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delrabih@univ-paris12.fr
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Model checking of probabilistic models can be done either by numerica l analysis or by simulation and
statistical methods. In this paper, we compare the efficiency and t he scalability of different model checking
approaches when they are applied to the verification of steady-st ate properties of large models. We
provide an experimental comparison study between the statistica l model checking using perfect sampling
implemented in Ψ

2 [15] and proposed in [11, 10] and the numerical method implemente d in PRISM [6], for
the verification of CSL [2] steady-state properties. We show tha t the proposed statistical approach lets us to
consider very large models.
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1. INTRODUCTION

Model Checking is a technique for automated
verification of software, hardware and network
systems. It has been introduced to verify functional
properties of systems expressed in a formal logic
like Computational Tree Logic (CTL). It is done
by accepting as input system models and the
properties or specifications that the final system
is expected to satisfy and by giving outputs Yes
if the given model satisfies given specifications
and No otherwise. Probabilistic model checking is
an extension for the formal verification of systems
exhibiting stochastic behavior. The system model
is usually specified as a state transition system,
with probability values attached to transitions, for
example Markov Chains. ¿From this model, a wide
range of quantitative performance, reliability, and
dependability measures of the original system can
be computed. These measures can be specified
using temporal logics as PCTL for Discrete Time
Markov Chains (DTMC) and CSL for Continuous
Time Markov Chains (CTMC). These temporal logics
are extensions of the Computational Tree Logic
(CTL) [3]. The underlying stochastic models which
are usually Markov chains is defined by a high-level
formalisms such as stochastic Petri nets, stochastic

process algebras, and queueing networks, a finite-
state model of a real-life system. We consider
queueing networks as high level formalism for the
case studies in this paper.

There are two distinct approaches to perform
probabilistic model checking: Numerical techniques
based on computation of transient-state or steady-
state distributions of the underlying Markov chain
and statistical techniques based on hypothesis
testing and on sampling by means of discrete event
simulation or by measurement. In fact, numerical
approach is highly accurate but it suffers from state
space explosion problem while statistical approach
can overcome the state space explosion problem
but it provides verification results with probabilistic
guarantees of correctness. Thus statistical model
checking techniques can be seen as an alternative
to numerical techniques and they can be applied
when it is infeasible to use numerical techniques.
In the last years, different statistical model checkers
have been proposed [12, 17, 13] especially for
properties specified by time-bounded until formulas.
Moreover, the statistical model checker MRMC
[8] has been proposed and extended to support
the statistical model checking of CSL steady-state
property. For this formula the probability is estimated
based on steady-state simulation of bottom strongly
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connected components (BSCCs) and estimates for
the probabilities to reach those BSCCs. On the
other hand, for numerical techniques, the PRISM
numerical model checker [6] is largely used. It
makes use of symbolic data representation in
order to reduce memory requirements for numerical
techniques and it supports the verification of CSL
steady-state property.

In [5] numerical and statistical techniques have been
compared when they are applied to the verification
of time-bounded until formulas in the temporal
stochastic logic CSL. In this work, we compare
the efficiency of the numerical model checking
implemented in PRISM tool [6] and our statistical
model checking approach proposed in [11, 10] which
combines perfect sampling and statistical hypothesis
testing to study the steady-state properties of large
Markovian models. The significant advantage of
perfect sampling is that it provides an unbiased
sampling of the steady-state distribution, hence the
accuracy of the verification result only belongs to
the statistical testing. In other words, we ensure the
correctness of our results considering a specified
precision level.

This paper is organized as follows: Section 2 briefly
presents the temporal logic CSL. In section 3 we
present our proposed approach based on perfect
sampling. We give a brief introduction of the studied
tools in section 4. Section 5 is devoted to the
case studies. First we present the models and
their validation. Next, we compare and analyze the
results of our experiments. Finally, in section 6 we
summarize the conclusions and provide the future
works.

2. CSL MODEL CHECKING

The Continuous Stochastic Logic (CSL) is a
branching-time temporal logic with state and path
formulas over CTMCs [2]. Thus it is useful to
specify performance and dependability measures as
logical formulas over CTMCs. We consider indeed a
labelled CTMC defined over a finite state space X .
Let AP denote the finite set of atomic propositions.
L : X → 2AP is the labeling function which assigns
to each state s ∈ X the list of atomic propositions
satisfied in this state. Intuitively speaking, when the
system is in state s, the properties defined by the
set of atomic propositions L(s) assigned to this state
are satisfied. The satisfaction operator is denoted by
|=, then for all state s ∈ X , s |= true. Atomic
proposition a is satisfied by state s (s |= a) iff
a ∈ L(s). The logic operators are obtained using
standard logic equivalence rules : s |= ¬ϕ iff s 6|=
ϕ, s |= ϕ1 ∧ φ2 iff s |= ϕ1 ∧ s |= ϕ2.

We give here only the steady-state operator that
will be used in this paper. The steady-state operator
(formula) S⊲⊳θ(ϕ) lets us to analyze the long-run
behaviour of the system where θ is a probability
threshold, ⊲⊳ a comparison operator, for example
⊲⊳∈ {<,>,≤,≥}, ϕ is a state formula. In this work,
we consider ergodic CTMCs, hence there is unique
steady-state distribution independent of the initial
state. Contrary to the model checking formalism, the
satisfaction property is assigned to the model but
not to an inital state. We check if the underlying
model M satisfies the steady-state property or not.
M |= S⊲⊳θ(ϕ), if the property specified by the steady-
state operator S is satisfied by the model M . Note
that for a steady-state property ψ = S≥θ(ϕ), the
verification of S≥θ(ϕ) is the same as S≤1−θ(¬ϕ) and
also is the same as ¬S<θ(ϕ).

