Bounds quality for performance evaluation of $computer \ networks^1$

Hind Castel-Taleb¹, Nihal Pekergin ²

¹Institut TELECOM, Telecom SudParis 91011 Evry Cedex, France

> ²LACL, Université Paris 12 94010 Créteil Cedex, France

Projet ANR-06-SETI-002 CheckBound

1. partially supported by french research project ANR-SET106-02

Hind Castel-Taleb, Nihal Pekergin

Bounds quality for performance evaluation of computer

Problem :

- On multidimensional state space, different stochastic orderings
- Quality of bounding systems?
- Which ordering provides the best bounding systems?
- Proposition : We study a system represented by a multidimensionnal Markov process with no product form ⇒ Different bounding systems, and comparison from performance measure

• • = • • = •

Problem :

- On multidimensional state space, different stochastic orderings
- Quality of bounding systems?
- Which ordering provides the best bounding systems?
- Proposition : We study a system represented by a multidimensionnal Markov process with no product form ⇒ Different bounding systems, and comparison from performance measure

Stochastic ordering (Increasing sets)

E a state space with a preorder \leq (reflexive, transitive)

$$X \preceq_{\Phi} Y \Leftrightarrow P(X \in \Gamma) \leq P(Y \in \Gamma), \ \forall \Gamma \in \Phi(E)$$

 $\Phi_{st}(E) = \{ \text{all increasing sets on } E \}$

$$\Phi_{wk}(E) = \{\{x\} \uparrow, x \in E\} \cup E$$
$$\{x\} \uparrow = \{y \in E | y \succeq x\}$$

and

$$\Phi_{wk^*}(E) = \{E - \{x\} \downarrow, x \in E\} \cup E, \text{ where } \{x\} \downarrow = \{y \in E | y \preceq x\}$$

$$\Phi_{st}(E) \rightarrow \preceq_{st}, \Phi_{wk}(E) \rightarrow \preceq_{wk}, \Phi_{wk^*}(E) \rightarrow \preceq_{wk^*} \text{ stochastic orderings.}$$

$$\Phi_{wk}(E) \subset \Phi_{st}(E), \text{ and } \Phi_{wk^*}(E) \subset \Phi_{st}(E).$$

Hind Castel-Taleb, Nibal Pekerain
Bounds quality for performance evaluation of compute

$E = \{(0,0), (0,1), (1,0), (1,1)\}$

$\Phi_{\textit{wk}}(E) = \{E, \{(0,1), (1,1)\}, \{(1,0), (1,1)\}, \{(1,1)\}\}$

 $\Phi_{st}(E) = \Phi_{wk}(E) \cup \{(0,1), (1,0), (1,1)\}$

 $P_X = (0.4, 0.2, 0.2, 0.2), P_Y = (0.5, 0.1, 0.1, 0.3), P_X \preceq_{wk} P_Y, P_X \not\preceq_{st} P_Y$

Hind Castel-Taleb, Nihal Pekergin Bounds quality for performance evaluation of computer

(日) (型) (目) (日) (日) (0)

$E = \{(0,0), (0,1), (1,0), (1,1)\}$ $\Phi_{wk}(E) = \{E, \{(0,1), (1,1)\}, \{(1,0), (1,1)\}, \{(1,1)\}\}$ $\Phi_{st}(E) = \Phi_{wk}(E) \cup \{(0,1), (1,0), (1,1)\}$

 $P_X = (0.4, 0.2, 0.2, 0.2), P_Y = (0.5, 0.1, 0.1, 0.3), P_X \preceq_{wk} P_Y, P_X \not\preceq_{st} P_Y$

Hind Castel-Taleb, Nihal Pekergin Bounds quality for performance evaluation of computer

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 ショル

$$E = \{(0,0), (0,1), (1,0), (1,1)\}$$
$$\Phi_{wk}(E) = \{E, \{(0,1), (1,1)\}, \{(1,0), (1,1)\}, \{(1,1)\}\}$$
$$\Phi_{st}(E) = \Phi_{wk}(E) \cup \{(0,1), (1,0), (1,1)\}$$

 $P_X = (0.4, 0.2, 0.2, 0.2), P_Y = (0.5, 0.1, 0.1, 0.3), P_X \preceq_{wk} P_Y, P_X \not \leq_{st} P_Y$

- 本部 と くま と くま と しき

- Finite capacity B_i
- Exponential Inter-arrival times with parameters λ_i. If the queue is not full the customer is accepted in the queue, otherwise it is lost.
- Exponential service times, with parameters μ_i , and after the service, we have :
 - with the probability p_{ij} the customer transits from the queue *i* to the queue *j*, if queue *j* is not full. Otherwise, the customer is lost.
 - with the probability d_i the customer goes out.

イロト 不得 ト イヨト イヨト

- Finite capacity *B_i*
- Exponential Inter-arrival times with parameters λ_i. If the queue is not full the customer is accepted in the queue, otherwise it is lost.
- Exponential service times, with parameters μ_i , and after the service, we have :
 - with the probability p_{ij} the customer transits from the queue *i* to the queue *j*, if queue *j* is not full. Otherwise, the customer is lost.
 - with the probability d_i the customer goes out.

