Censored Markov Chains

J.M. Fourneau
Laboratoire PRiSM, CNRS UMR 8144 Université de Versailles St-Quentin and INRIA Mescal

[^0]
Un peu de vocabulaire

- Chaine de Markov en temps discret: $\mathrm{DTMC}=$ (une distribution initiale, et une matrice stochastique)
- Espace d'états (fini, infini)
- Matrice stochastique: matrice positive $(P[i, j] \geq 0)$ avec $\sum_{j} P[i, j]=1$ pour tout i.
- Type de pb: existence d'un équilibre unique, distribution à l'équilibre, existence de plusieurs régimes, temps avant absorption, probabilité d'absorption.
- Les réponses dépendent de propriétés structurelles (finitude, irréductibilité) ou numériques (sur la matrice et la distribution initiale).

Basic Ideas for Censoring

- Consider a DTMC X with stochastic matrix Q and state space \mathcal{S}.
- Consider a partition of the state space into $\left(E, E^{c}\right)$ and the associated block representation for Q :

$$
Q=\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

- The censored Markov Chain (CMC) only matches the chain when its state is in E (also known as watched Markov chain (Levy 57)).
- Not proved (but helpful) the CMC is associated to the chain where the uncensored states have immediate transitions (we must prove that...).

Basic...

- Transition matrix of the CMC:

$$
S_{A}=A+B\left(\sum_{i=0}^{\infty} D^{i}\right) C
$$

- Not completely true.... OK if the chain is ergodic.
- If the chain is finite but not ergodic, all the states in E^{c} must be transient (no recurrent class or absorbing states).
- If the chain is infinite and not ergodic, some work is necessary.

Censored Chains and St-St Analysis

- The steady state of the CMC is the conditional probability.

$$
\pi_{C M C}(i)=\frac{\pi_{Q}(i)}{\sum_{j} \pi_{Q}(j) 1_{j \in E}}
$$

- If E^{c} does not contain any recurrent class, the fundamental matrix is:

$$
\sum_{i=0}^{\infty} D^{i}=(I-D)^{-1}
$$

- But computing S_{A} is still difficult when E^{c} is large.
- Analytical: truncated solution for CMC
- Numerical: Avoid to compute $(I-D)^{-1}$,
- Avoid to generate all blocks.

Transient Problems

- Assumptions: the chain is finite and contains several absorbing states which are all censored. Let the initial distribution be π_{0}.
- Property: Assume that $\sum_{i \in E} \pi_{0}(i)=1$. Assume also that the states which immediately precede absorbing states are also in E. The absorbing probabilities in the CMC are equal to the absorbing probabilities of the original chain.
- Proof: Algebraic. Remember that when we have a block decomposition of a transition matrix with absorbing states:
$\left[\begin{array}{c|c}I d & 0 \\ \hline F & H\end{array}\right]$,
matrix $M=(I d-H)^{-1}$ exists and is called the fundamental matrix. The entry $[i, j]$ of the product matrix $M * F$ gives the absorption probability in j knowing that the initial state is i.

Proof

- Gather the absorbing states at the beginning of E.
$\left[\begin{array}{c|c||c}I d & 0 & 0 \\ \hline R & A & B \\ \hline \hline 0 & C & D\end{array}\right]$
- The transition matrix of the censored chain is:

$$
\left[\begin{array}{c|c}
I d & 0 \\
\hline R & A
\end{array}\right]+\left[\begin{array}{c}
0 \\
\hline B
\end{array}\right] \sum_{i}[D]^{i}[0 \mid C]
$$

which is finally equal to: $\left[\begin{array}{c|c}I d & 0 \\ \hline R & A+B \sum_{i}^{D^{i} C}\end{array}\right]$.

- As D is transient, we have: $\sum_{i} D^{i}=(I d-D)^{-1}$. And the fundamental matrix of the censored chain is:

$$
\left(I d-A-B(I d-D)^{-1} C\right)^{-1}
$$

Proof

- The fundamental matrix of the initial chain is:
$M=\left[\begin{array}{c|c}I d-A & B \\ \hline C & I d-D\end{array}\right]^{-1}$.
- To obtain the probability we must multiply by $\left[\frac{R}{0}\right]$ and consider an initial state in E.
- Thus we only have to compute the upper-left block of F which is equal to:

$$
\left(I d-A-B(I d-D)^{-1} C\right)^{-1}
$$

if blocks $(I d-A)$ and its Schur complements are non singular.