3. STATISTICAL MODEL CHECKING BY
PERFECT SAMPLING

In statistical model checkers, it is generally focused
on the time-bounded until formulas. Recently, we
have proposed to statistically check steady-state
properties by means of perfect sampling and
hypothesis testing [10, 11]. In this section, we briefly
present how sample paths are generated and tested
for the statistical model checking of the steady-state
formula ψ = S≥θ(ϕ).

3.1. Perfect Sampling

Let {Xn}n∈N
be an irreducible and aperiodic discrete

time Markov chain with a finite state space X and a
transition matrix P = (pi,j). Let π denote the steady
state distribution of the chain: π = πP . The evolution
of the Markov chain can always be described by a
stochastic recurrence sequence

Xn+1 = η (Xn, en+1) (1)

with {en}n∈Z
an independent and identically dis-

tributed sequence of events en ∈ E , n ∈ N. The
transition function η : X × E → X verifies the
property that P (η(i, e) = j) = pi,j for every pair of
states (i, j) ∈ X × X and a random event e ∈ E .
An execution of the Markov chain is defined by an
initial state x0 and a sequence of events {en}n∈Z

.
The sequence of states {xn}n∈Z

defined by equation
(1) is called a trajectory.

Trajectories are generated with the same sequence
of events {en}n∈Z

. If at time t, two trajectories are
in the same state, we say that they couple. Propp
and Wilson [9] have introduced the perfect/exact
sampling method which is based on a backward
coupling, also called coupling from the past: By
coming from a distant time −τ sufficiently far in
the past, if all trajectories (trajectories that come
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Algorithm 1 Backward monotone steady-state
property-sampling of a Markov chain

Require:
η a monotone transition function
{en}n≤0 a backward event process
{This sequence is previously given or built as the
execution of the algorithm}
M the set of extremal elements of the state
space X
rϕ the reward function associated to the checked
property ϕ

1: n ← 0
2: repeat
3: {Start from the past at time −2n }
4: Z ← M
5: for i = −2n + 1 downto 0 do
6: Z ← η(Z, ei) ;
7: end for
8: { η(2

n)(X , e−2n+1→0) ⊂ Z the bounding set of
all possible states at time 0 knowing the event
process starting at time −2n }

9: n = n+ 1
10: until |rϕ(Z)| = 1
11: return rϕ(Z) { rϕ(Z) is reduced to one value, 0

or 1 }

from all possible initial states in X at time −τ ) are
coupled before time 0 then the sampled state at time
0 is exactly distributed according to the stationary
distribution.

Definition 1 Given a partial order � on X , an event
e is said to be monotone if it preserves the partial
ordering � on X . That is

∀(x, y) ∈ X x � y ⇒ η(x, e) � η(y, e)

If all events are monotone, the global system is said
to be monotone.

According to an order � on X , there exists a set
M� ⊂ X of extremal states (maximal and minimal
states). When a Markov chain is monotone, all
trajectories issued from X are always bounded by
trajectories issued from M�. Thus, it is sufficient to
compute trajectories issued from M� since when
they couple, global coupling also occurs. As the size
of M� is usually drastically smaller than the size
of X , monotone perfect sampling [9] significantly
improves the sampling time.

Efficiency of simulations is also improved by
functional perfect sampling [16]. The algorithm
sample a reward value, according to a user defined
reward function r : X → R; The algorithm then
stops when all trajectories are in a set of states at
time 0 that belong to the same reward value (going
further in the past will inevitably couple in a state that

belong to this reward value). To combine monotone
and functional perfect sampling, the reward function
r must be monotone, that is x � y ⇒ r(x) � r(y). As
|R| is smaller than |X |, this technique may lead to an
important reduction of the coupling time.

Algorithm 1 is the perfect sampling algorithm that
we use in this paper for steady-state property
verification. It combines the monotone and functional
techniques explained above. The main loop follows
a doubling period scheme to find a time −τ
sufficiently far so that coupling occurs (Propp and
Wilson have shown that doubling period scheme
provides a better mean complexity). In a property
verification context, we focus on reward functions
that correspond to properties we want to check, so
that R = {0, 1}. In Figure 1, we show an illustration
of the behaviour of algorithm 1. In this example, like
in case studies of section 5, the set of extremal states
is composed of one maximum and one minimum;
M = {Max,Min}.

Note that, as the reward function is monotone, values
0 and 1 cover contiguous zones of the state-space.
Then, an interesting phenomenum happens when
the property to be checked has a small set of positive
states {x ∈ X |rϕ(x) = 1} (ϕ corresponds to a
rare property / event): coupling frequently occurs
in reward value 0 and the coupling time is very
short (the time needed by the trajectory issued from
Max to decrease until it leaves the ”positive zone”).
Moreover, if |{x ∈ X |rϕ(x) = 1}| does not depend
on |X | (case of saturation properties for example),
then the performance of algorithm 1 will be as good
for very large state-spaces as for small ones. This
intuition is validated by results of section 5.

Figure 1: Example of a backward monotone steady-state
property-sampling

3.2. Statistical hypothesis testing

The probabilistic model checking consists in deciding
whether the probability that the considered system
satisfies the underlying property ϕ meets a given
threshold θ or not. Let p be the probability that the
system satisfies ϕ, then the verification problem of
ψ = S≥θ(ϕ) where ϕ is for example the availability
property of a network system, can be formulated
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as an hypothesis testing: H : p ≥ θ against the
alternative hypothesis K : p < θ. In fact, the
strength of the statistical test was determined by two
parameters: α and β, where α is a bound on the
probability of accepting K when H holds (known as
a type I error, or false negative) and β is a bound on
the probability of accepting H when K holds (a type
II error, or false positive).