(4 回) (4 回) (4 回)

- Finite capacity *B_i*
- Exponential Inter-arrival times with parameters λ_i. If the queue is not full the customer is accepted in the queue, otherwise it is lost.
- Exponential service times, with parameters μ_i , and after the service, we have :
 - with the probability p_{ij} the customer transits from the queue *i* to the queue *j*, if queue *j* is not full. Otherwise, the customer is lost.
 - with the probability d_i the customer goes out.

(4 回) (4 回) (4 回)

- Finite capacity *B_i*
- Exponential Inter-arrival times with parameters λ_i. If the queue is not full the customer is accepted in the queue, otherwise it is lost.
- Exponential service times, with parameters μ_i , and after the service, we have :
 - with the probability p_{ij} the customer transits from the queue *i* to the queue *j*, if queue *j* is not full. Otherwise, the customer is lost.

• with the probability d_i the customer goes out.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Finite capacity *B_i*
- Exponential Inter-arrival times with parameters λ_i. If the queue is not full the customer is accepted in the queue, otherwise it is lost.
- Exponential service times, with parameters μ_i , and after the service, we have :
 - with the probability p_{ij} the customer transits from the queue *i* to the queue *j*, if queue *j* is not full. Otherwise, the customer is lost.
 - with the probability d_i the customer goes out.

• • = • • = •

• Computing loss probabilities on X(t)?

- We propose to define different bounding systems by creating independance between queues
 - Making capacities infinite : Jackson network (S2(t)) : coupling method, we will prove : X(t) ≤_{st} S2(t)
 - Cutting links between queues : *n* Independent $M/M/1/B_i$ queues : W(t), Increasing sets, we will prove : $X(t) \preceq_{wk} W(t)$
- Quality of bounding systems from loss probabilities
- No relations between bounding systems : W(t) ∠st S2(t), and W(t) ∠wk S2(t)

- Computing loss probabilities on X(t)?
- We propose to define different bounding systems by creating independance between queues
 - Making capacities infinite : Jackson network (S2(t)) : coupling method, we will prove : X(t) ≤_{st} S2(t)
 - Cutting links between queues : *n* Independent $M/M/1/B_i$ queues : W(t), Increasing sets, we will prove : $X(t) \leq_{wk} W(t)$
- Quality of bounding systems from loss probabilities
- No relations between bounding systems : W(t) ∠st S2(t), and W(t) ∠wk S2(t)

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Computing loss probabilities on X(t)?
- We propose to define different bounding systems by creating independance between queues
 - Making capacities infinite : Jackson network (S2(t)) : coupling method, we will prove : X(t) ≤_{st} S2(t)
 - Cutting links between queues : n Independent M/M/1/B_i queues : W(t), Increasing sets, we will prove : X(t) ≤_{wk} W(t)
- Quality of bounding systems from loss probabilities
- No relations between bounding systems : $W(t) \not\leq_{st} S2(t)$, and $W(t) \not\leq_{wk} S2(t)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Computing loss probabilities on X(t)?
- We propose to define different bounding systems by creating independance between queues
 - Making capacities infinite : Jackson network (S2(t)) : coupling method, we will prove : X(t) ≤_{st} S2(t)
 - Cutting links between queues : n Independent M/M/1/B_i queues : W(t), Increasing sets, we will prove : X(t) ≤_{wk} W(t)
- Quality of bounding systems from loss probabilities
- No relations between bounding systems : $W(t) \not\leq_{st} S2(t)$, and $W(t) \not\leq_{wk} S2(t)$

• □ ▶ • □ ▶ • □ ▶ • □ ▶

- Computing loss probabilities on X(t)?
- We propose to define different bounding systems by creating independance between queues
 - Making capacities infinite : Jackson network (S2(t)) : coupling method, we will prove : X(t) ≤_{st} S2(t)
 - Cutting links between queues : n Independent M/M/1/B_i queues : W(t), Increasing sets, we will prove : X(t) ≤_{wk} W(t)
- Quality of bounding systems from loss probabilities
- No relations between bounding systems : $W(t) \not\leq_{st} S2(t)$, and $W(t) \not\leq_{wk} S2(t)$

- Computing loss probabilities on X(t)?
- We propose to define different bounding systems by creating independance between queues
 - Making capacities infinite : Jackson network (S2(t)) : coupling method, we will prove : X(t) ≤_{st} S2(t)
 - Cutting links between queues : n Independent M/M/1/B_i queues : W(t), Increasing sets, we will prove : X(t) ≤_{wk} W(t)
- Quality of bounding systems from loss probabilities
- No relations between bounding systems : W(t) ∠st S2(t), and W(t) ∠wk S2(t)

(4 回) (4 回) (4 回)

