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Motivation

Problem :

On multidimensional state space, different stochastic orderings
Quality of bounding systems ?
Which ordering provides the best bounding systems ?

Proposition : We study a system represented by a
multidimensionnal Markov process with no product form ⇒
Different bounding systems, and comparison from
performance measure
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Stochastic ordering (Increasing sets)

E a state space with a preorder � (reflexive, transitive)

X �Φ Y ⇔ P(X ∈ Γ) ≤ P(Y ∈ Γ), ∀Γ ∈ Φ(E )

Φst(E ) = {all increasing sets on E}

Φwk(E ) = {{x} ↑, x ∈ E} ∪ E

{x} ↑= {y ∈ E |y � x}

and

Φwk∗(E ) = {E − {x} ↓, x ∈ E}∪E , where {x} ↓= {y ∈ E |y � x}

Φst(E ) →�st , Φwk(E ) →�wk , Φwk∗(E ) →�wk∗ stochastic
orderings.
Φwk(E ) ⊂ Φst(E ), and Φwk∗(E ) ⊂ Φst(E ).
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Example

E = {(0, 0), (0, 1), (1, 0), (1, 1)}

Φwk(E ) = {E , {(0, 1), (1, 1)}, {(1, 0), (1, 1)}, {(1, 1)}}

Φst(E ) = Φwk(E ) ∪ {(0, 1), (1, 0), (1, 1)}

PX = (0.4, 0.2, 0.2, 0.2),PY = (0.5, 0.1, 0.1, 0.3),PX �wk PY , PX 6�st PY
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The system understudy

The system understudy is similar to a Jackson network except that
queues have a finite capacity, each queue i has the following
parameters :

Finite capacity Bi

Exponential Inter-arrival times with parameters λi . If the
queue is not full the customer is accepted in the queue,
otherwise it is lost.

Exponential service times, with parameters µi , and after the
service, we have :

with the probability pij the customer transits from the queue i
to the queue j , if queue j is not full. Otherwise, the customer
is lost.
with the probability di the customer goes out.
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Problem Understudy

Computing loss probabilities on X (t) ?

We propose to define different bounding systems by creating
independance between queues

Making capacities infinite : Jackson network (S2(t)) : coupling
method, we will prove : X (t) �st S2(t)
Cutting links between queues : n Independent M/M/1/Bi

queues : W(t), Increasing sets, we will prove : X (t) �wk W (t)

Quality of bounding systems from loss probabilities

No relations between bounding systems : W (t) 6�st S2(t),
and W (t) 6�wk S2(t)
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Bounding system 1 : Independent M/M/1/Bi queues

Bounding System 1 is represented by n queues, each queue i has
the following assumptions

Arrival rate : λi +
∑n

k=1,k 6=i µkpki

Service rate µi

The evolution is represented by the Markov process W (t)
We will see that :

{X (t), t ≥ 0} 6�st {W (t), t ≥ 0}

and

{X (t), t ≥ 0} �wk {W (t), t ≥ 0}
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Bounding system 1 : {X (t), t ≥ 0} 6�st {W (t), t ≥ 0}

We use the coupling method : we suppose

X̂ (t) � Ŵ (t), we see : X̂ (t + ∆t) � Ŵ (t + ∆t) ? (1)

1 An arrival in queue i in X (t) is compensated by an arrival in
W (t) : λi ≤ λi +

∑n
k=1,k 6=i µkpki

2 A transit from queue i to queue j in X (t) is compensated by
an arrival in queue j in W (t) :
µipji < λj +

∑n
k=1,k 6=j µkpkj − λj =

∑n
k=1,k 6=j µkpkj

3 A service in queue i in W (t) is not compensated by a service
in X (t) as µidi ≤ µi

And so we may have at time t + ∆t :

X̂ (t + ∆t) 6� Ŵ (t + ∆t) (2)
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Propositions

Since we want to define an upper bound to the process X (t), we
consider two solutions :

1 we propose to verify if : X (t) �wk W (t),

2 we propose to modify W (t) by defining another process S1(t)
which could represent an upper bounding system :
X (t) �st S1(t)
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A simple strong bounding system

1 {S1(t), t ≥ 0} is a multidimensional Markov process
representing the evolution of a queueing system with
independent M/M/1/Bi queues defined as follows.