In practice, two thresholds, p0 and p1 are defined in
terms of the probability threshold, θ, and the half-
width δ of the indifference region: p0 = θ + δ and
p1 = θ − δ. Then instead of testing H : p ≥ θ against
K : p < θ, we test H0 : p ≥ p0 against H1 : p ≤ p1.
Suppose that we have generated n samples, and a
sample Xi is a positive sample (Xi = 1) if it satisfies
ϕ and negative (Xi = 0) otherwise. Xi is a random
variable with Bernoulli distribution with parameter p.
Thus the probability to obtain a positive sample is p.

Single Sampling Plan (SSP): It is based on the
acceptance sampling with fixed sample size and with
a given acceptance strength (α, β). If

∑n
i=1Xi ≥ m,

thenH0 is accepted otherwiseH1 is accepted, where
m is the acceptance threshold. The hypothesis H1

will be accepted with probability F (m,n, p) and
the null hypothesis H0 will be accepted with the
probability 1 − F (m,n, p), where F (m,n, p) is a
binomial distribution: F (m,n, p) =

∑m
i=1 C(n, i)p

i(1−
p)n−i with C(n, i) is the combination of i from n. It is
required that the probability of acceptingH1 whenH0

holds is at most α, and the probability of accepting
H0 when H1 holds is at most β. These constraints
can be illustrated as below:

• Pr[H1 is accepted | H0 is true] ≤ α which
implies F (m,n, p0) ≤ α (C1)

• Pr[H0 is accepted | H1 is true] ≤ β which
implies 1− F (m,n, p1) ≤ β (C2)

The number of samples n and the acceptance
threshold m must be chosen under these constraints
and their approximation formulas are given in [19].

3.3. Verification of steady-state properties

We have as input parameters: the model defined by
a labelled CTMC, M , the property ϕ (to be verified
on each sample). Formally, the steady-state property
is specified ψ = S≥θ(ϕ). Moreover, the threshold
parameter θ, the indifference region parameter δ, α,
β for the strength of statistical hypothesis testing are
the other input parameters.

We propose to apply functional perfect sampling
(Algorithm 1, Figure 1), so at time 0, we test if the
rewards are coupled at reward 0 or 1. In other words,
we test if it is a positive or negative sample. Thus we
associate the reward rϕ(x) to each state x ∈ X for

the given property ϕ:

rϕ(x) = 1, if x |= ϕ (2)

rϕ(x) = 0, otherwise x 6|= ϕ

On the other hand, the statistical decision method
we use when performing our statistical hypothesis
testing on generated samples for the steady state
formulas is inspired from the Single Sampling Plan
(SSP) method. In SSP method the number of
samples n and the acceptance threshold m will be
computed by using the approximation formulas given
in [19]. In fact, this decision method tests if ϕ is
verified (positive sample) or not (negative sample)
on each generated sample path, when counting
the number of positive samples. Then it provides
decision either Yes if the number of positive samples
is greater or equal to m (ψ is satisfied) or No
otherwise (ψ is not satisfied).

4. TOOLS

4.1. Probabilistic Symbolic Model Checker:
PRISM

PRISM [6] is a largely used probabilistic model
checker developped at the University of Birming-
ham (http://www.prismmodelchecker.org/). It sup-
ports three types of probabilistic models: discrete-
time Markov chains (DTMCs), continuous-time
Markov chains (CTMCs) and Markov decision pro-
cesses (MDPs). PRISM has been used to analyse
systems from a wide range of application domains,
including communication and multimedia protocols,
randomised distributed algorithms, security proto-
cols, biological systems and many others. Models
are described using the PRISM language, a high
level language. PRISM supports automated analysis
of a wide range of quantitative properties of these
models. In fact, the property specification language
incorporates the temporal logics PCTL, CSL. In ad-
dition, PRISM incorporates symbolic data structures
and algorithms used for state space representation,
based on BDDs (Binary Decision Diagrams) and
MTBDDs (Multi-Terminal Binary Decision Diagrams).
For numerical computation, PRISM includes three
separate engines making varying use of symbolic
methods. These engines use different data struc-
tures: The first engine generates an MTBDD to
represent the transition matrix, the sparse engine
permits to convert the transition matrix to a sparse
matrix. The hybrid engine is generally faster than
MTBDD one, and while handling larger systems is
expected to be faster and to consume less memory
than sparse matrices, and hence is the one used in
this paper. The user interface and parsers of PRISM
are written in Java; the core algorithms are mostly
implemented in C++. It also features discrete-event
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simulation functionality for generating approximate
results to quantitative analysis but it does not support
steady-state properties.

We represent in Figure 2, a simplified architecture of
the PRISM tool. As input the PRISM engine takes
the model file (DTMC, CTMC) and the property
specification file (PCTL, CSL). This engine performs
numerical computation of the probability p that we
look for by solving a numerical equations system,
then it compares the computed probability p to the
property threshold, θ and then it generates an output
file containing the model checking decision (True,
False) and a log file containing the model checking
time (VT) in seconds and the memory consumption
(VSZ) in Kbytes.