- Computing loss probabilities on X(t)?
- We propose to define different bounding systems by creating independance between queues
 - Making capacities infinite : Jackson network (S2(t)) : coupling method, we will prove : X(t) ≤_{st} S2(t)
 - Cutting links between queues : n Independent M/M/1/B_i queues : W(t), Increasing sets, we will prove : X(t) ≤_{wk} W(t)
- Quality of bounding systems from loss probabilities
- No relations between bounding systems : W(t) ∠st S2(t), and W(t) ∠wk S2(t)

(4 回) (4 回) (4 回)

Bounding system 1 : Independent $M/M/1/B_i$ queues

Bounding System 1 is represented by n queues, each queue i has the following assumptions

- Arrival rate : $\lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$
- Service rate μ_i

The evolution is represented by the Markov process W(t)We will see that :

$$\{X(t), t \ge 0\} \not\preceq_{st} \{W(t), t \ge 0\}$$

and

$$\{X(t), t \ge 0\} \preceq_{wk} \{W(t), t \ge 0\}$$

Bounding system 1 : Independent $M/M/1/B_i$ queues

Bounding System 1 is represented by n queues, each queue i has the following assumptions

- Arrival rate : $\lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$
- Service rate μ_i

The evolution is represented by the Markov process W(t)We will see that :

$$\{X(t), t \ge 0\} \not\preceq_{st} \{W(t), t \ge 0\}$$

and

$$\{X(t), t \ge 0\} \preceq_{wk} \{W(t), t \ge 0\}$$

Bounding system 1 : $\{X(t), t \ge 0\} \not\preceq_{st} \{W(t), t \ge 0\}$

We use the coupling method : we suppose

$$\widehat{X}(t) \preceq \widehat{W}(t), \text{ we see} : \widehat{X}(t + \Delta t) \preceq \widehat{W}(t + \Delta t) ?$$
 (1)

- An arrival in queue *i* in X(t) is compensated by an arrival in $W(t) : \lambda_i \leq \lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$
- A transit from queue *i* to queue *j* in *X*(*t*) is compensated by an arrival in queue *j* in *W*(*t*) : $\mu_i p_{ji} < \lambda_j + \sum_{k=1, k \neq j}^n \mu_k p_{kj} - \lambda_j = \sum_{k=1, k \neq j}^n \mu_k p_{kj}$
- O A service in queue *i* in W(t) is not compensated by a service in X(t) as µ_id_i ≤ µ_i

And so we may have at time $t + \Delta t$:

$$\widehat{X}(t + \Delta t) \preceq \widehat{W}(t + \Delta t)$$
(2)

• • = • • = •

Bounding system 1 : $\{X(t), t \geq 0\} \not\preceq_{st} \{W(t), t \geq 0\}$

We use the coupling method : we suppose

$$\widehat{X}(t) \preceq \widehat{W}(t), \text{ we see} : \widehat{X}(t + \Delta t) \preceq \widehat{W}(t + \Delta t) ?$$
 (1)

- An arrival in queue *i* in X(t) is compensated by an arrival in $W(t) : \lambda_i \leq \lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$
- A transit from queue *i* to queue *j* in *X*(*t*) is compensated by an arrival in queue *j* in *W*(*t*) :
 $\mu_i p_{ji} < \lambda_j + \sum_{k=1, k \neq j}^n \mu_k p_{kj} \lambda_j = \sum_{k=1, k \neq j}^n \mu_k p_{kj}$
- A service in queue *i* in *W*(*t*) is not compensated by a service in *X*(*t*) as $\mu_i d_i \leq \mu_i$

And so we may have at time $t + \Delta t$:

$$\widehat{X}(t + \Delta t) \preceq \widehat{W}(t + \Delta t)$$
(2)

• • = • • = •

Bounding system 1 : $\{X(t), t \ge 0\} \not\preceq_{st} \{W(t), t \ge 0\}$

We use the coupling method : we suppose

$$\widehat{X}(t) \preceq \widehat{W}(t), \text{ we see} : \widehat{X}(t + \Delta t) \preceq \widehat{W}(t + \Delta t) ?$$
 (1)

- An arrival in queue *i* in X(t) is compensated by an arrival in $W(t) : \lambda_i \leq \lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$
- A transit from queue *i* to queue *j* in *X*(*t*) is compensated by an arrival in queue *j* in *W*(*t*) :
 $\mu_i p_{ji} < \lambda_j + \sum_{k=1, k \neq j}^n \mu_k p_{kj} \lambda_j = \sum_{k=1, k \neq j}^n \mu_k p_{kj}$
- A service in queue *i* in W(t) is not compensated by a service in X(t) as µ_id_i ≤ µ_i

And so we may have at time $t + \Delta t$:

$$\widehat{X}(t + \Delta t) \preceq \widehat{W}(t + \Delta t) \tag{2}$$

Bounding system 1 : $\{X(t), t \ge 0\} \not\preceq_{st} \{W(t), t \ge 0\}$

We use the coupling method : we suppose

$$\widehat{X}(t) \preceq \widehat{W}(t), \text{ we see} : \widehat{X}(t + \Delta t) \preceq \widehat{W}(t + \Delta t) ?$$
 (1)

