CSL^{LHA}: an Expressive Language for Statistical Verification of Stochastic Models

> ¹LACL, Univesrité Paris-Est Créteil ²LSV, ENS-Cachan

what is this presentation about?

- we introduce a new methodology for the automatic verification of stochastic models
- principal features are:
 - highly expressive formalism which allows for capturing sophisticated dynamics/measures of a model
 - making stochastic model checking leaning towards performance evaluation
 - formalism uses Linear Hybrid Automata as a means to expresses the properties/measures of interest
 - the verification/estimation procedure is statistical (simulation based), thus not affected by state-space-explosion problem

Outline

Stochastic Logics

CSL^{LHA}

Software support for CSL^{LHA}

Discrete Event Stochastic Process

an abstraction whereby a real system is represented in terms of:

- **states:** enumerable set of states $S = \{s_0, \ldots, s_n \ldots\},\$
- events: finite set of events $E = \{e_0, \dots, e_m\}$; occurrence time is driven by a probability distribution

Discrete Event Stochastic Process

an abstraction whereby a real system is represented in terms of:

- **states:** enumerable set of states $S = \{s_0, \ldots, s_n \ldots\},\$
- events: finite set of events $E = \{e_0, \ldots, e_m\}$; occurrence time is driven by a probability distribution

Discrete Event Stochastic Process

an abstraction whereby a real system is represented in terms of:

- **states:** enumerable set of states $S = \{s_0, \ldots, s_n \ldots\},\$
- events: finite set of events $E = \{e_0, \ldots, e_m\}$; occurrence time is driven by a probability distribution

• path: a (possibly infinite) sequence of events occurrences

Stochastic Logic

basic idea: to extend reasoning of classical temporal logic (LTL/CTL) to stochastic models models

- syntax based: properties are expressed in terms of a formula
 - Continuous Stochastic Logic (CSL); [Aziz 2000]
 - action-state Continuous Stochastic Logic (asCSL); [Baier et al. 2004]
 - Continuous Stochastic Reward Logic (CSRL); [Baier et al. 2000]
- automata-based: properties are expressed in terms of an automaton
 - Continuous Stochastic Logic Timed Automata (CSL^{TA}); [Haddad et al. 2007]
 - CTMC model checking against Deterministic Timed Automata; [Katoen et al. 2009]

Stochastic Logic

basic idea: to extend reasoning of classical temporal logic (LTL/CTL) to stochastic models models

- syntax based: properties are expressed in terms of a formula
 - Continuous Stochastic Logic (CSL); [Aziz 2000]
 - action-state Continuous Stochastic Logic (asCSL); [Baier et al. 2004]
 - Continuous Stochastic Reward Logic (CSRL); [Baier et al. 2000]
- automata-based: properties are expressed in terms of an automaton
 - Continuous Stochastic Logic Timed Automata (CSL^{TA}); [Haddad et al. 2007]
 - CTMC model checking against Deterministic Timed Automata; [Katoen *et al.* 2009]

important points about above logics:

- limited to CTMCs models
- designed for application of numerical methods for CTMC analysis
- solution algorithms are affected by state-space explosion

Continuous Stochastic Logic

CSL syntax

$$\begin{split} \phi &:= a \mid tt \mid \neg \phi \mid \phi \land \phi \mid \mathcal{S}_{\sim p}(\phi) \mid \mathcal{P}_{\sim p}(\varphi) & \text{(state-formulae)} \\ \varphi &:= X^{I} \mid \phi \mid \phi \mid U^{I} \phi & \text{(path-formulae)} \end{split}$$

 $a \in AP$ (Atomic Propositions), $I = [t_1, t_2] \subseteq \mathbb{R}_{\geq 0}, \sim \in \{\leq, <, >, \geq\}$ and $p \in [0, 1]$

σ ⊨ (φ U^Iψ) ⇔ if a FUTURE state (σ[i]) satisfying ψ is reached within I through a sequence of φ-states

- in general a logic formula φ shall allow to reason about any/all of the following:
 - state labels: $L(s_i)$
 - transition labels (actions): a_i
 - transition durations: τ_i
 - state/transition rewards (if supported)

what type of properties can we characterize through stochastic temporal logics ?

