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Abstract. We show how to combine censoring technique for Markov
chain and strong stochastic comparison to obtain bounds on rewards
and the first passage time. We present the main ideas of the method,
the algorithms and their proofs. We obtain a substantial reduction of
the state space due to the censoring technique. We also present some
numerical results to illustrate the effectiveness of the method.

1 Introduction

Modeling systems with huge or infinite Markov chain is still a hard problem when
the chain does not exhibit some regularity or symmetry which allow analytical
techniques or lumping. An alternative approach is to compute bounds on the
rewards we need to check against requirement. For instance we may obtain an
upper bound on the loss probability and verify that this bound is smaller than
the quality of service required by a network application. To compute bounds on
rewards the usual way is to bound the steady-state or transient distribution at
time t, define the elementary reward for state i and perform the summation of the
product of the elementary rewards by the state probabilities. The last two parts
are the easiest step of the method. The main difficulty is to obtain a bound of the
steady state or transient distributions. Some rewards are also related to the first
passage time or the absorbing time if the chain has some absorbing states. We
must in that case compute the fundamental matrix of the chain, again a difficult
problem when the state space is extremely large. The main idea is to derive a
smaller chain which provides a bound. In the recent years, several algorithms
have been published to obtain some stochastic bounds on Markov chains [18,
7, 10, 3]. But most of these algorithms have used the lumpability approach to
reduce the size of chain and only considered finite DTMC (Discrete Time Markov
Chain). Here we show how we can compute stochastic bounds using the Censored
Markov chain and how we can deal with large Markov chains.

Consider a discrete time Markov chain {Xt : t = 1, 2, . . .} with finite state
space S. Suppose that S = E ∪ Ec, E ∩ Ec = ∅. Suppose that the successive
visits of Xt to E take place at time epochs 0 < t1 < t2 < . . . <. Then the



chain {XE
u = Xtu

, u = 1, 2, . . .} is called the censored process (or chain) with
censoring set E [19]. Let Q denote the transition matrix of chain Xt. Consider
the partition of the state space to obtain a block description of Q:

Q =

(

QE QEEc

QEcE QEc

)

E
Ec (1)

The censored chain only watches the chain when it is in E. Under some structural
condition on the matrix, it can be proved [19] that the stochastic matrix of the
censored chain is:

SE = QE + QEEc

(

∞
∑

i=0

(QEc)i

)

QEcE (2)

Assume that (QEc) does not contain any recurrent class, the fundamental matrix
is
∑∞

i=0(QEc)i = (I − QEc)−1. Censored Markov chains have also been called
restricted or watched Markov chains. When the chain is ergodic there are strong
relations with the theory of stochastic complement [11]. Note that it is not
necessary for censored Markov chains to be ergodic and we can study for instance
the absorbing time. In many problems Q can be large and therefore it is difficult
to compute (I − QEc)−1 to finally get SE . Deriving bounds of SE from QE

and some information on the other blocks without computing SE is therefore an
interesting alternative approach.

To the best of our knowledge this paper is the first approach to combine
stochastic bounds and censored Markov chain, even if the stochastic comple-
ment approach was mentioned in a survey on algorithmic aspects of stochastic
bounds [9]. However some of the methods already published for NCD (Nearly
Completely Decomposable) chains may be applied to construct bounds. For in-
stance in [17] Truffet has proposed a two-level algorithm for NCD chains by
using aggregation and the stochastic ordering to compute bounding distribu-
tions. This method is different from the bounded aggregation method proposed
by Courtois-Semal which uses polyhedra theory [4] to compute bounds. In [13],
this approach has been extended by employing reordering to improve the ac-
curacy and a better component-wise probability bounding algorithm. In these
works, before employing the aggregation of blocks, the slack probabilities which
are small due to the NCD structure are included in the last column for the upper
bounding case and to the first column for the lower bounding case. In the case
of general Markov chains, an algebraic approach has been recently proposed to
dispatch slack probabilities [6].

In this work, we derive bounds on SE , in a completely different way by apply-
ing graph algorithms. Indeed we propose to compute element-wise lower bounds
on the second term of Eq. 2 by exploring some paths that return to partition
E passing through partition Ec. We give some relations between element-wise
lower bound on SE and the derived stochastic bounds on it.

The following of the paper is as follows. In section 2 we present stochas-
tic bounds and the basic algorithm to build a monotone upper bound for any
stochastic matrix and we present the basic operator used to formally define



this algorithm. We also give some necessary definitions and results for censored
Markov chains. Section 3 is devoted to the main theoretical results of this paper:
we show how we can obtain a stochastic upper bound of SE from any element-
wise lower bound of SE . We also prove that the more accurate is the element-wise
lower bound the more accurate is the stochastic upper bound. Clearly, QE is an
element-wise lower bound of SE . QEEc

(
∑∞

i=0(QEc)i
)

QEcE represents all the
paths entering Ec, staying in this set for an arbitrary number of transitions and
finally returning to E. Thus if we only keep some paths in consideration we obtain
again an element-wise lower bound of SE . We develop this approach in section
4 using several graph techniques to obtain sets of paths and their probabilities.
Finally in section 5 we present some examples and numerical results.

2 Theoretical background

In this section, we present some preliminaries on the stochastic comparison
method and on censored Markov chains. We refer to the books [14, 15] for the
theoretical issues for comparison of random variables and Markov chains. We
study Discrete Time Markov chains (DTMC in the following) on finite or denu-
merable state space endowed with a total ordering. Let S be the state space.

2.1 Basic algorithms to bound a Markov chain

Definition 1. Let X and Y be random variables taking values on a totally or-
dered space S. Then X is said to be less than Y in the strong stochastic sense,
(X �st Y ) if and only if E[f(X)] ≤ E[f(Y )] for all non decreasing functions
f : S → R, whenever the expectations exist.