- we have the same absorption probability in Q and in S_{A}.

Transient Problems II

- Same Assumptions.
- The expectation of the first passage time (or absorbing time) in CMC are smaller than the expectation of these times in the original chain. Proof: Algebraic. Same proof. Remember that the average number of visits in j when the initial state is i is entry $[i, j]$ of the fundamental matrix.
- Conjecture: the first passage time (or absorbing time) in CMC are stochastically smaller than these times in the original chain. [A direct consequence in the model with 0-time delays for uncensored states]

Truncated Solution

- Truncated st-st solution: the st-st distribution for the censored process is the initial solution with an appropriate normalization (see Kelly for truncation of reversible processes).
- Theorem 1 the CMC has a truncated st-st solution.
- Proof: algebraic.
- Does not change the structure of the solution: Product form for the DTMC implies Product Form for the CMC (false in continuous-time).
- If the reward is the ratio of two homogenous polynomials of degree k on the steady-state distribution of states in E, the reward has the same value on the DTMC and on the CMC.

Approximation of Infinite MC

- The augmentation problem for infinite MC: adding appropriate probabilities to A such that the st-st distribution of the augmented chain converges to the original one (Seneta 67, Wolf, Heyman, Freedman)
- Censoring is the best method to approximate an infinite MC (in some sense) (Zhao, Liu).
- $\left(B(I-D)^{-1} C\right)(i, j)$ is the taboo probability of the paths from i in E to j in E which are not allowed to visit E in between.

In real life...

- Simulation: you only visit a small part of the state space without any control.
- selection of A: transitions are sampled according to their probabilities... What about state?
- Partial generation: you chose the number of states, the initial state.
- Selection of A: DFS or BFS or based on probability...
- Heuristics to select a good set of states and good rules.

Numerical Computation of Bounds

- Computing bounds rather than exact results.
- Stochastic bounds (not component-wise bounds).
- With complete state space, we use lumpability to reduce the state-space (Truffet) or Patterns to simplify the structure of the chain (Busic).
- With censoring, we compute bounds with only a small part of the state space.

Comparison for Markov Chains

- Monotonicity and comparability of the transition probability matrices yield sufficient conditions for the stochastic comparison of MC.
- $P_{i, *}$ is row i of P.
- Definition 1 (st-Comparison of Stochastic Matrices) Let P and Q be two stochastic matrices. $P \leq_{s t} Q$ if and only if $P_{i, *} \leq_{s t} Q_{i, *}$ for all i.
- Definition 2 Let P be a stochastic matrix, P is st-monotone if and only if for all $i, j>i$, we have $P_{i, *} \leq_{s t} P_{j, *}$

Examples

$$
\begin{aligned}
& \text { • }\left[\begin{array}{llll}
0.1 & 0.2 & 0.6 & 0.1 \\
0.1 & 0.1 & 0.2 & 0.6 \\
0.0 & 0.1 & 0.3 & 0.6 \\
0.0 & 0.0 & 0.1 & 0.9
\end{array}\right] \text { is monotone. } \\
& \\
& \\
&
\end{aligned}\left[\begin{array}{llll}
0.1 & 0.2 & 0.6 & 0.1 \\
0.2 & 0.1 & 0.1 & 0.6 \\
0.0 & 0.1 & 0.3 & 0.6 \\
0.1 & 0.0 & 0.1 & 0.8
\end{array}\right] \text { is not monotone. }
$$

Vincent's Algorithm

- It is possible to use a set of equalities, instead of inequalities:

$$
\left\{\begin{array}{l}
\sum_{k=j}^{n} Q_{1, k}=\sum_{k=j}^{n} P_{1, k} \\
\sum_{k=j}^{n} Q_{i+1, k}=\max \left(\sum_{k=j}^{n} Q_{i, k}, \sum_{k=j}^{n} P_{i+1, k}\right) \quad \forall i, j
\end{array}\right.
$$

- Properly ordered (in increasing order for i and in decreasing order for j in previous system), a constructive way to obtain a stochastic bound (Vincent's algorithm).
- Written as $V=r^{-1} v$ where r is the summation, and v the max of the sums.