2 Each queue i :
1 arrival rates λi +

∑n

k=1,k 6=i µkpki ,
2 service rate µidi .

So we can deduce from the coupling method the following
proposition :

{X (t), t ≥ 0} �st {S1(t), t ≥ 0} (3)
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Weak bounding system

We have to prove :

{X (t), t ≥ 0} �wk {W (t), t ≥ 0} (4)

We use the following theorem :

{X (t), t ≥ 0} �Φ {Y (t), t ≥ 0} (5)

if and only if the following conditions are verified :

1 X (0) �Φ Y (0)

2 {X (t), t ≥ 0} or {Y (t), t ≥ 0} is �Φ-monotone

3

∀x ∈ E
∑

z∈Γ

A(x , z) ≤
∑

z∈Γ

B(x , z), ∀Γ ∈ Φ(E ) (6)
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�st- monotonicity

From Massey :

Theorem

{X (t), t ≥ 0} is �st-monotone (increasing)if the following
condition is verified :

∀Γ ∈ Φst(E ), ∀x � y ∈ E

∑

z∈Γ

A(x , z) ≤
∑

z∈Γ

A(y , z), x , y ∈ Γ or x , y 6∈ Γ (7)
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�wk- monotonicity

Theorem

{X (t), t ≥ 0} is �Φ-monotone (increasing)if the following
condition is verified :

∀Γ ∈ Φ(E ), ∀x � y ∈ E

∑

z∈Γ

A(x , z) ≤
∑

z∈Γ

A(y , z), x , y ∈ Γ or x , y 6∈ Γ (8)

Proved in : ”Stochastic monotonicity in queueing networks”,
H.Castel-Taleb, N.Pekergin, EPEW’09, 6th European Performance
Engineering Workshop, Imperial College London, 9-10 July
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�wk-monotonicity of independent M/M/1/Bi queues

First step : Definition of increasing sets

From events :

arrival in queue i : x → x + ei

service in queue i : x → x − ei

transit from queue i to queue j : x → x − ei + ej

As we must also take the condition :

x , y ∈ Γ or x , y 6∈ Γ

Swk(E ) = {{x} ↑, {x + ei} ↑, {y + ei} ↑, {x − ei} ↑, {y − ei} ↑}

If xi < Bi :

{x + ei} ↑= {x + ei , . . . , y + ei , . . .}

If yi < Bi : :
{y + ei} ↑= {y + ei , ....}
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�wk-monotonicity of independent M/M/1/Bi queues

Second step : transition rates comparisons

Γ
∑

z∈Γ QW (x , z)
∑

z∈Γ QW (y , z)

Γx+ei
λi +

∑n
k=1,k 6=i µkpki λi +

∑n
k=1,k 6=i µkpki

Γy+ei
0 λi +

∑n
k=1,k 6=i µkpki

Γx −
∑n

k=1 µk1xk>0 −
∑n

k=1 µk1yk>01yk=xk

Γx−ei
−

∑n
k=1,k 6=i µk1xk>0 −

∑n
k=1,k 6=i µk1yk>01yk=xk

Γy−ei
−

∑n
k=1 µk1xk>0 −

∑n
k=1,k 6=i µk1yk>0

Γx+ei
= {x + ei} ↑, Γx = {x} ↑, Γx−ei

= {x − ei} ↑,
Γy+ei

= {y + ei} ↑, Γy−ei
= {x − ei} ↑.

∀Γ ∈ Swk(E ),
∑

z∈Γ

QW (x , z) ≤
∑

z∈Γ

QW (y , z)

∀x � y | x , y ∈ Γ, or x , y 6∈ Γ
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Generators comparisons

Generators comparisons : Q and QW Γx+ei
, Γx−ej+ei

, Γx , Γx−ei
.