- An arrival in queue *i* in X(t) is compensated by an arrival in $W(t) : \lambda_i \leq \lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$
- A transit from queue *i* to queue *j* in *X*(*t*) is compensated by an arrival in queue *j* in *W*(*t*) :
 $\mu_i p_{ji} < \lambda_j + \sum_{k=1, k \neq j}^n \mu_k p_{kj} \lambda_j = \sum_{k=1, k \neq j}^n \mu_k p_{kj}$
- A service in queue *i* in W(t) is not compensated by a service in X(t) as µ_id_i ≤ µ_i

And so we may have at time $t + \Delta t$:

$$\widehat{X}(t + \Delta t) \not\preceq \widehat{W}(t + \Delta t)$$
 (2)

Since we want to define an upper bound to the process X(t), we consider two solutions :

• we propose to verify if : $X(t) \leq_{wk} W(t)$,

Solution we propose to modify W(t) by defining another process S1(t) which could represent an upper bounding system : $X(t) ≤_{st} S1(t)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Since we want to define an upper bound to the process X(t), we consider two solutions :

- we propose to verify if : $X(t) \preceq_{wk} W(t)$,
- we propose to modify W(t) by defining another process S1(t) which could represent an upper bounding system :
 X(t) ≤_{st} S1(t)

A simple strong bounding system

- $\{S1(t), t \ge 0\}$ is a multidimensional Markov process representing the evolution of a queueing system with independent $M/M/1/B_i$ queues defined as follows.
- Each queue i :
 - arrival rates $\lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$,
 - \bigcirc service rate $\mu_i d_i$.

So we can deduce from the coupling method the following proposition :

$$\{X(t), t \ge 0\} \preceq_{st} \{S1(t), t \ge 0\}$$
(3)

A simple strong bounding system

- $\{S1(t), t \ge 0\}$ is a multidimensional Markov process representing the evolution of a queueing system with independent $M/M/1/B_i$ queues defined as follows.
- Each queue i :
 - arrival rates $\lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$,
 - **(a)** service rate $\mu_i d_i$.

So we can deduce from the coupling method the following proposition :

$$\{X(t), t \ge 0\} \preceq_{st} \{S1(t), t \ge 0\}$$
(3)

We have to prove :

$$\{X(t), t \ge 0\} \preceq_{wk} \{W(t), t \ge 0\}$$
(4)

We use the following theorem :

$$\{X(t), t \ge 0\} \preceq_{\Phi} \{Y(t), t \ge 0\}$$
(5)

if and only if the following conditions are verified :

From Massey :

Theorem

 $\{X(t), t \ge 0\}$ is \leq_{st} -monotone (increasing)if the following condition is verified :

$$\forall \Gamma \in \Phi_{st}(E), \ \forall x \leq y \in E$$
$$\sum_{z \in \Gamma} A(x, z) \leq \sum_{z \in \Gamma} A(y, z), \ x, y \in \Gamma \text{ or } x, y \notin \Gamma$$
(7)

• • = • • = •

э

$$\leq_{wk}$$
- monotonicity

Theorem

 $\{X(t), t \ge 0\}$ is \leq_{Φ} -monotone (increasing)if the following condition is verified :

$$\forall \Gamma \in \Phi(E), \ \forall x \leq y \in E$$
$$\sum_{z \in \Gamma} A(x, z) \leq \sum_{z \in \Gamma} A(y, z), \ x, y \in \Gamma \text{ or } x, y \notin \Gamma$$
(8)

Proved in : "Stochastic monotonicity in queueing networks", H.Castel-Taleb, N.Pekergin, EPEW'09, 6th European Performance Engineering Workshop, Imperial College London, 9-10 July

\leq_{wk} -monotonicity of independent $M/M/1/B_i$ queues

First step : Definition of increasing sets

From events :

- arrival in queue i : $x \rightarrow x + e_i$
- service in queue i : $x \rightarrow x e_i$
- transit from queue i to queue j : $x \rightarrow x e_i + e_j$

As we must also take the condition :

 $x, y \in \Gamma$ or $x, y \notin \Gamma$

 $S_{wk}(E) = \{\{x\} \uparrow, \{x + e_i\} \uparrow, \{y + e_i\} \uparrow, \{x - e_i\} \uparrow, \{y - e_i\} \uparrow\}$ If $x_i < B_i$:

$$\{x+e_i\} \uparrow = \{x+e_i,\ldots,y+e_i,\ldots\}$$

If $y_i < B_i$: :

$$\{y+e_i\} \uparrow = \{y+e_i,\ldots\}$$

Hind Castel-Taleb, Nihal Pekergin Bounds quality for performance evaluation of computer

\leq_{wk} -monotonicity of independent $M/M/1/B_i$ queues

First step : Definition of increasing sets

From events :

- arrival in queue i : $x \rightarrow x + e_i$
- service in queue i : $x \rightarrow x e_i$
- transit from queue i to queue j : $x \rightarrow x e_i + e_j$