- reachability (CSL)
- sequential reachability (asCSL)
- multiple-bounded sequential reachability (single-clock automata CSL^{TA})
- conjunction of multiple-bounded sequential reachability (multiple-clock automata DTA-CSL)

reachability [CSL]: reasoning about state-labels + single-time-bound

 \Rightarrow "reaching a fail state at time point $t \in [2,5]$ remaining in work-states until that point"

• reachability [CSL]: reasoning about state-labels + single-time-bound

 \Rightarrow "reaching a fail state at time point $t \in [2,5]$ remaining in work-states until that point"

 sequential reachability [asCSL]: reasoning about state/action labels + single-time-bound

 \Rightarrow "reach a fail-state within 2 and 5 time units passing through a sequence of work-states followed by degr-states"

 multiple-bounded sequential reachability [CSL^{TA}]: reasoning about state/action labels + multiple-time-bounds

 \Rightarrow "pass from work states to degr within [0,5] time units and then from degr to Fail states within [3,9] time units"

11

 multiple-bounded sequential reachability [CSL^{TA}]: reasoning about state/action labels + multiple-time-bounds

 \Rightarrow "pass from work states to degr within [0,5] time units and then from degr to Fail states within [3,9] time units"

 conjunction of multiple-bounded sequential reachability [CSL^{DTA}]: reasoning about state/action labels + independent-time-bounds

 Φ : "process P_1 will **FAIL** going from WORK1-to-DEGR1 states within 5 time units and then from DEGR1-to-FAIL1 within [3, 9] time units **AND** process P_2 will **FAIL** going from WORK2-to-DEGR2 states within 7 time units and then from DEGR2-to-FAIL2 within [4, 10] time units"

Reward-based reasoning

• **Rewards**: real-valued functions of a model state (state-rewards) or transition (transition-reward)

 reward-based reasoning: temporal-reasoning + conditions on the reward accumulated

- CSRL [Baier et al. 2000]: CTMC + state-reward structure ($\rho : S \to \mathbb{R}^+$)
 - CSL path-operators with time-bounds + reward-bounds
 - (Φ U^I_JΨ): reach a Ψ-state (through Φ-states) within t ∈ I and so that average reward cumulated spending time in Ψ-states is in J.
 - → reward-analysis based on CTMC transient-analysis and steady-state analysis

Taxonomy of stochastic logics

	CSL	CSRL	asCSL	CSL ^{TA}	DTA-CSL	
formalism	syntax	syntax	reg. expr.	1-clock	N-clock	
			on action/state	timed automata	timed automata	
reachability	YES	YES	YES	YES	YES	
reward-bounded	NO	YES	NO	NO	NO	
reachability						
sequential reachability	NO	NO	YES	YES	YES	
multiple-bounded	NO	NO	NO	YES	YES	
sequential reachability						
nested-UNTIL and	NO	NO	NO	NO	YES	
conjunction of multiple						
sequential reachability						
rewards	NO	YES	NO	NO	NO	
type of model	CTMC	CTMC +	CTMC	CTMC	CTMC	
		state reward				
numerical solution	YES	YES	YES	YES	YES	
statistical solution	YES ¹	YES	N/A	N/A	N/A	

¹ only on sub-logic with no-nested path-operators

Outline

Stochastic Logics

 $\mathsf{CSL}^{\mathsf{LHA}}$

Software support for CSL^{LHA}

CSL^{LHA}: going beyond probabilistic verification

- with existing Probabilistic Model Checking:
 - (only) evaluation of the probability of (possibly reward-bounded²) conditions
 - CTMC models
 - mostly Numerical (i.e. state-space explosion problem)