Γ
∑

z∈Γ Q(x , z)
∑

z∈Γ QW (x , z)

Γx+ei
λi λi +

∑n
k=1,k 6=i µkpki

Γx−ej+ei
µjpji + λi λi +

∑n
k=1,k 6=i µkpki

Γx −
∑n

k=1 µk1xk>0 −
∑n

k=1 µk1xk>0

Γx−ei
−

∑n
k=1,k 6=i µk1xk>0 −

∑n
k=1,k 6=i µk1xk>0

∀Γ ∈ Swk(E ),
∑

z∈Γ

QW (x , z) ≤
∑

z∈Γ

QW (y , z)

∀x � y | x , y ∈ Γ, or x , y 6∈ Γ
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Stochastic comparison results

P(X (t) ∈ Γ) ≤ P(W (t) ∈ Γ),∀Γ ∈ Φwk(E ) (9)

and so for the stationary probability distributions we have :
∑

x∈Γ

Π(x) ≤
∑

x∈Γ

ΠW (x),∀Γ ∈ Φwk(E ) (10)

Loss probability LXi =
∑

x∈E |xi=Bi

Π(x)

Let x∗ = (0, . . . ,Bi , . . . 0), and Γ = {x∗} ↑∈ Φwk(E ).

LXi =
∑

x∈Γ

Π(x)

As Γ = {x∗} ↑∈ Φwk(E ),

LXi ≤ LWi LWi =
∑

x∈Γ

ΠW (x) (11)
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Bounding system 2 : Jackson Network

Comparison of finite process with an infinite process

{X (t), t ≥ 0} �st {S2(t), t ≥ 0} (12)

Suppose : X̂ (t) � Ŝ2(t); and show : X̂ (t + ∆t) � Ŝ2(t + ∆t)
(13)

1 An arrival in queue i in X (t) is compensated by an arrival in
queuei in S2(t) (same arrival rate λi). No arrival if queue i is
full in X (t) and an arrival in S2(t)

2 A transit from queue i to queue j in X (t) is compensated by
the same event in S2(t) (same rate µipij). If queue j is full in
X (t) then Xi(t) decreases (the customer goes out), and in
S2(t) there is the transit.

3 a service from queue i in X (t) is compensated by the same
event in S2(t) (the service rate is µidi)
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Results

{X (t), t ≥ 0} �st {S2(t), t ≥ 0} (14)

If the stability condition is satisfied, then the stationary probability
distribution ΠS2 exists. So we have the following inequality :

∑

x∈Γ

Π(x) ≤
∑

x∈Γ

ΠS2(x),∀Γ ∈ Φst(E ) (15)
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Accuracy of bounding systems

The exact loss probability LXi on queue i for the process
{X (t), t ≥ 0} is given by the following formula :

LXi =
∑

x�x∗

Π(x) (16)

So we propose to compute different loss probabilities bounds for
each queue i :

The weak bound LWi on the process W (t) generated by the
weak ordering.

The Strong1 bound LS1i on the process S1(t) , which
represents a simple bound

The Strong2 bound LS2i on the process S2(t) which
represents a more refined bound.

The goal is to compare LWi , LS1i , and LS2i
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Loss probability bounds

{X (t), t ≥ 0} �wk {W (t), t ≥ 0} (17)

we have for Γ = {x � x∗} ∈ Φwk(E ) :

LXi ≤ LWi LWi =
∑

x�x∗

ΠW (x) (18)

As Γ = {x � x∗} ∈ Φst(E ) :

LXi ≤ LS1i LS1i =
∑

x�x∗

ΠS1(x) (19)

LXi ≤ LS2i , LS2i =
∑

x�x∗

ΠS2(x) (20)
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Loss probabilities bounds on independent M/M/1/Bi

queues

The loss probability LWi is computed from the weak bound
{W (t), t ≥ 0}, and is equivalent to the loss probability in an
M/M/1/Bi queue :

LWi = aBi

i

1 − ai

1 − aBi+1
i

, where ai =
λi +

∑n
k=1,k 6=i µkpki

µi
(21)

LS1i = bBi

i

(1 − bi)