As we must also take the condition :

 $x, y \in \Gamma \text{ or } x, y \notin \Gamma$ $S_{wk}(E) = \{\{x\} \uparrow, \{x + e_i\} \uparrow, \{y + e_i\} \uparrow, \{x - e_i\} \uparrow, \{y - e_i\} \uparrow\}$ If $x_i < B_i$:

$$\{x+e_i\} \uparrow = \{x+e_i,\ldots,y+e_i,\ldots\}$$

If $y_i < B_i$: :

$$\{y+e_i\} \uparrow = \{y+e_i,....\}$$

\leq_{wk} -monotonicity of independent $M/M/1/B_i$ queues

Second step : transition rates comparisons

Г	$\sum_{z\in\Gamma}Q^W(x,z)$	$\sum_{z\in\Gamma}Q^W(y,z)$
Γ_{x+e_i}	$\lambda_i + \sum_{k=1,k\neq i}^n \mu_k p_{ki}$	$\lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$
Γ_{y+e_i}	0	$\lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}$
Γ_x	$-\sum_{k=1}^n \mu_k 1_{x_k>0}$	$-\sum_{k=1}^{n} \mu_k 1_{y_k > 0} 1_{y_k = x_k}$
Γ_{x-e_i}	$-\sum_{k=1,k\neq i}^{n} \mu_k 1_{x_k>0}$	$-\sum_{k=1,k\neq i}^{n}\mu_{k}1_{y_{k}>0}1_{y_{k}=x_{k}}$
Γ_{y-e_i}	$-\sum_{k=1}^n \mu_k 1_{x_k>0}$	$-\sum_{k=1,k eq i}^{n}\mu_k 1_{y_k>0}$

$$\begin{split} & \Gamma_{x+e_i} = \{x+e_i\} \uparrow, \ \Gamma_x = \{x\} \uparrow, \ \Gamma_{x-e_i} = \{x-e_i\} \uparrow, \\ & \Gamma_{y+e_i} = \{y+e_i\} \uparrow, \ \Gamma_{y-e_i} = \{x-e_i\} \uparrow. \end{split}$$

$$\forall \Gamma \in S_{wk}(E), \ \sum_{z \in \Gamma} Q^W(x,z) \leq \sum_{z \in \Gamma} Q^W(y,z)$$

$$\forall x \preceq y \mid x, y \in \Gamma, \text{ or } x, y \notin \Gamma$$

Hind Castel-Taleb, Nihal Pekergin Bounds quality for performance evaluation of computer

Generators comparisons : Q and $Q^W \Gamma_{x+e_i}$, $\Gamma_{x-e_i+e_i}$, Γ_x , Γ_{x-e_i} .

Г	$\sum_{z\in\Gamma}Q(x,z)$	$\sum_{z\in\Gamma}Q^W(x,z)$
Γ_{x+e_i}	λ_i	$\lambda_i + \sum_{k=1,k\neq i}^n \mu_k p_{ki}$
$\Gamma_{x-e_j+e_i}$	$\mu_j p_{ji} + \lambda_i$	$\lambda_i + \sum_{k=1,k\neq i}^n \mu_k p_{ki}$
Γ_x	$-\sum_{k=1}^{n} \mu_k 1_{x_k > 0}$	$-\sum_{k=1}^n \mu_k 1_{x_k>0}$
Γ_{x-e_i}	$-\sum_{k=1,k\neq i}^{n}\mu_k 1_{x_k>0}$	$-\sum_{k=1,k\neq i}^{n}\mu_k 1_{x_k>0}$

$$\forall \Gamma \in S_{wk}(E), \ \sum_{z \in \Gamma} Q^W(x,z) \leq \sum_{z \in \Gamma} Q^W(y,z)$$

 $\forall x \leq y \mid x, y \in \Gamma, \text{ or } x, y \notin \Gamma$

ヨトィヨト

3

$$P(X(t) \in \Gamma) \le P(W(t) \in \Gamma), \forall \Gamma \in \Phi_{wk}(E)$$
(9)

and so for the stationary probability distributions we have :

$$\sum_{x\in\Gamma}\Pi(x)\leq\sum_{x\in\Gamma}\Pi^{W}(x),\forall\Gamma\in\Phi_{wk}(E)$$
(10)

Loss probability
$$LX_i = \sum_{x \in E \mid x_i = B_i} \Pi(x)$$

Let
$$x^* = (0, \dots, B_i, \dots 0)$$
, and $\Gamma = \{x*\} \uparrow \in \Phi_{wk}(E)$.
 $LX_i = \sum \Pi(x)$

As
$$\Gamma = \{x*\} \uparrow \in \Phi_{wk}(E)$$
,
 $LX_i \leq LW_i \ LW_i = \sum_{x \in \Gamma} \Pi^W(x)$ (11)