$$
\begin{gathered}
\hline \text { An example } \\
P 1=\left[\begin{array}{lllll}
0.5 & 0.2 & 0.1 & 0.2 & 0.0 \\
0.1 & 0.7 & 0.1 & 0.0 & 0.1 \\
0.2 & 0.1 & 0.5 & 0.2 & 0.0 \\
0.1 & 0.0 & 0.1 & 0.7 & 0.1 \\
0.0 & 0.2 & 0.2 & 0.1 & 0.5
\end{array}\right] \\
V(P 1)=\left[\begin{array}{lllll}
0.5 & 0.2 & 0.1 & 0.2 & 0.0 \\
0.1 & 0.6 & 0.1 & 0.1 & 0.1 \\
0.1 & 0.2 & 0.5 & 0.1 & 0.1 \\
0.1 & 0.0 & 0.1 & 0.7 & 0.1 \\
0.0 & 0.1 & 0.1 & 0.3 & 0.5
\end{array}\right] .
\end{gathered}
$$

Bounds for the CMC

- Avoid to build the whole chain.
- Assume that we build block A by a BFS from an initial state 00 .
- Possible to find monotone upper and lower bound for S_{A} (Truffet). Proved optimal if we only know A.
- Improve Truffet's bound if we build A and C (Dayar, Pekergin, Younnes). Conjectured to be optimal if we know A and C
- Improve Truffet's bound if we build A and some columns of C (less accurate than DPY but needs less information)
- More accurate bounds then Truffet's using some information (not all) from blocks B, C and D. Based on graph theory to find paths and two fundamental theorems to link element-wise lower bound and stochastic upper bound.

ANR Projects Blanc SMS and SetIn CheckBound

Truffet's Algorithm to bound S_{A}

- Only use block A.
- 2 steps:
- Compute of a stochastic upper bound of S_{A} (operator $T()$): add the slack probability in the last column of A.
- Make it st-monotone (Vincent's algorithm) (operator $V()$).
- Simple, but needs to obtain something more accurate.
- A lower bound is obtained when we add the slack probability to the first column of A.

Example

$$
\begin{aligned}
& Q=\left[\begin{array}{lll|ll}
0.2 & 0.3 & 0.2 & 0.2 & 0.1 \\
0.4 & 0.2 & 0.2 & 0.0 & 0.2 \\
0.2 & 0.3 & 0.3 & 0.1 & 0.1 \\
\hline 0.1 & 0.2 & 0.2 & 0.3 & 0.2 \\
0.0 & 0.3 & 0.3 & 0.3 & 0.1
\end{array}\right] \quad \text { SlackProbability }=\left[\begin{array}{l}
0.3 \\
0.2 \\
0.2
\end{array}\right] \\
& T(A)=\left[\begin{array}{lll}
0.2 & 0.3 & \mathbf{0 . 5} \\
0.4 & 0.2 & \mathbf{0 . 4} \\
0.2 & 0.3 & \mathbf{0 . 5}
\end{array}\right] \quad V(T(A))=\left[\begin{array}{lll}
0.2 & 0.3 & \mathbf{0 . 5} \\
0.2 & 0.3 & \mathbf{0 . 5} \\
0.2 & 0.3 & \mathbf{0 . 5}
\end{array}\right] \\
& S_{A}=\left[\begin{array}{lll}
0.23 & 0.43 & 0.33 \\
0.41 & 0.29 & 0.29 \\
0.22 & 0.38 & 0.38
\end{array}\right] \\
& S_{A} \leq_{s t} T(A) \leq_{s t} V(T(A))
\end{aligned}
$$

DPY

- My own presentation...
- Assume that one must compute a matrix M such that $M 1 \leq_{s t} M$ and $M 2 \leq_{s t} M$.
- $M 1 \leq_{s t} M 2$ is equivalent to $r(M 1) \leq_{e l} r(M)$. And we also have: $r(M 2) \leq_{e l} r(M)$.
- Thus $\max (r(M 1), r(M 2)) \leq_{e l} r(M)$. Or $r^{-1}(\max (r(M 1), r(M 2))) \leq_{s t} M$
- Easily generalized to n matrices $=\operatorname{StMax}(\mathrm{M} 1, \mathrm{M} 2, \ldots \mathrm{Mn})$

DPY

- Turn back to the CMC and its matrix $S_{A}=A+Z, Z=B(I-D)^{-1} C$.
- Define G as $G(i, j)=C(i, j) / \sum_{k} C(i, k)$: normalization of C
- Define G_{k} as matrix whose rows are all equal to row k of G
- DPY: Define $U=\vec{\beta} \operatorname{StMax}\left(G_{1}, G_{2}, \ldots, G_{n}\right)$,
- Theorem $2 A+U$ is a st-bound of S_{A}.
- U has rank 1 .

