Stochastic comparison for performability of telecommunication systems

Hind Castel-Taleb ${ }^{1}$ Idriss Ismael-Aouled ${ }^{1,2}$ Nihal Pekergin ${ }^{2}$
${ }^{1}$ INSTITUT TELECOM, Telecom SudParis
${ }^{2}$ LACL, Université Paris-Est Val de Marne

June 11, 2010

Motivation

- Performability evaluation of computer and telecommunication (more parameters so more complexe)
- Multidimensional Markov chains, state-space explosion problem
- Numerical analysis may be very complex or intractable

Motivation

- Performability evaluation of computer and telecommunication (more parameters so more complexe)
- Multidimensional Markov chains, state-space explosion problem
- Numerical analysis may be very complex or intractable
- Stochastic Comparison
- Idea Find "simple models" to bound the considered performance measures
- Method Application of stochastic comparison approach to construct bounding models

Stochastic Comparison on multidimensional state space

- State space E with \preceq
- Stochastic orderings : $\preceq_{s t}, \preceq_{w k}, \preceq_{w k^{*}}$

$$
\begin{aligned}
& \text { - } X \preceq_{\text {st }} Y \Leftrightarrow E(f(X)) \leq E(f(Y)) \\
& \text { - }\{X(t), t \geq 0\} \preceq \text { st }\{Y Y(t), t \geq 0\} \Leftrightarrow E(f(X(t)) \leq E(f(Y(t)), \forall t \geq 0 \\
& \text { - }\{X(t), t \geq 0\} \preceq \text { st }\{Y(t), t \geq 0\} \Rightarrow \sum_{x \in E} \Pi^{X}(x) f(x) \leq \\
& \sum_{x \in E} \Pi^{Y}(x) f(x)
\end{aligned}
$$

Stochastic Comparison on multidimensional state space

- State space E with \preceq
- Stochastic orderings : $\preceq_{s t}, \preceq_{w k}, \preceq_{w k^{*}}$

$$
\begin{aligned}
& \text { - } X \preceq \preceq_{\text {st }} Y \Leftrightarrow E(f(X)) \leq E(f(Y)) \\
& \text { - }\{X(t), t \geq 0\} \preceq \text { st }\{Y(t), t \geq 0\} \Leftrightarrow E(f(X(t)) \leq E(f(Y(t)), \forall t \geq 0 \\
& \text { - }\{X(t), t \geq 0\} \preceq \text { st }\{Y(t), t \geq 0\} \Rightarrow \sum_{x \in E} \Pi^{X}(x) f(x) \leq \\
& \sum_{x \in E} \Pi^{Y}(x) f(x)
\end{aligned}
$$

- Different methods : coupling, increasing set \Rightarrow transition rates comparison
- Comparison by mapping functions : easier process (reduced state space or product form)