Hind Castel-Taleb, Nihal Pekergin Bo

Bounds quality for performance evaluation of computer

$$P(X(t) \in \Gamma) \le P(W(t) \in \Gamma), \forall \Gamma \in \Phi_{wk}(E)$$
(9)

and so for the stationary probability distributions we have :

$$\sum_{x\in\Gamma}\Pi(x)\leq\sum_{x\in\Gamma}\Pi^{W}(x),\forall\Gamma\in\Phi_{wk}(E)$$
(10)

Loss probability
$$LX_i = \sum_{x \in E \mid x_i = B_i} \Pi(x)$$

Let
$$x^* = (0, \dots, B_i, \dots 0)$$
, and $\Gamma = \{x*\} \uparrow \in \Phi_{wk}(E)$.
 $LX_i = \sum_{x \in \Gamma} \Pi(x)$

As $\Gamma = \{x*\} \uparrow \in \Phi_{wk}(E)$, $LX_i \leq LW_i \ LW_i = \sum_{x \in \Gamma} \Pi^W(x)$ (11)

Bounding system 2 : Jackson Network

Comparison of finite process with an infinite process

$$\{X(t), t \ge 0\} \preceq_{st} \{S2(t), t \ge 0\}$$
(12)

$$Suppose: \ \widehat{X}(t) \preceq \widehat{S2}(t); \ and \ show: \widehat{X}(t + \Delta t) \preceq \widehat{S2}(t + \Delta t)$$

$$(13)$$

- An arrival in queue *i* in X(t) is compensated by an arrival in queue*i* in S2(t) (same arrival rate λ_i). No arrival if queue *i* is full in X(t) and an arrival in S2(t)
- A transit from queue *i* to queue *j* in X(t) is compensated by the same event in S2(t) (same rate μ_ip_{ij}). If queue *j* is full in X(t) then X_i(t) decreases (the customer goes out), and in S2(t) there is the transit.
- a service from queue i in X(t) is compensated by the same event in S2(t) (the service rate is µ_id_i)

$$\{X(t), t \ge 0\} \preceq_{st} \{S2(t), t \ge 0\}$$
(14)

If the stability condition is satisfied, then the stationary probability distribution Π^{S2} exists. So we have the following inequality :

$$\sum_{x\in\Gamma}\Pi(x)\leq\sum_{x\in\Gamma}\Pi^{S2}(x),\forall\Gamma\in\Phi_{st}(E)$$
(15)

The exact loss probability LX_i on queue *i* for the process $\{X(t), t \ge 0\}$ is given by the following formula :

$$LX_i = \sum_{x \succeq x^*} \Pi(x) \tag{16}$$

So we propose to compute different loss probabilities bounds for each queue $i\,$:

- The weak bound *LW_i* on the process *W*(*t*) generated by the weak ordering.
- The Strong1 bound $LS1_i$ on the process S1(t), which represents a simple bound
- The Strong2 bound *LS*₂ on the process *S*₂(*t*) which represents a more refined bound.

The goal is to compare LW_i , $LS1_i$, and $LS2_i$

Loss probability bounds

$$\{X(t), t \ge 0\} \preceq_{wk} \{W(t), t \ge 0\}$$
(17)

we have for $\Gamma = \{x \succeq x*\} \in \Phi_{wk}(E)$:

$$LX_i \le LW_i \ LW_i = \sum_{x \succeq x^*} \Pi^W(x) \tag{18}$$

As $\Gamma = \{x \succeq x*\} \in \Phi_{st}(E)$:

$$LX_i \le LS1_i \ LS1_i = \sum_{x \ge x^*} \Pi^{S1}(x)$$
 (19)

$$LX_i \le LS2_i, \ LS2_i = \sum_{x \succeq x^*} \Pi^{S2}(x)$$
 (20)

★御▶★理▶★理▶ = 理

Loss probabilities bounds on independent $M/M/1/B_i$ queues

The loss probability LW_i is computed from the weak bound $\{W(t), t \ge 0\}$, and is equivalent to the loss probability in an $M/M/1/B_i$ queue :

$$LW_{i} = a_{i}^{B_{i}} \frac{1 - a_{i}}{1 - a_{i}^{B_{i}+1}}, \text{ where } a_{i} = \frac{\lambda_{i} + \sum_{k=1, k \neq i}^{n} \mu_{k} p_{ki}}{\mu_{i}} \qquad (21)$$

$$LS1_{i} = b_{i}^{B_{i}} \frac{(1 - b_{i})}{1 - b_{i}^{B_{i}+1}}, \text{ where } b_{i} = \frac{\lambda_{i} + \sum_{k=1, k \neq i}^{n} \mu_{k} p_{ki}}{\mu_{i} d_{i}}$$
(22)

we have :

$$LW_i \leq LS1_i$$

Loss probabilities on infinite capacity queues in Jackson network

$$LS2_i = \sum_{x_i = B_i}^{\infty} c_i^{x_i} (1 - c_i), \text{ where } c_i = \frac{\Lambda_i}{\mu_i}$$
(23)