1 − bBi+1
i

, where bi =
λi +

∑n
k=1,k 6=i µkpki

µidi

(22)

we have :
LWi ≤ LS1i
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Loss probabilities on infinite capacity queues in Jackson
network

LS2i =

∞∑

xi=Bi

cxi

i (1 − ci ), where ci =
Λi

µi
(23)

Λi = λi +
n∑

k=1,k 6=i

Λkpki , ci < 1

As
∞∑

xi=0

cxi

i (1 − ci) = 1

Bi−1∑

xi=0

cxi

i =
1 − cBi

i

1 − ci
, then we obtain

∞∑

xi=Bi

cxi

i =
cBi

i

1 − ci
(24)

LS2i = cBi

i (25)
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Loss probabilities comparisons

We know that : LWi ≤ LS1i ,
What is the relation between :

LWi = aBi

i

1 − ai

1 − aBi+1
i

(26)

and :

LS2i = cBi

i , ci =
Λi

µi
(27)

It is clear that :
ci < ai , then cBi

i < aBi

i

but as
1 − ai

1 − aBi+1
i

< 1, then LWi 6≤ LS2i
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Numerical example

1

4

2

3

5

6

7

8

9 1 0

Figure: Queueing system understudy

Loss probabilities in queue 9
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Input parameters

Queue : i λi µi di pij

1 168 170 0.2 0.8

2 40 41 0.2 0.8

3 110 112 0.2 0.8

4 82 84 0.2 0.8

5 82 84 0.2 0.8

6 0 170 0.1 0.9

7 0 91 0.1 0.9

8 0 136 0.1 0.9

9 0 480 0.8 0.2

10 0 500 1 0

Table: Input parameters values
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Weak and Strong1 bounds

a9 = 0.743, and b9 = 0.929.

ai =
λi +

∑n
k=1,k 6=i µkpki

µi

bi =
λi +

∑n
k=1,k 6=i µkpki

µidi

B9 LW9 (Weak) LS19 (Strong1)

20 6.887 ∗ 10−4 0.0208

30 3.560 ∗ 10−5 0.0088

40 1.8439 ∗ 10−6 0.004

50 9.5501 ∗ 10−6 0.0018

60 4.9463 ∗ 10−9 8.9612 ∗ 10−4

70 2.5618 ∗ 10−10 4.2961 ∗ 10−4

80 1.326 ∗ 10−11 2.06622 ∗ 10−4

90 6.87 ∗ 10−13 9.9521 ∗ 10−5

100 3.559 ∗ 10−14 4.7974 ∗ 10−5

Table: Weak and Strong1 bounds for d9 = 0.8
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The strong1 bound for different values of d9

B9 d9 = 0.85 d9 = 0.9

20 0.009 0.003

30 0.002 5.82 ∗ 10−4

40 6.18 ∗ 10−4 8.71 ∗ 10−5

50 1.6 ∗ 10−4 1.3041 ∗ 10−5

60 4.333 ∗ 10−5 1.95 ∗ 10−6

70 1.14 ∗ 10−5 2.92 ∗ 107

80 3.04 ∗ 10−6 4.38 ∗ 108

90 8.08 ∗ 10−7 6.56 ∗ 10−9

100 2.14 ∗ 10−7 9.83 ∗ 10−10

Table: Strong1 bound LS19 for different values of d9
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a9 = 0.743, and b9 = 0.929, and c9 = 0.722.

B9 LW9(Weak) LS19(Strong1) LS29(Strong2)

20 6.887 ∗ 10−4 0.0208 0.0015

30 3.560 ∗ 10−5 0.0088 5.9244 ∗ 10−5

40 1.8439 ∗ 10−6 0.004 2.3095 ∗ 10−6

50 9.5501 ∗ 10−8 0.0018 9.0035 ∗ 10−8

60 4.9463 ∗ 10−9 8.9612 ∗ 10−4 3.5098 ∗ 10−9

70 2.5618 ∗ 10−10 4.2961 ∗ 104 1.3682 ∗ 10−10

80 1.326 ∗ 10−11 2.06622 ∗ 104 5.3340 ∗ 10−12

90 6.87 ∗ 10−13 9.9521 ∗ 10−5 2.0794 ∗ 10−13

100 3.559 ∗ 10−14 4.7974 ∗ 10−5 8.106 ∗ 10−15

Table: Weak, Strong1 and Strong2 bounds
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µ9 = 360, a9 = 0.991, c9 = 0.9638