Examples

Normalized Matrix :

$$
G=\left[\begin{array}{cccc}
0.25 & 0.0 & 0.25 & 0.5 \\
0.0 & 1 & 0.0 & 0.0 \\
1 / 3 & 1 / 3 & 1 / 6 & 1 / 6 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 1 & 0.0 & 0.0 \\
0.25 & 0.25 & 0.25 & 0.25
\end{array}\right]
$$

And finally U is $\vec{\beta}(0,0.25,0.25,0.5)$.

An algorithm based on Euclidean Division

- Definition 3 (Euclidean Division) Let V and W be two columns vector of the same size whose elements are non negative. We define the Euclidean division of W as follows:

$$
W=q V+R
$$

where R is a vector and q is the maximum positive real such that all components of R are non negative.

- Property 1 We compute q and R as follows:

$$
q=\min _{i}\left(\frac{W(i)}{V(i)}\right)
$$

where the min is computed on the values of i such that $V(i)$ is positive.

- Let us denote $\vec{\sigma}(i)=\sum_{j} C(i, j)$
- It can be obtained from a high level specification of the model.

Theory

- The bounding algorithm is based on the Euclidean division of $\vec{\sigma}$ by each column vector of C.
- Theorem 3 Consider $\vec{\sigma}$ and an arbitrary column index k. Let Z be $B(I-D)^{-1} C$. Perform the Euclidean division of $\vec{\sigma}$ by $C(*, k)$ to obtain q_{k} and R_{k}. Column k of Z is upper bounded by $\frac{\vec{\beta}}{q_{k}}$.
- Proof: Algebraic

$$
Z=B(I-D)^{-1} C \text { and } \sum_{j} Z_{i, j}=\vec{\beta}(i)
$$

After some algebra: $\vec{\beta}=B(I-D)^{-1} C \vec{\sigma}$
Thus: $\vec{\beta}=B(I-D)^{-1}\left(q_{k} C_{*, k}+R_{k}\right)$
R_{k}, B and $(I-D)^{-1}$ are positive. Therefore:

$$
B(I-D)^{-1} q_{k} C_{*, k} \leq_{e l} \vec{\beta}
$$

Examples

$$
A=\left[\begin{array}{llll}
0.1 & 0.3 & 0.2 & 0.1 \\
0.1 & 0.4 & 0.2 & 0.0 \\
0.2 & 0.1 & 0.5 & 0.2 \\
0.2 & 0.0 & 0.4 & 0.0
\end{array}\right], \vec{\beta}=\left[\begin{array}{l}
0.3 \\
0.3 \\
0.0 \\
0.4
\end{array}\right], C=\left[\begin{array}{llll}
0.1 & 0.0 & 0.1 & 0.2 \\
0.0 & 0.1 & 0.0 & 0.0 \\
0.2 & 0.2 & 0.1 & 0.1 \\
0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.1 & 0.0 & 0.0 \\
0.1 & 0.1 & 0.1 & 0.1
\end{array}\right], \vec{\sigma}=\left[\begin{array}{l}
0.4 \\
0.1 \\
0.6 \\
0.0 \\
0.1 \\
0.4
\end{array}\right] .
$$

Euclidean divisions:

$$
\begin{aligned}
& q_{1}=3 \text { and } \quad R_{1}^{t}=\left[\begin{array}{lllllll}
0.1 & 0.1 & 0.0 & 0.0 & 0.1 & 0.1
\end{array}\right] \\
& q_{2}=1
\end{aligned} \text { and } \quad R_{2}^{t}=\left[\begin{array}{lllllll}
0.4 & 0.0 & 0.4 & 0.0 & 0.0 & 0.3
\end{array}\right] .
$$

And finally the bounding matrix is $\vec{\beta}(1 / 3,1,1 / 4,1 / 2)$ and the st bound is $\vec{\beta}(0,1 / 4,1 / 4,1 / 2)$.