Figure 2: The PRISM Tool

4.2. Perfect Sampler 2: Ψ2

Ψ2 [15], a performance evaluation software
developed by MESCAL INRIA/LIG team
(http://psi.gforge.inria.fr/website/Psi2-Unix-
Website/Introduction.html), lets us to estimate
steady-state properties of various finite capacity
queueing networks. Based on Algorithm 1 and
written in C, it builds independent samples of
stationary rewards of the underlying CMTC.
Queueing systems description is based on an events
library which is continually improved by the MESCAL
team. All events of this library are monotone. Typical
events of queueing networks are client arrivals,
end of services and routing from one queue to
another. Complex routing strategies had been
captured in a common framework, based on index
functions [14], so that a large scope of monotone
queueing networks can be studied. Moreover,
the sandwiching principle of monotone backward
coupling had been generalized to non-monotone
queueing networks (envelopes techniques [1])
and implemented in Ψ2. Ψ2 has been used in
various domains, including networks dimensioning,
telecommunications systems, resource brokering
problems, etc.

Ψ2 is well suited for probabilistic model checking,
and in particular for steady state formula verification,
since it provides an unbiased sampling of stationary
rewards and guarantees independence of samples.

It is specifically suited for rare event probability
estimation, as was ever done in [14].

We represent this tool in Figure 3. As input
the Ψ2 engine takes the model file (Queueing
network model) and the property specification file
(Reward function). This engine performs a statistical
hypothesis testing for the computed probability p
(number of positive samples over the total number
of samples). It compares the computed probability p
to the property threshold and it generates then an
output file containing the model checking decision
(True, False) and a log file containing the model
checking time (VT) in seconds.

Figure 3: The Ψ
2 Tool

5. EXPERIMENTAL COMPARISON STUDY

We now evaluate three case studies, taken from
Ψ2 and PRISM benchmarks, on which we will base
our performance and scalability comparison. In fact,
we verify the steady-state formula for these three
case studies using both the numerical (PRISM tool)
and the statistical approach (Ψ2 tool), by varying the
problem size (state space size related to the maximal
queue capacity). We illustrate the verification time
in seconds for these case studies, as a function
of the maximal queue capacity (state space size).
Since the considered Markovian models are ergodic,
thus the steady-state probabilities are independent
of the initial state. Thus, the considered steady-state
property is satisfied or not whatever the initial states.

5.1. Case studies

5.1.1. Tandem network
This model is taken from the Ψ2 benchmark and
we implemented it as a PRISM model. We consider
b finite buffers in tandem where each buffer is a
M/M/1/Nmax queue (Figure 4). This tandem network
is defined by an input Poisson process (rate λ) at
the first stage and by an exponential service rates
in each stage. Let µi be the service rate in stage
i. In fact, the end of service in stage i, 1 ≤ i ≤
b − 1 constitutes an arrival to stage i + 1. The
packet acceptance mechanism is the rejection: a
packet which arrives to a full buffer is lost. Denote
by Nmax the maximal capacity of each queue. The
state space associated to this tandem network is
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defined by (Nmax + 1)b. Three types of events occur
in this system : Arrival from exterior, end of service
in stage i and arrival to stage i + 1, and departure
to exterior after end of service in the last stage. The
monotonicity of these events is shown in [14]. Thus
this considered model is monotone.

Figure 4: Tandem network

Let Ni, 1 ≤ i ≤ b be the number of packets in
buffer i. Thus (N1, N2, · · · , Nb) is a CTMC of size
(Nmax + 1)b . In the sequel, we denote by s =
(n1, n2, · · · , nb) a state of this Markov chain. We
are interested in saturation properties in the last
stage and we can also conclude about availability
properties. Since all earlier stages must be taken into
account to compute saturation probabilities in the
last buffer b, we must consider whole Markov chain
of (Nmax + 1)b size. Thus the numerical complexity
to solve the underlying model increases rapidly with
Nmax. We define the following atomic proposition
related to buffer b : last-full is valid if the bth buffer
is full. Based on this atomic proposition, we check
the following steady-state formula: S≤θ (last-full) to
check whether the probability that buffer b is full in
steady-state is less than θ or not.

5.1.2. Multistage Delta Network (MDN)
In telecommunication networks, multistage models
are used for modelling switches. This model is taken
from the Ψ2 benchamrk and we implemented it as
a PRISM model. We show the monotonicity of this
model in the following. The considered model is a
delta network with y stages and z buffers at each
stage (Figure 5). Thus the total number of queues
(buffers) is b = y ∗ z. With Markovian arrival and
service hypothesis, the model can be defined as a
CTMC with a state vector (N1, N2, · · · , Nb) where Ni

is the number of packets in the ith queue. The size of
the state space is then (Nmax + 1)b, if the maximum
queue size is Nmax. We suppose an homogeneous
input trafic with arrival rate λ to the first stage and
service rate is µ in each queue. The routing policy
is rejection (packets are lost if the queue is full) and
at the end of a service in stage i the routing service
rates to stage i + 1 are (τrout1, τrout2) with 1 ≤ i ≤
y − 1. There are events (z external arrivals at the 1st

stage, z departures at the yth stage, 2 × z routing
events between stage i and stage i+ 1 with 1 ≤ i ≤
y− 1. The monotonicity of these events and thus the
monotonicity of this model has been shown in [14].
State labels are defined through atomic propositions
depending on the number of packets in queues. For
a given k ∈ {0, · · · , Nmax}, the atomic proposition
ai(k) is true if Ni ≥ k and false otherwise. For
example, ai (Nmax) is true if the ith buffer is full.

The underlying CTMC is labelled with these atomic
propositions depending on the considered property.
It is indeed possible to express different interesting
availability and reliability measures for the underlying
system by means of these atomic propositions. For
instance, with formula ψ=S<θ(ai (Nmax)) we can
check the saturation property in the ith buffer to see
whether the long run saturation probability of the ith

buffer is less than θ or not. This lets us also to check
the availability property, S>1−θ(¬ ai(Nmax)).