$$\Lambda_i = \lambda_i + \sum_{k=1, k \neq i}^n \Lambda_k p_{ki}, c_i < 1$$

	۱.	
L	7	c
Г		э

$$\sum_{x_i=0}^{\infty} c_i^{x_i} (1-c_i) = 1$$

 $\sum_{x_i=0}^{B_i-1} c_i^{x_i} = \frac{1-c_i^{B_i}}{1-c_i}, \text{ then we obtain} \sum_{x_i=B_i}^{\infty} c_i^{x_i} = \frac{c_i^{B_i}}{1-c_i}$ (24)

$$LS2_i = c_i^{B_i} \tag{25}$$

Loss probabilities comparisons

We know that : $LW_i \leq LS1_i$, What is the relation between :

$$LW_i = a_i^{B_i} \frac{1 - a_i}{1 - a_i^{B_i + 1}}$$
(26)

and :

$$LS2_i = c_i^{B_i}, \ c_i = \frac{\Lambda_i}{\mu_i}$$
(27)

It is clear that :

$$c_i < a_i$$
, then $c_i^{B_i} < a_i^{B_i}$

but as

$$\frac{1-a_i}{1-a_i^{B_i+1}} < 1, \text{ then } LW_i \not\leq LS2_i$$

Numerical example

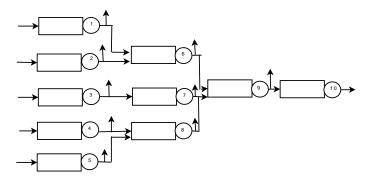


FIGURE: Queueing system understudy

Loss probabilities in queue 9

Queue : i	λ_i	μ_i	di	p _{ij}
1	168	170	0.2	0.8
2	40	41	0.2	0.8
3	110	112	0.2	0.8
4	82	84	0.2	0.8
5	82	84	0.2	0.8
6	0	170	0.1	0.9
7	0	91	0.1	0.9
8	0	136	0.1	0.9
9	0	480	0.8	0.2
10	0	500	1	0

TABLE: Input parameters values

Hind Castel-Taleb, Nihal Pekergin Bounds quality for performance evaluation of computer

A B K A B K

Weak and Strong1 bounds

 $a_9 = 0.743$, and $b_9 = 0.929$. $a_i = rac{\lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}}{\mu_i}$ $b_i = rac{\lambda_i + \sum_{k=1, k \neq i}^n \mu_k p_{ki}}{\mu_i d_i}$

B ₉	<i>LW</i> 9 (Weak)	<i>LS</i> 1 ₉ (Strong1)
20	$6.887 * 10^{-4}$	0.0208
30	$3.560 * 10^{-5}$	0.0088
40	$1.8439 * 10^{-6}$	0.004
50	$9.5501 * 10^{-6}$	0.0018
60	$4.9463 * 10^{-9}$	$8.9612 * 10^{-4}$
70	$2.5618 * 10^{-10}$	$4.2961 * 10^{-4}$
80	$1.326 * 10^{-11}$	$2.06622 * 10^{-4}$
90	$6.87 * 10^{-13}$	$9.9521 * 10^{-5}$
100	$3.559 * 10^{-14}$	4.7974 * 10 ⁻⁵

Hind Castel-Taleb, Nihal Pekergin

Bounds quality for performance evaluation of computer

э

The strong1 bound for different values of d_9

B ₉	$d_9 = 0.85$	$d_9 = 0.9$
20	0.009	0.003
30	0.002	$5.82 * 10^{-4}$
40	$6.18 * 10^{-4}$	$8.71 * 10^{-5}$
50	$1.6 * 10^{-4}$	$1.3041 * 10^{-5}$
60	$4.333 * 10^{-5}$	$1.95 * 10^{-6}$
70	$1.14 * 10^{-5}$	$2.92 * 10^7$
80	$3.04 * 10^{-6}$	4.38 * 10 ⁸
90	$8.08 * 10^{-7}$	$6.56 * 10^{-9}$
100	$2.14 * 10^{-7}$	$9.83 * 10^{-10}$

TABLE: Strong1 bound $LS1_9$ for different values of d_9

 $a_9 = 0.743$, and $b_9 = 0.929$, and $c_9 = 0.722$.

<i>B</i> ₉	$LW_9(Weak)$	$LS1_9(Strong1)$	LS2 ₉ (Strong2)
20	$6.887 * 10^{-4}$	0.0208	0.0015
30	$3.560 * 10^{-5}$	0.0088	$5.9244 * 10^{-5}$
40	$1.8439 * 10^{-6}$	0.004	$2.3095 * 10^{-6}$
50	$9.5501 * 10^{-8}$	0.0018	$9.0035 * 10^{-8}$
60	$4.9463 * 10^{-9}$	$8.9612 * 10^{-4}$	$3.5098 * 10^{-9}$
70	$2.5618 * 10^{-10}$	4.2961 * 10 ⁴	$1.3682 * 10^{-10}$
80	$1.326 * 10^{-11}$	$2.06622 * 10^4$	$5.3340 * 10^{-12}$
90	$6.87 * 10^{-13}$	$9.9521 * 10^{-5}$	$2.0794 * 10^{-13}$
100	$3.559 * 10^{-14}$	$4.7974 * 10^{-5}$	$8.106 * 10^{-15}$