Theory again

- It is even possible to find a bound if we are not able to compute exactly $\vec{\sigma}$.
- Assume that we are able to compute $\vec{\delta}$ such that $\vec{\delta} \leq_{e l} \vec{\sigma}$. Theorem 4 Consider $\vec{\delta}$ and an arbitrary column index k. Perform the Euclidean division of $\vec{\delta}$ by column k of C to obtain q_{k}^{\prime} and R_{k}. If $q_{k}^{\prime} \geq 1$, column k of Z is upper bounded by $\frac{\vec{\beta}}{q_{k}^{\prime}}$.
- Proof: As $\vec{\delta} \leq_{e l} \vec{\sigma}$, we have $q_{k}^{\prime} \leq q_{k}$ and we apply the former theorem.

Examples

- Assume now that we are not able to compute the second column of C. We have: $\vec{\delta}^{t}=\left[\begin{array}{llllll}0.4 & 0.0 & 0.4 & 0.0 & 0.0 & 0.3\end{array}\right]$.
- Then we perform the Euclidean divisions.

$$
q_{1}=2 \text { and } R_{1}=\left[\begin{array}{l}
0.2 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.1
\end{array}\right] \quad q_{3}=3 \text { and } R_{3}=\left[\begin{array}{c}
0.1 \\
0.0 \\
0.1 \\
0.0 \\
0.0 \\
0.0
\end{array}\right] \quad q_{4}=2 \text { and } R_{4}=\left[\begin{array}{l}
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.1
\end{array}\right]
$$

- As we cannot compute another bound than 1 for the second column, the bound is: $\vec{\beta}(1 / 2,1,1 / 3,1 / 2)$ and the st bound is $\vec{\beta}(0,1 / 6,1 / 3,1 / 2)$.

Paths and Graphs: Theoretical Results

- Theorem 5 Let L such that $A \leq_{e l} L \leq_{e l} S_{A}$. Then

$$
S_{A} \leq_{s t} T(L) \leq_{s t} T(A) \quad \text { and } \quad S_{A} \leq_{s t} V(T(L)) \leq_{s t} V(T(A))
$$

- Finding some component-wise lower bound of $B\left(\sum_{i=0}^{\infty} C^{i}\right) D$ helps to obtain a more accurate bound.
- Theorem 6 Let $L 1$ and $L 2$ such that $A \leq_{e l} L 1 \leq_{e l} L 2 \leq_{e l} S_{A}$ element-wise. Then:

$$
\left\{\begin{array}{c}
S_{A} \leq_{s t} T(L 2) \leq_{s t} T(L 1) \leq_{s t} T(A) \\
S_{A} \leq_{s t} V(T(L 2)) \leq_{s t} V(T(L 1)) \leq_{s t} V(T(A))
\end{array}\right.
$$

- The more information you get, the more accurate the bounds (but all informations are not created equal).

Improving the bound-heuristics

- All the rows do not have the same importance for the computation of the bound.
- Due to the monotonicity constraint, the last row is often completely modified by Vincent's algorithm.
- More efficient to try to improve the first row of A than the last one.

Improving the bound-example

$$
A=\left[\begin{array}{cccc}
0.1 & 0.3 & 0.2 & 0.1 \\
0.1 & 0.4 & 0.2 & 0 . \\
0.2 & 0.1 & 0.5 & 0.2 \\
0.2 & 0 & 0.4 & 0
\end{array}\right]
$$

$$
T(A)=\left[\begin{array}{cccc}
0.1 & 0.3 & 0.2 & 0.4 \\
0.1 & 0.4 & 0.2 & 0.3 \\
0.2 & 0.1 & 0.5 & 0.2 \\
0.2 & 0 & 0.4 & 0.4
\end{array}\right] \quad V(T(A))=\left[\begin{array}{cccc}
0.1 & 0.3 & 0.2 & 0.4 \\
0.1 & 0.3 & 0.2 & 0.4 \\
0.1 & 0.2 & 0.3 & 0.4 \\
0.1 & 0.2 & 0.3 & 0.4
\end{array}\right]
$$

Improving the bound-example

Suppose that one have compute the probability $[0.1,0.1,0 ., 0.1]$ of some paths leaving E from state 4 and entering again set E after a visit in E^{c}.