Figure 5: Multistage Delta network

We define the atomic proposition last-stage-full that
is valid if at least a queue at the second level is
saturated. Thus it is defined as the disjunction of
atomic propositions ai(Nmax), 4 ≤ i ≤ 7. Based
on this atomic proposition, we consider to verify the
following steady-state formula ψ = S<θ(last-stage-
full) that let us to study saturation or availability
properties (S>1−θ(¬ last-stage-full)).

5.1.3. Tandem Queueing Network with coxian
phase (TQN)
This model is taken from PRISM benchmark and we
implemented it as a Ψ2 model. The non-monotonicity
of this model is shown in the following. The system
consists of an M/ Cox2 /1 queue sequentially
composed with an M/M/1 queue (Figure 6). LetNmax

to be the maximal capacity of each queue then the
state space is O((Nmax + 1)2). Messages arrive at
the first queue with rate λ, and exit the system from
the second queue with rate κ. If the first queue is
not empty and the second queue is not full, then
messages are routed from the first to the second
queue. The routing time is governed by a two-phase
Coxian distribution with parameters µ1, µ2, and a.
Here, µi is the exit rate for the ith phase of the
distribution, and 1 - a is the probability of skipping the
second phase. Let xi ∈ {0, · · · , Nmax}, for i ∈ {1, 2},
denote the number of messages currently in queue
i, and xph ∈ {1, 2} denote the current phase of the
Coxian distribution. We define the atomic proposition
that the system is full with the formula sys-full =
(x1 = Nmax) ∧ (x2 = Nmax) ∧ (xph = 2).

Based on this atomic proposition, we check the
following Steady-state formula: S≤θ (sys-full) to
check whether the probability that the system is full
in steady-state is less than θ or not.
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Figure 6: Tandem queueing network with coxian phase

Implementation of Coxian events in Ψ2

In Ψ2, the evolution of the state of a Markov chain
is described by a sequence of events, that is arrival
of a client in a queue, routing to another queue,
end of service etc. In one state x of the Markov
chain, an event e models a transition to another state
x′ = η(x, e) where η is called the transition function
of the system.

To model a Coxian server with two phases, we
consider 3 events: phase 1 service d1, phase 1
service skipping the second phase d′1 and phase 2
service d2.

The implementation of a Coxian server in Ψ2 then
consists in encoding the transition function of these
three events in the Ψ2 event library. If the events are
monotone, the transition function is directly encoded
according to the dynamics of the system. However, if
an event is not monotone, non monotone techniques
such as defined in [1] must be involved.

Let X = {0, . . . , Nmax} × {1, 2} × {0, . . . , Nmax}
be the state space of the system, we consider the
component-wise partial ordering � on X . Given two
states x, y ∈ X , we have x � y iff x1 ≤ y1, xph ≤ yph,
x2 ≤ y2.

Unfortunately, in the case a cox-2 server, events
d′1 and d2 are non monotone, given the following
counterexamples :

η((6, 2, 4), d′1) = (6, 2, 4)

η((1, 1, 4), d′1) = (0, 1, 5)

η((4, 2, 1), d2) = (3, 1, 2)

η((4, 1, 0), d2) = (4, 1, 0)

In fact, the event d′1 (resp. d2) has no effect on a state
where the server is in phase 2 (resp. phase 1), and
the corresponding transition function is the identity
function. On another hand, the effect of the event on
a phase 1 state (resp. phase 2 state) is the move of
a client from Q1 to Q2, which increases the load of
Q2 (resp. decreases the load of Q1) and can result in
an order inversion on Q2 (resp. on Q1), as in above
counterexamples.

The events d′1 and d2 has been implemented in
Ψ2 by defining an envelope function for each one.

Nmax : Capacity of both the first and the second queue.
n : Number of samples.
|X | : State-space size.
k : number of classes used for the Chi-square test.
D : Chi-square computed distance.
χ2
(0.95,k−1) : 95-percentiles of the Chi-square distribution with k − 1

degrees of freedom.

Nmax n |X | k D χ2
(0.95,k−1)

2 10000 15 15 13.13 23.68
5 10000 66 66 70.07 84.82

10 10000 231 21 17.98 31.41

Table 1: Chi-square tests varying the capacity.
λ = 2, µ1 = 4, a =

1

2
, µ2 = 2, κ = 4

λ κ n |X | k D χ2
(0.95,k−1)

0.5 8 10000 66 6 5.04 11.07
8 0.5 10000 66 10 3.53 16.92

Table 2: Chi-square tests varying λ and κ.
µ1 = 4, a =

1

2
, µ2 = 2, Nmax = 5

The technical details of these envelope functions are
beyond the scope of this paper and it is explained in
a research report [4]. The interested reader can also
refer to [1] for a detailed introduction to the envelope
technique. Instead, in the next section, we prove
the validity of our implementation using classical
goodness-of-fit tests.

Model Validation

In this section, we assess the correctness of our
implementation of a two phases Coxian server in
Ψ2. The validation method is defined as follows: We
compute an empirical estimation of the stationary
distribution from a sample of size n, obtained with
Ψ2. Then, the resulting estimation is compared
with the exact stationary distribution. We use
PRISM (numerical method) to compute the exact
distribution, so that we also assess that the same
models are considered in both PRISM and Ψ2. We
use a Chi-square test to measure the fitting of a
Ψ2 sample with the theoretical expected distribution.
Details on the Chi-square test can be found in
[7]. Note that grouping into classes (the distance
between the estimated and theoretical distributions
is measured on groups of states) is needed for some
models, in particular when there are a lots of states
with a probability of almost 0.

