma^{n}\left(B, T, e_{-n+1 \rightarrow 0}\right)$, then the set $\phi^{n}\left(\mathcal{X}, e_{-n+1 \rightarrow 0}\right)$ is included in $\left\{x: m_{0} \prec x \prec M_{0}\right\}$. If the latter is reduced to one point, so is the set $\phi^{n}\left(\mathcal{X}, e_{-n+1 \rightarrow 0}\right)$.

Example

Example

Example

Example

Example

Envelope perfect simulation

Data: - $\Phi,\left\{e_{-n}\right\}_{n \in \mathbb{N}}$

- Γ the pre-computed envelope function

Result: A state $x^{*} \in \mathcal{X}$ generated according to the stationary distribution of the system

begin

$$
n=1 ; M:=T ; m:=B ;
$$

repeat

$$
\text { for } i=n-1 \text { downto } 0 \text { do }
$$

$L(m, M):=\Gamma\left(m, M, e_{-i}\right) ;$
$n:=2 n ;$
until $M=m$;
$x^{*}:=M$;
return x^{*};
end
Complexity: $O\left(\mathcal{C}(\Gamma) \tau^{e}\right)$ (to compare with $O\left(\mathcal{C}(\phi) N \tau^{b}\right)$).

Comments

1. Everything works the same if $\Gamma_{1}\left(r\right.$ resp. $\left.\Gamma_{2}\right)$ is replaced by a lower (resp. upper) bound on the infimum (res. supremum).
2. The definition of the envelopes is based on the constructive definition Φ of the Markov chain. For a new event representation Φ^{\prime} of the Markov chain envelopes are modified accordingly.
3. If the function $\Phi(., e)$ is non-decreasing for all event e, then for any $m \leq M, \Gamma_{1}(m, M, e)=\Phi(m, e)$ and $\Gamma_{2}(m, M, e)=\Phi(M, e)$, so that Algorithm EPSA coincides with the classical monotone perfect simulation algorithm for monotone Markov chains.

Problems

- The envelopes may not couple even if the trajectories do. Example: a single queue with batch arrivals of size 3 and batch services of size 2. (Notation: $(+3,-2)$ queue.) If the whole batch cannot be accepted, the batch is rejected (blocking).

Problems

- The envelopes may not couple even if the trajectories do. Example: a single queue with batch arrivals of size 3 and batch services of size 2. (Notation: $(+3,-2)$ queue.) If the whole batch cannot be accepted, the batch is rejected (blocking).
- When the envelopes couple, the coupling time of envelopes can be much longer.
Example: as above, with individual and batch arrivals.

Problems

- The envelopes may not couple even if the trajectories do. Example: a single queue with batch arrivals of size 3 and batch services of size 2. (Notation: $(+3,-2)$ queue.) If the whole batch cannot be accepted, the batch is rejected (blocking).
- When the envelopes couple, the coupling time of envelopes can be much longer.
Example: as above, with individual and batch arrivals.
- The complexity of envelope computation might be too high. Complexity of EPSA: $O\left(\mathcal{C}(\Gamma) \cdot \tau^{e}\right)$. $\mathcal{C}(\Gamma)$ should not depend on N !

Queuing networks

Most of the events are piece-wise space homogeneous (i.e. $\phi(x, e)=x+v_{R}$ for x in region R) and we often have: $\mathcal{C}(\Gamma) \sim \mathcal{C}(\phi)$.
Difference between PSA and EPSA in $N \tau^{b}$ and τ^{e}.

$$
\xrightarrow{\lambda_{1}=0.8} \frac{\mu_{1}=1}{\substack{C_{1}=15}} \underbrace{\rightarrow}_{\text {negative client with prob. } 0.8} \xrightarrow{C_{2}=15} \bigcirc \rightarrow
$$

Figure: A network with negative customers.

Queuing networks (II)

Mean coupling time

Figure: Mean coupling times of PSA and EPSA algorithms for the network in Figure 1 as a function of λ_{2}.

Beyond enveloppes

When the coupling time for envelopes is too long (or if they do not couple):

- bounds
- splitting

Example

Figure: Mean coupling times for PSA, EPSA and EPSA with splitting for a $(+2,+3,-1)$ queue.

Classes

Classes:

- M_{1} - monotone MC
- M_{2} - non-monotone MC, where envelope perfect simulation can be used efficiently
- M_{3} - envelopes do couple but take a much larger time
- M_{4} - envelopes do not couple (bounds, splitting)

Examples:

- E_{1} - a network of finite queues with monotone routing.
- E_{2} - a network as E_{1} with negative customers E_{2}^{\prime} - a network as E_{1} with fork and join nodes
- E_{3} - a network with individual customers and batches
- E_{4} - a network of queues with only batches larger than two.