Comparison of the performance measures

For the Performability measure of the CTMC

$$
R(t)=\sum_{x \in E} \Pi(x, t) f(x)
$$

Comparison of the performance measures

For the Performability measure of the CTMC

$$
R(t)=\sum_{x \in E} \Pi(x, t) f(x)
$$

From the stochastic ordering relation we have :
For the upper bound

$$
R(t) \leq R^{u}(t)=\sum_{x \in E^{u}} \Pi^{u}(x, t) f(x)
$$

For the lower bound

$$
R(t) \geq R^{\prime}(t)=\sum_{x \in E^{\prime}} \Pi^{\prime}(x, t) f(x)
$$

Outline

Application : telecommunication system

Figure: Erlang Loss with performability Model, $\mathrm{n}=3$

Application : telecommunication system

$$
(3,0) \underset{\mu}{\underset{ }{\lambda}}(3,1)
$$

Figure: Erlang Loss with performability Model, $\mathrm{n}=3$

Application : telecommunication system

$(3,0) \xrightarrow[\mu]{\xrightarrow{\lambda}}(3,1)$

$(2,1)$

Figure: Erlang Loss with performability Model, $\mathrm{n}=3$

Application : telecommunication system

Figure: Erlang Loss with performability Model, $\mathrm{n}=3$

Application : telecommunication system

Figure: Erlang Loss with performability Model, $\mathrm{n}=3$

Application : telecommunication system

Figure: Erlang Loss with performability Model, $\mathrm{n}=3$

- CTMC, $\{X(t), t \geq 0\}$ with $(n+1)(n+2) / 2$ states and, $\forall x=\left(x_{1}, x_{2}\right) \in A, x_{1} \geq x_{2}$.

Application : telecommunication system

Figure: Erlang Loss with performability Model, $\mathrm{n}=3$

- CTMC, $\{X(t), t \geq 0\}$ with $(n+1)(n+2) / 2$ states and, $\forall x=\left(x_{1}, x_{2}\right) \in A, x_{1} \geq x_{2}$.
- Performance study : $T_{b}=\sum_{x_{i}=0}^{n} \Pi\left[x_{i}, x_{i}\right]$

Outline

Markov Reward Model contruction

MRM components: Pure Availability Model

Figure: Pure Availability Model

$$
\begin{equation*}
\bar{A}=\pi_{0}=\left[\sum_{i=0}^{n} \frac{1}{i!}(\tau / \gamma)^{i}\right]^{-1} \quad \pi_{i}=\left((\tau / \gamma)^{i} / i!\right) \pi_{0} \tag{1}
\end{equation*}
$$

Markov Reward Model contruction

MRM components: Pure Performance Model

Figure: Pure Performance Model

$$
\begin{equation*}
p_{b}(i)=\frac{\left.(\lambda / \mu)^{i} / i!\right)}{\sum_{j=0}^{i}(\lambda / \mu)^{j} / j!} \tag{2}
\end{equation*}
$$

Markov Reward Model contruction

MRM components: Pure Performance Model

Figure: Pure Performance Model

$$
\begin{equation*}
p_{b}(i)=\frac{\left.(\lambda / \mu)^{i} / i!\right)}{\sum_{j=0}^{i}(\lambda / \mu)^{j} / j!} \tag{2}
\end{equation*}
$$

The total call blocking probability

$$
\begin{equation*}
T_{b}^{*}=\sum_{i=0}^{n} r_{i} \pi_{i}=\sum_{i=1}^{n} p_{b}(i) \pi_{i}+\pi_{0} \tag{3}
\end{equation*}
$$

Outline

System with a product form

Figure: Exact model, $\mathrm{X}(\mathrm{t})$

System with a product form

Figure: Exact model, $\mathrm{X}(\mathrm{t})$

Figure: Product form model, $X^{\text {sup } 1}(t)$

System with a product form

Figure: Exact model, $\mathrm{X}(\mathrm{t})$

Figure: Product form model, $X^{\text {sup } 1}(t)$

Performability measure

- Total blocking probability $T_{b}=\sum_{x_{i}=0}^{n} \Pi\left[x_{i}, x_{i}\right]$

System with product form

Definition

- Many to one mapping function $g: E \rightarrow A$.

$$
g\left(y_{1}, y_{2}\right)=\left\{\begin{array}{ccc}
\left(y_{1}, y_{1}\right) & \text { if } & y_{1} \leq y_{2} \tag{4}\\
\left(y_{1}, y_{2}\right) & \text { otherwise }
\end{array}\right.
$$

System with product form

Definition

- Many to one mapping function $g: E \rightarrow A$.

$$
g\left(y_{1}, y_{2}\right)=\left\{\begin{array}{ccc}
\left(y_{1}, y_{1}\right) & \text { if } & y_{1} \leq y_{2} \tag{4}\\
\left(y_{1}, y_{2}\right) & \text { otherwise }
\end{array}\right.
$$