Results of the Chi-square tests are reported in
Tables 1 and 2 for various values of the capacity of
queues, the arrival rate λ and the service rate κ.

In every cases, we have D < χ2
(0.95,k−1), so that

the Chi-square test tell us that samples obtained
with Ψ2 are statistically correct with a confidence
level of 95%. We also applied this validation method
to assess the correctness of our implementation of
Tandem network and of Multistage delta network
models in PRISM.

7
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5.2. Experimental setup

Tools and hardware settings The results were
generated on a 1.5 GHz Intel Core 2 Duo PC running
Linux, and with a 2 GB of RAM. The PRISM tool has
mainly two parameters ǫ : the desired convergence
error or precision; maxiternumber : the maximal
number of iterations to obtain the result with certain
precision. Ψ2 tool has four parameters Nsamp :
the desired number of samples; α : the desired
probability of false-positive answer for H.T. ; β : the
desired probability of the false-negative answer for
H.T. ; δ : the half width of the indifference region. In
fact, to match these tools parameters and in order to
have a fair comparison we take ǫ = 2.δ [18].

Timing In (probabilistic) model checking, two time
factors are of interest: the model construction time,
i. e. the time to build the internal representation
from the input model, and the model checking time,
i. e. the time to verify the property on the internal
representation. We mainly focused on the model
check time. In our comparison study, we use the
time as reported by the system command T ime (real
value).

Verification time precision All experiments were
repeated many times using shell scripts. An
experiment consists of verifying one property on one
particular model using one of the model checkers.
Each experiment was repeated 20 times, except that
experiments for which a single run took more than
30 minutes were repeated only three times. Thus,
from the collected data (runtime), we calculated
the mean and the standard deviation with 95% of
confidence level. Generally, the obtained precision
on the collected data will be greater or equal to 10−2.

Memory consumption In the case of the numerical
solution method, all experiments were run using
the hybrid engine which, although not necessarily
the fastest engine, in general allows the analysis of
larger problems than the other engines. The limiting
factor in the hybrid approach is the space required
to store the iteration vector, then the memory is
proportional to the number of states. On the other
hand, the memory requirements for the statistical
approaches are very conservative. In principle,
the current state is needed to be stored during
verification, which only requires memory logarithmic
in the size of the state space. Then memory is
never exhausted during verification when using the
statistical solution method.

5.3. Experimental results

Tandem network verification results
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Figure 7: Verification time as function of queue capacity
Nmax for S<0.001 (last-full) for x =4, ǫ = 10

−3/2 , and δ =
10

−3/4

For numerical application, we consider λ =0.9, all
service rates will be state-independent with rate µi =
1, 1 ≤ i ≤ b.

We give in Table 3 for b = 4, for θ = 0.001
and for ǫ = 10−3/2, ǫ = 2.10−4, and ǫ = 10−4,
the numerical verification time for the considered
steady-state formula S<θ (last-full) by using PRISM
Hybrid engine and Jacobi iterative method. Also we
give in the same table for b = 4, for θ = 0.001,
δ = {10−3/4, 10−4, 10−4/2} respectively, and α =
β = 10−2 the statistical verification time for the
same steady-state formula S<θ (last-full) by using
our verification method implemented in Ψ2 (section
3.3). Next we represent part of these results (Nmax ≤
99) in Figures 7, 8, and 9. In fact, for Nmax = 99 we
obtain an out of memory message with PRISM.

In all of the tables and figures we denote by:
PRISM : numerical model checking time in seconds
for the steady-state formula by using PRISM hybrid
engine.
PSI2 : statistical model checking time in seconds
for the steady-state formula by using our verification
method (section 3.3) implemented in Ψ2 engine.
outmem : an out of memory message in PRISM tool.
iterpr: a maximal iteration number problem (we
consider maxiternumber = 100000 in PRISM tool).

Multistage delta network (MDN) verification
results
For numerical application, we consider y = 2 stages
and z = 4 buffers/stage, λ = 0.9, µ = 1, (τrout1,
τrout2) = (0.8, 0.6). Note that, for y = 4 stages and
z = 8 buffers/stage we have obtain efficient results
by using Ψ2 [11, 10] while it is not possible to do
numerical model checking PRISM (memory problem

8
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Figure 8: Verification time as function of queue capacity
Nmax for S<0.001 (last-full) for x = 4 , ǫ = 2.10−4 , and δ =
10

−4
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Figure 9: Verification time as function of queue capacity
Nmax for S<0.001 (last-full) for x = 4, ǫ = 10

−4, and
δ = 10

−4/2

VERIF. TIME in sec
(ǫ, δ) Nmax |X | PRISM PSI2

1 1.60 ∗ 101 0.003 0.6
2 8.10 ∗ 101 0.004 0.8
4 6.25 ∗ 102 0.02 1.2
5 1.29 ∗ 103 0.03 1.5
7 4.09 ∗ 103 0.08 1.8
9 1.00 ∗ 104 0.28 2.2

(10−3/2, 10−3/4) 14 5.06 ∗ 104 2.21 3.2
17 1.04 ∗ 105 7.6 3.8
26 5.30 ∗ 105 88.3 5.5
29 8.10 ∗ 105 162.8 6.1
31 1.04 ∗ 106 236.4 6.3
47 5.30 ∗ 106 2814 8.8
56 1.05 ∗ 107 8716 10.2
84 5.22 ∗ 107 iterpr 13.4
99 1.00 ∗ 108 outmem 15.0
999 1.00 ∗ 1012 outmem 56.4
9999 1.00 ∗ 1016 outmem 219.6
Nmax |X |