B9 LW9(Weak) LS29(Strong2)

20 0.043 0.479

30 0.028 0.331

40 0.020 0.229

50 0.0157 0.158

60 0.0126 0.11

70 0.010 0.076

80 0.0086 0.052

90 0.00736 0.0365

100 0.006 0.025

Table: Weak and Strong2 bounds for c9 = 0.9638 and a9 = 0.991
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µ9 = 500, c9 = 0.694, and a9 = 0.714,

B9 LW9(Weak) LS29(Strong2)

20 3.3938 ∗ 10−4 6.717 ∗ 10−4

30 1.1676 ∗ 10−5 1.7409 ∗ 10−5

40 4.0206 ∗ 10−7 4.5121 ∗ 10−7

50 1.384 ∗ 10−8 1.1694 ∗ 10−8

60 4.76714 ∗ 10−10 3.0308 ∗ 10−10

70 1.641 ∗ 10−11 7.8553 ∗ 10−12

80 5.6522 ∗ 10−13 2.0359 ∗ 10−13

90 1.9462 ∗ 10−14 5.2765 ∗ 10−15

100 6.7012 ∗ 10−16 1.3675 ∗ 10−16

Table: Weak and Strong2 bounds for c9 = 0.694, a9 = 0.714
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µ9 = 600 : a9 = 0.59, and c9 = 0.57.

B9 LW9(Weak) LS29(Strong2)

20 1.2525 ∗ 10−5 1.7521 ∗ 10−5

30 6.9656 ∗ 10−8 7.3340 ∗ 10−8

40 3.8737 ∗ 10−10 3.0699 ∗ 10−10

50 2.1542 ∗ 10−12 1.2850 ∗ 10−12

60 1.1980 ∗ 10−14 5.3788 ∗ 10−15

70 6.6626 ∗ 10−17 2.2515 ∗ 10−17

80 3.7052 ∗ 10−19 9.4244 ∗ 10−20

90 2.0605 ∗ 10−21 3.9449 ∗ 10−22

100 1.1459 ∗ 10−23 1.6512 ∗ 10−24

Table: Weak and Strong2 bounds for a9 = 0.59, c9 = 0.57
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Next, we modify the routing probabilities of queues 6,7 and 8 into
queue 9. We take 0.8 instead of 0.9. We obtain c9 = 0.51, and
a9 = 0.52.

B9 LW9(Weak) LS29(Strong2)

20 1.38 ∗ 10−6 1.674 ∗ 10−6

30 2.365 ∗ 10−9 2.165 ∗ 10−9

40 4.04 ∗ 10−12 2.80 ∗ 10−12

50 6.93 ∗ 10−15 3.62 ∗ 10−15

60 1.18 ∗ 10−17 4.69 ∗ 10−18

70 2.03 ∗ 10−20 6.07 ∗ 10−21

80 3.48 ∗ 10−23 7.85 ∗ 10−24

90 5.96 ∗ 10−26 1.01 ∗ 10−26

100 1.02 ∗ 10−28 1.31 ∗ 10−29

Table: Weak and Strong2 bounds for a9 = 0.52, c9 = 0.51
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Results Analysis

When the load ci is high, the Weak bound is better : the
arrival rate of the weak bound λi +

∑n
k=1,k 6=i µkpki is very

close to the arrival rate of the Strong2 bound
λi +

∑n
k=1,k 6=i Λkpki , but the finite capacity is better than an

infinite

When the load ci is low, the Strong2 bound is better
especially for high capacities
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Conclusion : Which bound is the best ?

High load Low load

High Capacity The Weak Strong2

Low Capacity The Weak The Weak
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