- with CSL^{LHA}
 - evaluation of the conditional expectation of "sophisticated" random variables (including Binomial ones)
 - any type of Discrete Event Stochastic Process
 - no state-space explosion problem (simulation based verification)
- how do we achieve that? through Linear Hybrid Automata

Deterministic Timed Automata

 \iff (WORK $U^{[3,9]}$ FAIL)

- DTA: a machine that reads in paths $\sigma = s_0 \stackrel{a_0, \tau_0}{\rightarrow} s_1 \stackrel{a_0, \tau_0}{\rightarrow} \dots$
- locations labeled with state formula ; *n*-tuple $X = (x_1, \ldots, x_n)$ of *clock variables*
- transitions: $l \xrightarrow{\gamma, A, r} l'$

- A : a set of actions or √
- a (possibly empty) set of clock resets

autonomous edge $\Leftrightarrow A = \sqrt{}$ synchronizing edge $\Leftrightarrow A \neq \sqrt{}$

auton-edges have precedence on synch-edges

Deterministic Timed Automata

 $\Rightarrow \qquad (WORK U^{[3,9]} FAIL)$

- reading of a path through synchronization with the automaton
 - path σ is accepted if it leads to a final location of the automata
 - path σ is rejected if synchronization blocks without reaching a final location

because of the Determinism of the automata, reading of a path is guaranteed to terminate

a DESP-transition corresponds to several DTA-auton-transitions preceeded/followed by the corresponding DTA-synch-transition

From DTA to Linear Hybrid Automata

- LHA: a generalization of DTA
- *n*-tuple $X = (x_1, \ldots, x_n)$ of real-valued *data variables*
- a variable's flow:
 - depends on the location
 - can be a real-valued constant or a real-valued function of a DESP state
- transitions: $l \xrightarrow{\gamma, A, r} l'$
 - γ : a constraint as linear function of variables' value $\bigwedge_j (\sum_{1 \le i \le n} \alpha_i x_i \sim c) \sim \in \{<, \le, \ge, >\}, =$

• u: variable update (linear function) $u_k(X) = \sum_{1 \le i \le n} \alpha_i x_i + c$

17

Modelling with LHA variables

LHA variables can be used to model several things including: timers, state-rewards, transition-rewards

- x₁ : transition-reward
- zero-flow in every location
- update: function of synch-action (increment if event-counter)
- x_1 : state-reward
- flow: function of a DESP-state-indicator
- x₁ : timers
- flow: normally in $\{1, 0, -1\}$
- no update

LHA Path-Variables

- a path-variable Y is a random variable corresponding to a synchronizing-path of an LHA
 - $Y \equiv last(x_i)$ the last value of x_i along the synchronizing path
 - $Y \equiv min(x_i)$ the minimal value of x_i along the synchronizing path
 - $Y \equiv avg(x_i)$ the average value of x_i along the synchronizing path
 - $Y \equiv var(x_i)$ the variability of the value of x along the synchronizing path
 - $Y \equiv corel(x_i, x_j)$ the correlation between the value of x_i and x_j along the synchronizing path.

• path-variables are evaluated *on-the-fly* on generation of a $(\mathcal{D} \times \mathcal{A})$ -path

CSL^{LHA}model checking

- input: an LHA + a Path-Variable Y
 - model: a DESP
 - formula: an LHA + a Path-Variable Y
 - confidence-level: ϵ ; approximation (interval-width): δ ;
- **output**: confidence interval of the conditional-expectation $E[Y|\mathcal{A}]$

Running example

- infinite-state DESP
- Arrivals~ *Exp()*; Services~ *Unif()*
- immediate-transitions (*Start*₁,*Start*₂) have weights w_1 and w_2 and equal priorities

Example 1: utilization difference measures

after 10 times the resource has been used, P_1 -processes have used longer the resource than P_2 's

- x₀ (overloaded variable): service counter (transition reward) before acception; bernoulli variable (on acceptance)
- x₁: timer, difference between occupation time by P₁ and P₂
- last(x₀) : probability that the shared resource is used longer by P₁-processes than by P₂'s.
- last(x1) : difference between the utilization time of P1 and P2 processes
- $avg(x_1)$: (resp. $min(x_1)$ average value (resp. minimum) of such difference