- We define on A the following order \preceq :

$$
\begin{equation*}
\forall x, y \in A, x \preceq y \Longleftrightarrow x_{1}-x_{2} \geq y_{1}-y_{2} \tag{5}
\end{equation*}
$$

Proofs: Coupling method

- Proposition:

$$
\begin{equation*}
\{X(t), t \geq 0\} \preceq_{s t}\left\{g\left(X^{\text {sup } 1}(t)\right), t \geq 0\right\} \tag{6}
\end{equation*}
$$

Proofs: Coupling method

- Proposition:

$$
\begin{equation*}
\{X(t), t \geq 0\} \preceq_{s t}\left\{g\left(X^{\text {sup } 1}(t)\right), t \geq 0\right\} \tag{6}
\end{equation*}
$$

Theorem 1 (Stoyan, Doisy)

$$
\begin{equation*}
\{X(t), t \geq 0\} \preceq_{s t}\{g(Y(t)), t \geq 0\} \tag{7}
\end{equation*}
$$

if there exists the coupling $\{(\widehat{X}(t), \widehat{Y}(t)), t \geq 0\}$ such that:

$$
\begin{equation*}
\widehat{X}(0) \preceq g(\widehat{Y}(0)) \Rightarrow \widehat{X}(t) \preceq g(\widehat{Y}(t)), \forall t>0 \tag{8}
\end{equation*}
$$

Proofs

- Assumption : $\widehat{X}(t) \leq g\left(\widehat{X}^{\text {sup1 }}(t)\right)$
- Let see if $\widehat{X}(t+\Delta t) \leq g\left(\widehat{X}^{\text {sup } 1}(t+\Delta t)\right)$

Proofs

- Assumption : $\widehat{X}(t) \leq g\left(\widehat{X}^{\text {sup } 1}(t)\right)$
- Let see if $\widehat{X}(t+\Delta t) \leq g\left(\widehat{X}^{\text {sup } 1}(t+\Delta t)\right)$
$\left(x_{1}, x_{2}-1\right) \xrightarrow{ } \xrightarrow{ }\left(x_{1}, x_{2}\right)$

Proofs

- Assumption : $\widehat{X}(t) \leq g\left(\widehat{X}^{\text {sup } 1}(t)\right)$
- Let see if $\widehat{X}(t+\Delta t) \leq g\left(\widehat{X}^{\text {sup }}(t+\Delta t)\right)$

Proofs

- Assumption : $\widehat{X}(t) \leq g\left(\widehat{X}^{\text {sup } 1}(t)\right)$
- Let see if $\widehat{X}(t+\Delta t) \leq g\left(\widehat{X}^{\text {sup }}(t+\Delta t)\right)$

Proofs

- Assumption : $\widehat{X}(t) \leq g\left(\widehat{X}^{\text {sup } 1}(t)\right)$
- Let see if $\widehat{X}(t+\Delta t) \leq g\left(\widehat{X}^{\text {sup }}(t+\Delta t)\right)$

Proofs

- Assumption : $\widehat{X}(t) \leq g\left(\widehat{X}^{\text {sup } 1}(t)\right)$
- Let see if $\widehat{X}(t+\Delta t) \leq g\left(\widehat{X}^{\text {sup }}(t+\Delta t)\right)$

Proofs

- Assumption : $\widehat{X}(t) \leq g\left(\widehat{X}^{\text {sup } 1}(t)\right)$
- Let see if $\widehat{X}(t+\Delta t) \leq g\left(\widehat{X}^{\text {sup }}(t+\Delta t)\right)$

Proofs

- Assumption : $\widehat{X}(t) \leq g\left(\widehat{X}^{\text {sup } 1}(t)\right)$
- Let see if $\widehat{X}(t+\Delta t) \leq g\left(\widehat{X}^{\text {sup }}(t+\Delta t)\right)$

- We can deduce that the proposition $\{X(t), t \geq 0\} \preceq_{s t}\left\{g\left(X^{\text {sup } 1}(t)\right), t \geq 0\right\}$ is proved.