1 1.60 ∗ 101 0.004 4.1
2 8.10 ∗ 101 0.005 5.4
4 6.25 ∗ 102 0.02 8.2
5 1.29 ∗ 103 0.03 9.4
7 4.09 ∗ 103 0.10 11.9
9 1.00 ∗ 104 0.32 14.4

(2.10−4, 10−4) 14 5.06 ∗ 104 2.49 20.7
17 1.04 ∗ 105 8.67 24.3
26 5.30 ∗ 105 103.5 35.1
29 8.10 ∗ 105 190.6 38.2
31 1.04 ∗ 106 276.6 42.6
47 5.30 ∗ 106 3258 55.9
56 1.05 ∗ 107 9213 65.9
84 5.22 ∗ 107 iterpr 86.6
99 1.00 ∗ 108 outmem 98.1
999 1.00 ∗ 1012 outmem 365.3
9999 1.00 ∗ 1016 outmem 1314
Nmax |X |

1 1.60 ∗ 101 0.005 16.8
2 8.10 ∗ 101 0.006 22.1
4 6.25 ∗ 102 0.02 32.1
5 1.29 ∗ 103 0.03 39.5
7 4.09 ∗ 103 0.10 48.4
9 1.00 ∗ 104 0.33 58.5

(10−4, 10−4/2) 14 5.06 ∗ 104 2.71 82.9
17 1.04 ∗ 105 9.66 99.0
26 5.30 ∗ 105 114.0 142.3
29 8.10 ∗ 105 209.9 153.4
31 1.04 ∗ 106 304.7 164.1
47 5.30 ∗ 106 3542 227.9
56 1.05 ∗ 107 9424 262.2
84 5.22 ∗ 107 iterpr 346.2
99 1.00 ∗ 108 outmem 392.4
999 1.00 ∗ 1012 outmem 1464
9999 1.00 ∗ 1016 outmem 5303

Table 3: Tandem network: Verification time as function
of state space size |X | and of queue capacity Nmax for
S<0.001 (last-full)

for Nmax=1) in this case due to the huge state space
size O((Nmax + 1)32).

We give in Table 4 for θ = 0.001 and for ǫ = 10−3/2,
ǫ = 2.10−4, and ǫ = 10−4, the numerical verification
time for the considered steady-state formula S<θ

(last-stage-full) by using PRISM Hybrid engine and
Jacobi iterative method. Also we give in the same
table for θ = 0.001, δ = {10−3/4, 10−4, 10−4/2}
respectively, and α = β = 10−2, the statistical
verification time for the same steady-state formula
S<θ (last-stage-full) by using our verification method.
We represent part of these results (Nmax ≤ 10) in

9
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VERIF. TIME in sec
(ǫ, δ) Nmax |X | PRISM PSI2

2 6.5 ∗ 103 1.8 2.2
3 6.5 ∗ 104 2.1 2.9
4 3.9 ∗ 105 12.1 3.5

(10−3/2, 10−3/4) 5 1.6 ∗ 106 74.9 3.9
6 5.7 ∗ 106 426 4.3
7 1.6 ∗ 107 1689 4.6
8 4.3 ∗ 107 4768 4.8
9 1.0 ∗ 108 8931 5.0
10 2.1 ∗ 108 outmem 5.2
99 1.0 ∗ 1016 outmem 6.8
999 1.0 ∗ 1024 outmem 6.9
9999 1.0 ∗ 1032 outmem 7.1
Nmax |X |

2 6.5 ∗ 103 1.8 13.6
3 6.5 ∗ 104 2.2 18.3
4 3.9 ∗ 105 13.2 22.1

(2.10−4, 10−4) 5 1.6 ∗ 106 82.6 24.9
6 5.7 ∗ 106 431 27.0
7 1.6 ∗ 107 1782 28.9
8 4.3 ∗ 107 5349 30.5
9 1.0 ∗ 108 9906 31.7
10 2.1 ∗ 108 outmem 32.8
99 1.0 ∗ 1016 outmem 43.3
999 1.0 ∗ 1024 outmem 43.4
9999 1.0 ∗ 1032 outmem 43.7
Nmax |X |

2 6.5 ∗ 103 1.8 54.5
3 6.5 ∗ 104 2.3 73.1
4 3.9 ∗ 105 14.1 88.2

(10−4, 10−4/2) 5 1.6 ∗ 106 88.5 99.3
6 5.7 ∗ 106 434 110
7 1.6 ∗ 107 1895 117
8 4.3 ∗ 107 6125 123
9 1.0 ∗ 108 10135 127
10 2.1 ∗ 108 outmem 131
99 1.0 ∗ 1016 outmem 174
999 1.0 ∗ 1024 outmem 175
9999 1.0 ∗ 1032 outmem 177

Table 4: MDN: Verification time as function of state space
size |X | and of queue capacity Nmax for S<0.001 (last-
stage-full)

Figures 10, 11, and 12. In fact, for Nmax = 10 we
obtain an out of memory message with PRISM.

Tandem network with coxian phase(TQN) verifi-
cation results
For numerical application, we consider λ = 4×Nmax,
µ1 = 2, µ2 = 2, a = 0.1 and κ =1.

We give in Table 5 for θ = 0.001 and for ǫ = 10−3/2,
ǫ = 2.10−4, and ǫ = 10−4, the numerical verification
time for the considered steady-state formula S<θ

(sys-full) by using PRISM Hybrid engine and Jacobi
iterative method. Also we give in the same table for
θ = 0.001, δ = {10−3/4, 10−4, 10−4/2} respectively,
and α = β = 10−2, the statistical verification time
for the same steady-state formula S<θ (sys-full) by
using our verification method. Next we represent part
of these results (Nmax ≤ 1023) in Figures 13, 14,
and 15. In fact, for Nmax = 7500 we obtain an out of
memory message with PRISM.