$$
\begin{gathered}
L 1=\left[\begin{array}{cccc}
0.1 & 0.3 & 0.2 & 0.1 \\
0.1 & 0.4 & 0.2 & 0 . \\
0.2 & 0.1 & 0.5 & 0.2 \\
0.3 & 0.1 & 0.4 & 0.1
\end{array}\right] \\
T(L 1)=\left[\begin{array}{llll}
0.1 & 0.3 & 0.2 & 0.4 \\
0.1 & 0.4 & 0.2 & 0.3 \\
0.2 & 0.1 & 0.5 & 0.2 \\
0.3 & 0.1 & 0.4 & 0.2
\end{array}\right] \quad V(T(L 1))=\left[\begin{array}{llll}
0.1 & 0.3 & 0.2 & 0.4 \\
0.1 & 0.3 & 0.2 & 0.4 \\
0.1 & 0.2 & 0.3 & 0.4 \\
0.1 & 0.2 & 0.3 & 0.4
\end{array}\right]
\end{gathered}
$$

The bound does not change...

Improving the bound-example

Assume now one have improved the first row and we have got the same vector of probability for the paths: $[0.1,0.1,0 ., 0.1]$.

$$
\begin{gathered}
L 2=\left[\begin{array}{cccc}
0.2 & 0.4 & 0.2 & 0.2 \\
0.1 & 0.4 & 0.2 & 0 . \\
0.2 & 0.1 & 0.5 & 0.2 \\
0.2 & 0 & 0.4 & 0
\end{array}\right] \\
T(L 2)=\left[\begin{array}{llll}
0.2 & 0.4 & 0.2 & 0.2 \\
0.1 & 0.4 & 0.2 & 0.3 \\
0.2 & 0.1 & 0.5 & 0.2 \\
0.2 & 0 . & 0.4 & 0.4
\end{array}\right] \quad V(T(L 2))=\left[\begin{array}{llll}
0.2 & 0.4 & 0.2 & 0.2 \\
0.1 & 0.4 & 0.2 & 0.3 \\
0.1 & 0.2 & 0.4 & 0.3 \\
0.1 & 0.1 & 0.4 & 0.4
\end{array}\right]
\end{gathered}
$$

The bound is now much better than the original one.

Graph techniques to find L

- $\mathbf{x}=B\left(\sum_{i=0}^{\infty} D^{i}\right) C$: sum of probability of paths leaving E (i.e. matrix B) and returning into E (matrix C) after an arbitrary number of visits inside E^{c} (matrix D).
- We select some paths instead of generating all of them.
- Well-known graph algorithms (Shortest Path, Breadth First search) to select some paths and compute their probability.

Some Details about Paths and Probability

- BFS: only takes into account the number of states in a path.
- Give a depth for the analysis tree.
- The probability of a path is the product of the probability of the arcs.
- SP: the weight of a an arc is equal to $-\log (P(i, j))$.
- Thus the SP according to this weight is the path with the highest probability.

Taking Self-Loops into account

- Let \mathcal{Z} be a path selected by the algorithm, p its probability and x a node of \mathcal{Z}.
- If there is a self loop in x (i.e. $P(x, x)=q>0$), consider $\mathcal{L}_{i}=\mathcal{Z}+i$ loops in state x (for an arbitrary $i>0$).
- \mathcal{L}_{i} has probability $p q^{i}$.
- \mathcal{L}_{i} is also a path which can be aggregated to \mathcal{Z} in the analysis and the global probability is $p /(1-q)$.
- The algorithm computes the probability of the path and the list of self loops (with their probability) along the path.

Open Questions I

- BFS, DFS, Random Search: which strategy is the best one (i.e. more accurate) in the path selection Algorithm?
- Is DPY optimal when we only know A and C ?
- If D has several connected component, we can improve DPY.
- Proof that the CMC is the chain with immediate transitions in E^{c} (see Donatelli in Qest06: GSPN with immediate transitions). Links with the theory of Markov chains with fast transitions developped by Markovski in Epew06 and 07 ?

Open Questions II

- Accuracy of the bound for $\operatorname{Pr}(A)$: not bounded.
- With a simple Birth and Death process, we can build a chain where $\operatorname{Pr}(A)$ is not lower bounded and inside A the steady-state probability is decreasing with any rate <1.
- Adding information for D to bound $\operatorname{Pr}(A)$?
- Type of information we can add in the model: number of strongly connected component, rank ?

[^0]: ${ }^{\text {a }}$ A partir des résultats de N. Pekergin, S. Younès, T. Dayar, L. Truffet, beaucoup d'autres, et un peu moi