Proofs

- We have:

$$
\begin{equation*}
\sum_{z \in \Gamma} \Pi(x) \leq \sum_{g(x) \in \Gamma} \Pi^{\text {sup1 }}(x), \forall \Gamma \in \Phi_{s t}(A) \tag{9}
\end{equation*}
$$

Proofs

- We have:

$$
\begin{equation*}
\sum_{z \in \Gamma} \Pi(x) \leq \sum_{g(x) \in \Gamma} \Pi^{\text {sup } 1}(x), \forall \Gamma \in \Phi_{s t}(A) \tag{9}
\end{equation*}
$$

- Let $\Gamma=\{(0,0),(1,1), \ldots(n, n)\}$ an increasing set of $\Phi_{s t}(A)$, then from equation ?? we have :

$$
\begin{equation*}
\sum_{x \mid x_{1}=x_{2}} \Pi(x) \leq \sum_{x \in E \mid x_{1} \leq x_{2}} \Pi^{\text {sup } 1}(x) . \tag{10}
\end{equation*}
$$

Proofs

- We have:

$$
\begin{equation*}
\sum_{z \in \Gamma} \Pi(x) \leq \sum_{g(x) \in \Gamma} \Pi^{\text {sup1 }}(x), \forall \Gamma \in \Phi_{s t}(A) \tag{9}
\end{equation*}
$$

- Let $\Gamma=\{(0,0),(1,1), \ldots(n, n)\}$ an increasing set of $\Phi_{s t}(A)$, then from equation ?? we have :

$$
\begin{equation*}
\sum_{x \mid x_{1}=x_{2}} \Pi(x) \leq \sum_{x \in E \mid x_{1} \leq x_{2}} \Pi^{\text {sup1 }}(x) . \tag{10}
\end{equation*}
$$

- So we obtain :

$$
\begin{equation*}
T_{b} \leq T_{b}^{\text {sup } 1}=\sum_{x \in E \mid x_{1} \leq x_{2}} \Pi^{\text {sup1 }}(x) . \tag{11}
\end{equation*}
$$

Outline

Bounding aggregation definition

Figure: Birth and death model (Upper and Lower)

Figure: Exact model

Bounding aggregation definition

Figure: Birth and death model (Upper and Lower)

Figure: Exact model

- Proof the monotonicity of the Birth and Death process with rates state's dependence
- Define bounding systems according rates definition

Bounding aggregation definition

Definition

- Many to one mapping function $h: A \rightarrow F$.

$$
\begin{equation*}
\forall x=\left(x_{1}, x_{2}\right) \in A, h(x)=x_{1}-x_{2} \tag{12}
\end{equation*}
$$

- We define on F the following order \preceq :

$$
\begin{equation*}
\forall x_{1}, x_{2} \in F, x_{1} \preceq x_{2} \Longleftrightarrow x_{1} \geq x_{2} \tag{13}
\end{equation*}
$$

Proof

Theorem 2 (Massey, Stoyan)

If the following conditions $1,2,3$ are satisfied:
(1) $g(X(0)) \preceq_{s t} Y(0)$
(2) $Y(t)$ is $\preceq_{s t}$-monotone
(3) $\sum_{g(z) \in \Gamma} Q_{1}(y, z) \leq \sum_{z \in \Gamma} Q_{2}(x, z), \forall \Gamma \in \Phi_{s t}(F)$, $\forall x \in S, y \in A \mid g(y)=x$
then we have:

$$
\{g(X(t)), t \geq 0\} \preceq_{s t}\{Y(t), t \geq 0\}
$$

Proof: Monotonicity

Theorem 3 (Massey, Stoyan)

$\{X(t), t \geq 0\}$ is $\preceq_{s t}$-monotone if and only if $\forall \Gamma \in \Phi_{s t}(A)$,

$$
\sum_{z \in \Gamma} Q(x, z) \leq \sum_{z \in \Gamma} Q(y, z), \forall x \preceq y \mid x, y \in \Gamma, \text { or } x, y \notin \Gamma
$$