Discussions
Our results confirm that for steady-state property,
our statistical method scales better with the size
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Figure 10: MDN: Verification time as function of queue
capacity Nmax for S<0.001 (last-stage-full) for ǫ = 10

−3/2
, and δ = 10

−3/4
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Figure 11: MDN: Verification time as function of queue
capacity Nmax for S<0.001 (last-stage-full) for ǫ = 2.10−4

, and δ = 10
−4

2 4 6 8 10
100

101

102

103

104

Queue Capaciy of Delta network

Lo
g

sc
al

e
V

er
ifi

ca
tio

n
T

im
e

PRISM
PSI2

Figure 12: MDN: Verification time as function of queue
capacity Nmax for S<0.001 (last-stage-full) for ǫ = 10

−4 ,
and δ = 10

−4/2
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Figure 13: TQN: Verification time as function of queue
capacity Nmax for S<0.001 (sys-full) for ǫ = 10

−3/2 , and
δ = 10

−3/4
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Figure 14: TQN: Verification time as function of queue
capacity Nmax for S<0.001 (sys-full) for ǫ = 2.10−4 , and
δ = 10

−4
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Figure 15: TQN: Verification time as function of queue
capacity Nmax for S<0.001 (sys-full) for ǫ = 10

−4 , and δ
= 10

−4/2

VERIF. TIME in sec
(ǫ, δ) Nmax |X | PRISM PSI2

10 2.3 ∗ 102 1.7 1.4
50 5.1 ∗ 103 1.8 5.4
100 2.0 ∗ 104 3.4 9.8

(10−3/2, 10−3/4) 255 1.3 ∗ 105 117.9 24.2
511 5.2 ∗ 105 1201 49.1
1023 2.1 ∗ 106 10879 96.4
5000 5.1 ∗ 107 iterpr 493.2
7500 1.1 ∗ 108 outmem 819.6
10000 2.1 ∗ 108 outmem 925.3
Nmax |X |

10 2.3 ∗ 102 1.7 9.1
50 5.1 ∗ 103 1.8 32.8
100 2.0 ∗ 104 3.5 62.8

(2.10−4, 10−4) 255 1.3 ∗ 105 118.3 154.9
511 5.2 ∗ 105 1203 316.3
1023 2.1 ∗ 106 12689 614.7
5000 5.1 ∗ 107 iterpr 3058
7500 1.1 ∗ 108 outmem 4615
10000 2.1 ∗ 108 outmem 5793
Nmax |X |

10 2.3 ∗ 102 1.8 37.1
50 5.1 ∗ 103 1.9 131.4
100 2.0 ∗ 104 3.6 250.7

(10−4, 10−4/2) 255 1.3 ∗ 105 119.0 612.4
511 5.2 ∗ 105 1208 1230
1023 2.1 ∗ 106 13105 1822
5000 5.1 ∗ 107 iterpr 12258
7500 1.1 ∗ 108 outmem 19153
10000 2.1 ∗ 108 outmem 23219

Table 5: TQN: Verification time as function of state space
size |X | and of queue capacity Nmax for S<0.001 (sys-full)

of the state space. Moreover it is generally faster.
However, high accuracy comes at a greater price
than for numerical method. Tables 3, 4, and 5 and
their corresponding figures show the verification
time in seconds as function of state space size
in the three case studies. In fact, for the smaller
models (monotone and non-monotone cases), the
PRISM tool is slightly faster. However, for the larger
models (monotone and non-monotone cases), our
statistical method implemented in Ψ2 is the fastest.
Moreover, Tables 3, 4 and 5 show the memory
limits of the PRISM tool for large state space size
while the Ψ2 tool scales better, is efficient and
do not have any memory limitation for these large
state space size. For Tandem network case, we
obtain an out of memory message in PRISM tool
from the value |X | = 1.0 ∗ 108 (corresponding to
Nmax = 99). For Multistage delta network case,
we obtain an out of memory message in PRISM
tool from the value |X | = 2.1 ∗ 108 (corresponding
to Nmax = 99). Moreover, for Tandem network
with coaxian phase case, we obtain an out of
memory message in PRISM tool from the value
|X | = 1.1 ∗ 108 (corresponding to Nmax = 7500).
On the other hand, we have variated the precision
parameters of numerical (ǫ) and of statistical (δ)
methods. Thus we have note from Tables 3, 4 and
5 that the numerical verification time dependence
on ǫ is negligible while the statistical verification
time dependence on δ is considerable. Moreover, we
refer to section 3.1 to explain why in some of our
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case studies, the obtained statistical verification time
does not depend on |X |. Finally note that, we have
used single acceptance sampling method in our
statistical method implemented in Ψ2. However, even
if we have not use sequential acceptance sampling
which is more efficient than single one, we have
obtain more efficient and more scalable results than
numerical method.

6. CONCLUSION AND FUTURE WORKS

In this paper, we have empirically compared
numerical and statistical solution techniques for
probabilistic model checking on case studies taken
from the PRISM and Ψ2 benchmarks. We focused
our attention on steady-state properties. For these
properties, we have found that our statistical method
implemented in Ψ2 scales better with the state space
size and it is faster than PRISM tool especially for
large models. In fact, we aim to find the limiting
problem sizes for the considered case studies. We
see that the statistical approach scales well with
the problem size and it lets us to consider very
large models. We consider to compare our statistical
method (single and sequential acceptance sampling)
with the one implemented in MRMC tool.
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