Example 2: average waiting time til *k* departures

- $x_1 : P_1$ -processes cumulative waiting time (state-reward variable)
- x_2 : number of P_1 -processes that have used the resource (transition-reward variable)
- $last(x_1/x_2)$: (Sup of the) average waiting time (until k P_1 -departures)

Taxonomy of stochastic logics

	CSL	CSRL	asCSL	CSLTA	DTA-CSL	CSL ^{LHA}
formalism	syntax	syntax	reg. expr.	1-clock	N-clocks	LHA
			on action/state	DTA	DTA	
reachability	YES	YES	YES	YES	YES	YES
reward-bounded	NO	YES	NO	NO	NO	YES
reachability						
sequential reachability	NO	NO	YES	YES	YES	YES
multiple-bounded	NO	NO	NO	YES	YES	YES
sequential reachability						
nested-UNTIL and	NO	NO	NO	NO	YES	YES
conjunction of multiple						
sequential reachability						
rewards	NO	state-only	NO	NO	NO	YES
type of model	CTMC	CTMC +	CTMC	CTMC	CTMC	DESP
		state reward				
numerical solution	YES	YES	YES	YES	YES	NO
statistical solution	YES ³	YES	N/A	N/A	N/A	YES

 $^{3}\ensuremath{\text{only}}$ on sub-logic with no-nested path-operators

Outline

Stochastic Logics

CSL^{LHA}

Software support for CSL^{LHA}

COSMOS: a software tool for CSL^{LHA} analysis

implemented in C++

- inputs:
 - a DESP expressed as a GSPN (with generally distributed timed transitions)
 - an LHA + a path-variable Y + confidence level (ϵ) + approximation level (δ)

output: iterative computation of confidence interval estimation of the E[Y|A]

Some experiments with COSMOS

assessing resource occupation based measures as a function of the arrival-rate λ_2 (arrival of P_2 -processes)

time bound $I = [\alpha, \alpha]$, x_0 : real-time; x_1 : occupation divergence timer; acceptance condition: $x_1 > 0$) \land $(x_0 \in [\alpha, 2\alpha])$

- $\Phi_1 \equiv E[success|(x_1 > 0) \land (x_0 \in [\alpha, \alpha])]$ probability that Res used longer by P_1 -processes
- $\Phi_2 \equiv E \left[max(x_1) | (x_1 > 0) \land (x_0 \in [\alpha, \alpha]) \right]$ maximum occupation time divergence
- $\Phi_3 \equiv E \left[avg(x_1) | (x_1 > 0) \land (x_0 \in [\alpha, \alpha]) \right]$ average occupation time divergence

Conclusion

CSL^{LHA} a logic for stating complex temporal properties of stochastic models

- it unifies expressive temporal reasoning with reward based analysis (concept of conditional expectation)
- it naturally leans towards a Perfomance Evaluation model checking approach
- it targets DESP models (not only Markovian)
- it uses a statistical (simulation based) approach to estimate measure of interest
- it does not suffer of state-space-explosion
- software support available (prototype)

Future developments

- tool: code-optimization (on-going); GUI development (yet to start)
- optimization of the simulation process wrt rare-events
- ...

THANK YOU FOR YOUR ATTENTION

REFERENCE: TechReport=TR-LACL-2010-8, author = P. Ballarini, H. Djafri, M. Duflot, S. Haddad, N. Pekergin. title = CSL^{LHA}: an Expressive Language for Statistical Verification of Stochastic Models. institution = LACL (Laboratory of Algorithms, Complexity and Logic), University of Paris-Est (UPEC), year = 2010, number = TR-LACL-2010-8, PDF = http://lacl.u-pec.tr/Rapports/TR/TR-LACL-2010-8.pdf

acknoweldgements: this work has been partially funded by the ANR Checkbound project