Monotonicity proof

$$
\begin{equation*}
\sum_{z \in \Gamma} Q_{2}(x, z) \leq \sum_{z \in \Gamma} Q_{2}(y, z) \tag{14}
\end{equation*}
$$

For all states $x, y \in F$, and all increasing sets $\Gamma \in \Phi_{s t}(F)$ such that :

$$
\begin{equation*}
\forall x \preceq y \in F \mid x, y \in \Gamma \text { or } x, y \notin \Gamma \tag{15}
\end{equation*}
$$

Proof: Monotonicity

Figure: Aggregated Model

We define the two increasing set:

$$
\Gamma_{x}=\{x, \ldots, y, \ldots\} ; \quad \Gamma_{y-1}=\{y-1, \ldots\}
$$

Γ_{x}	Γ_{y-1}

Proof: Monotonicity

Figure: Aggregated Model

We define the two increasing set:

$$
\Gamma_{x}=\{x, \ldots, y, \ldots\} ; \quad \Gamma_{y-1}=\{y-1, \ldots\}
$$

$$
\begin{array}{|l|l|}
\hline \Gamma_{x} & \Gamma_{y-1} \\
\hline \sum_{z \in \Gamma_{x}} Q_{2}(x, z)=-m_{x} & \sum_{z \in \Gamma_{y-1}} Q_{2}(x, z)=0 \\
\sum_{z \in \Gamma_{x}} Q_{2}(y, z)=0 & \sum_{z \in \Gamma_{y-1}} Q_{2}(y, z)=I_{y} \\
\hline
\end{array}
$$

Proof: Monotonicity

Figure: Aggregated Model

We define the two increasing set:

$$
\Gamma_{x}=\{x, \ldots, y, \ldots\} ; \quad \Gamma_{y-1}=\{y-1, \ldots\}
$$

$$
\begin{array}{|l|l|}
\hline \Gamma_{x} & \Gamma_{y-1} \\
\hline \sum_{z \in \Gamma_{x}} Q_{2}(x, z)=-m_{x} & \sum_{z \in \Gamma_{y-1}} Q_{2}(x, z)=0 \\
\sum_{z \in \Gamma_{x}} Q_{2}(y, z)=0 & \sum_{z \in \Gamma_{y-1}} Q_{2}(y, z)=I_{y} \\
\hline
\end{array}
$$

- So the inequality $\sum_{z \in \Gamma} Q_{2}(x, z) \leq \sum_{z \in \Gamma} Q_{2}(y, z)$ is verified, and proposition $Y(t)$ is $\preceq s t$-monotone is proved.

Proof

- We denote: $Y^{\text {sup2 }}(t)$, the birth death process defined so as an Upper Bound
- For any state x, we have:

Proof

- We denote: $Y^{\text {sup2 }}(t)$, the birth death process defined so as an Upper Bound
- For any state x, we have:

$$
x \xrightarrow{I_{x}^{\text {sup2 }}} x-1
$$

Proof

- We denote: $Y^{\text {sup2 }}(t)$, the birth death process defined so as an Upper Bound
- For any state x, we have:

$$
x+1 \underset{m_{x}^{\text {sup2 }}}{\stackrel{l_{x}^{\text {sup2 }}}{\rightleftarrows}} x-1
$$

Proof

- We denote: $Y^{\text {sup2 }}(t)$, the birth death process defined so as an Upper Bound
- For any state x, we have:

$$
x+1 \underset{m_{x}^{\text {sup2 }}}{\stackrel{l_{x}^{\text {sup2 }}}{\rightleftarrows}} x-1
$$

- $x \in F$ for $Y^{\text {sup2 }}(t)$, transition rates will be different from 0 for the increasing sets Γ_{X-1}, and Γ_{X}