TABLE: Weak, Strong1 and Strong2 bounds

• • = • • = •

$\mu_9=360$, $a_9=0.991$, $c_9=0.9638$

B_9	$LW_9(Weak)$	LS2 ₉ (Strong2)
20	0.043	0.479
30	0.028	0.331
40	0.020	0.229
50	0.0157	0.158
60	0.0126	0.11
70	0.010	0.076
80	0.0086	0.052
90	0.00736	0.0365
100	0.006	0.025

TABLE: Weak and Strong2 bounds for $c_9 = 0.9638$ and $a_9 = 0.991$

3

 $\mu_9 = 500, \ c_9 = 0.694, \ {\rm and} \ a_9 = 0.714,$

B_9	LW ₉ (Weak)	LS2 ₉ (Strong2)
20	$3.3938 * 10^{-4}$	$6.717 * 10^{-4}$
30	$1.1676 * 10^{-5}$	$1.7409 * 10^{-5}$
40	$4.0206 * 10^{-7}$	$4.5121 * 10^{-7}$
50	1.384 * 10 ⁻⁸	$1.1694 * 10^{-8}$
60	$4.76714 * 10^{-10}$	$3.0308 * 10^{-10}$
70	$1.641 * 10^{-11}$	$7.8553 * 10^{-12}$
80	$5.6522 * 10^{-13}$	$2.0359 * 10^{-13}$
90	$1.9462 * 10^{-14}$	$5.2765 * 10^{-15}$
100	$6.7012 * 10^{-16}$	$1.3675 * 10^{-16}$

TABLE: Weak and Strong2 bounds for $c_9 = 0.694$, $a_9 = 0.714$

Hind Castel-Taleb, Nihal Pekergin Bounds quality for performance evaluation of computer

• • = • • = •

3

$\mu_9 = 600$: $a_9 = 0.59$, and $c_9 = 0.57$.

<i>B</i> ₉	LW ₉ (Weak)	LS2 ₉ (Strong2)
20	$1.2525 * 10^{-5}$	$1.7521 * 10^{-5}$
30	$6.9656 * 10^{-8}$	$7.3340 * 10^{-8}$
40	$3.8737 * 10^{-10}$	$3.0699 * 10^{-10}$
50	$2.1542 * 10^{-12}$	$1.2850 * 10^{-12}$
60	$1.1980 * 10^{-14}$	$5.3788 * 10^{-15}$
70	$6.6626 * 10^{-17}$	$2.2515 * 10^{-17}$
80	$3.7052 * 10^{-19}$	$9.4244 * 10^{-20}$
90	$2.0605 * 10^{-21}$	$3.9449 * 10^{-22}$
100	$1.1459 * 10^{-23}$	$1.6512 * 10^{-24}$

TABLE: Weak and Strong2 bounds for $a_9 = 0.59$, $c_9 = 0.57$

Hind Castel-Taleb, Nihal Pekergin Bounds quality for performance evaluation of computer

.

3

Next, we modify the routing probabilities of queues 6,7 and 8 into queue 9. We take 0.8 instead of 0.9. We obtain $c_9 = 0.51$, and $a_9 = 0.52$.

B ₉	$LW_9(Weak)$	LS2 ₉ (Strong2)
20	$1.38 * 10^{-6}$	$1.674 * 10^{-6}$
30	$2.365 * 10^{-9}$	$2.165 * 10^{-9}$
40	$4.04 * 10^{-12}$	$2.80 * 10^{-12}$
50	$6.93 * 10^{-15}$	$3.62 * 10^{-15}$
60	$1.18 * 10^{-17}$	$4.69 * 10^{-18}$
70	$2.03 * 10^{-20}$	$6.07 * 10^{-21}$
80	$3.48 * 10^{-23}$	$7.85 * 10^{-24}$
90	$5.96 * 10^{-26}$	$1.01 * 10^{-26}$
100	$1.02 * 10^{-28}$	$1.31 * 10^{-29}$

TABLE: Weak and Strong2 bounds for $a_9 = 0.52$, $c_9 = 0.51$

Hind Castel-Taleb, Nihal Pekergin Bounds quality for performance evaluation of computer

• • = • • = •

- When the load c_i is high, the Weak bound is better : the arrival rate of the weak bound $\lambda_i + \sum_{k=1,k\neq i}^n \mu_k p_{ki}$ is very close to the arrival rate of the Strong2 bound $\lambda_i + \sum_{k=1,k\neq i}^n \Lambda_k p_{ki}$, but the finite capacity is better than an infinite
- When the load *c_i* is low, the Strong2 bound is better especially for high capacities

Conclusion : Which bound is the best?

	High load	Low load
High Capacity	The Weak	Strong2
Low Capacity	The Weak	The Weak

イロト イヨト イヨト イヨト

크