Proof

Upper bound system definition

Γ_{x-1}	Γ^{\prime}
$\begin{aligned} & \sum_{h(z) \in \Gamma_{x-1}} Q(y, z) \leq I_{x}^{\text {sup2 }}, \forall y \in A \mid h(y)=x \\ & l_{x}^{\text {sup2 }}=\max _{y} \mid h(y)=x \sum_{h(z) \in \Gamma_{x-1}} Q(y, z) \\ & l_{x}^{\text {sup2 }}=\lambda+x \gamma \end{aligned}$	$\begin{aligned} & \sum_{h(z) \in \Gamma_{x}} Q(y, z) \geq m_{x}^{\text {sup } 2}, \forall y \in A \mid h(y)=x \\ & m_{x}^{\sup 2}=\min _{y} \mid h(y)=x \sum_{h(z) \in \Gamma_{x-1}} Q(y, z) \\ & m_{x}^{\sup 2}=\min (\mu, \tau) \end{aligned}$
We compute	
$\pi^{\text {sup2 }}$	
and we derive	
$T_{b}^{\text {sup2 }}=\pi^{\text {sup2 }}(0)$	
we obtain	
$T_{b}=\sum_{x_{1}=0}^{n} \Pi\left[x_{1}, x_{1}\right] \leq=T_{b}^{\text {sup } 2}$	

Proof

Lower bound system definition

Γ_{x-1}	Γ_{X}
$\begin{aligned} & \sum_{h(z) \in \Gamma_{x-1}} Q(y, z) \geq l_{x}^{\text {inf2 }}, \forall y \in A \mid h(y)=x \\ & I_{x}^{\text {inf2 }}=\min _{y} \mid h(y)=x \sum_{h(z) \in \Gamma_{x-1}} Q(y, z) \\ & I_{x}^{\text {inf2 }}=\lambda+x \gamma \end{aligned}$	$\begin{aligned} & \sum_{h(z) \in \Gamma_{x}} Q(y, z) \leq m_{x}^{\text {inf2 }}, \forall y \in A \mid h(y)=x \\ & m_{x}^{\text {inf2 }}=\max _{y} \mid h(y)=x \sum_{h(z) \in \Gamma_{x-1} Q(y, z)} \\ & m_{x}^{\text {inf2 }}=\tau+(n-x) \mu \end{aligned}$
We compute	
$\pi^{\text {inf2 }}$	
and we derive	
$T_{b}^{\text {inf2 }}=\pi^{\text {inf2 }}(0)$	
we obtain	
$T_{b}=\sum_{x_{1}=0}^{n} \Pi\left[x_{1}, x_{1}\right] \geq=T_{b}^{\text {int2 }}$	

Outline

Numerical results

Definition

- $n=10$ and $n=27$ channels
- Call arrival rate varing from 2 to 50 calls per min
- Channel failure occurs every hour or 10 hours.
- We use SHARPE package for computation.

Blocking probability analysis

Figure: $1 / \mu=2 \min , \gamma=1 /$ hours, $1 / \tau=$ $30 \mathrm{~min}, n=10$

Blocking probability analysis

Figure: $1 / \mu=2 \min , \gamma=1 /$ hours, $1 / \tau=$ $30 \mathrm{~min}, n=10$

Figure: $1 / \mu=2 m n, \gamma=1 / 10$ hours, $1 / \tau=$ $30 \mathrm{~min}, n=27$

Blocking probability analysis

Figure: $1 / \mu=6$ min, $\gamma=5 /$ hours, $1 / \tau=$ 2hours, $n=10$

Remark

- Parameters have an impact on the quality of bounds
- When the failure rate are low, the lower bound is intersesting and sup1 is better than sup2
- When the failure rate are high, sup2 is better than sup1.

Conclusion

Conclusion

- The Trivedi approximation is an upper bound
- Ordering not usually easier to establish
- Differents bounds for the original system
- Generalize to several groups of channels.