Indeed �st ordering provides the comparison of the underlying probability dis-
tribution functions: X �st Y ↔ Prob(X > a) ≤ Prob(Y > a) ∀a ∈ S. Thus
it is more probable for Y to take larger values than for X . Since the �st ordering
yields the comparison of sample-paths, it is also known as sample-path ordering.
We give in the next proposition the �st comparison in the case of finite state
space.

Property 1. Let X , Y be random variables taking values on {1, 2, · · · , n} and p,
q be probability vectors which are respectively denoting distributions of X and
Y , X �st Y iff

∑n

j=i p[j] ≤
∑n

j=i q[j] ∀i = {n, n − 1, · · · , 1}. Remark that
X = Y implies that X �st Y .

The stochastic comparison of random variables has been extended to the
comparison of Markov chains. It is shown in Theorem 5.2.11 of [14, p.186] that
monotonicity and comparability of the probability transition matrices of time-
homogeneous Markov chains yield sufficient conditions to compare stochastically
the underlying chains. We first define the monotonicity and comparability of
stochastic matrices and then state this theorem and some useful corollaries.



Definition 2. Let P be a stochastic matrix. P is said to be stochastically st-
monotone (monotone for short) if for any probability vectors p and q,

p �st q =⇒ p P �st q P.

Definition 3. Let P and Q be two stochastic matrices. Q is said to be an upper
bounding matrix of P in the sense of the strong stochastic order (P �st Q) iff

Pi,∗ �st Qi,∗, ∀i

where Pi,∗ denotes the ith row of matrix P .

Theorem 1. Let P (resp. Q) be the probability transition matrix of the time-
homogeneous Markov chain {Xt, t ≥ 0} (resp. {Yt, t ≥ 0}). If

– X0 �st Y0,
– at least one of the probability transition matrices is monotone, that is, either

P or Q is monotone,
– the transition matrices are comparable, (i.e. P �st Q).

then Xt �st Yt ∀t.

Then the following corollary ([14]) lets us compare the steady-state distribu-
tions of Markov chains when they exist. And we can also compare absorption
time if the chain has an absorbing state (see [2] for a proof).

Corollary 1. Let Q be a monotone, upper bounding matrix for P for the st-
ordering. If the steady-state distributions (ΠP and ΠQ) exist, then ΠP �st ΠQ.

Corollary 2 (proposition 2.9 in [2]) ). Let {Xt, t ≥ 0} and {Yt, t ≥ 0} be two
Markov chains on the same finite state space. Assume that the last state (say n)
is absorbing for both chains. Assume that Xt �st Yt, ∀t then Ti,n(Y ) �st Ti,n(X)
where Ti,n(X) is the absorption time in n for chain X when initial state is i.

Stochastic comparison and monotonicity can be represented by linear in-
equalities. Once we have derived a set of equalities, instead of inequalities and
ordered them we obtain a constructive way to design a monotone upper bounding
stochastic matrix Q for an arbitrary stochastic matrix P .

{∑n

k=j Q1,k =
∑n

k=j P1,k
∑n

k=j Qi+1,k = max(
∑n

k=j Qi,k,
∑n

k=j Pi+1,k) ∀ i, j
(3)

This is the basic theory behind Vincent’s algorithm [1]. We now present an
operator description of this basic algorithm (see [9] for a survey of algorithmic
aspects of stochastic bounds).

Definition 4. Let P and Q be two positive matrices with the same size, P �el Q
iff P [i, j] ≤ Q[i, j] for all i and j.



Definition 5. Following the presentation in [5] we define two operators r and
v for matrix of size n× n as follows:

– r is a summation operator: r(P )[i, j] =
∑n

k=j P [i, k]. The inverse of r (de-

noted as r−1) is:

r−1(P )[i, j] =

{

P [i, n] if j = n
P [i, j]− P [i, j + 1] if j < n

– Let v be the operator defined by:

v(P )[i, j] = maxm≤i(
∑

k≥j

P [m, k]) = maxm≤ir(P )[m, j] (4)

Property 2. Vincent’s algorithm is simply operator r−1v.

Example 1. Let P be a stochastic matrix. Vincent’s algorithm gives:

P =









0.1 0.3 0.2 0.4
0.1 0.4 0.2 0.3
0.2 0.1 0.5 0.2
0.2 0 0.4 0.4









v(P ) =









1 0.9 0.6 0.4
1 0.9 0.6 0.4
1 0.9 0.7 0.4
1 0.9 0.8 0.4









r−1v(P ) =









0.1 0.3 0.2 0.4
0.1 0.3 0.2 0.4
0.1 0.2 0.3 0.4
0.1 0.1 0.4 0.4









Property 3. Let P and Q two stochastic matrices with the same size, P �st Q
iff r(P ) �el r(Q).

And we define two new operators θ and γ which transform a sub-stochastic
matrix P into stochastic matrix by adding the probability missing in P in the
last (resp. the first) column.

θ(P )[i, j] =

{

P [i, j] if j < n
P [i, j] + βi if j = n

γ(P )[i, j] =

{

P [i, j] if j > 1
P [i, j] + βi if j = 1

where βi = 1−
∑n

j=1 P [i, j]. Of course, if P is stochastic θ(P ) = P = γ(P ).

2.2 Censoring a Markov chain

Let us go back to the definition and the fundamental results on censored chains.

Lemma 1 (Theorem 2 in [19]). Let Q be the transition probability matrix of
a DTMC X(t). Consider a partition of the finite state space S into two subsets
E and Ec.

Q =

(

QE QEEc

QEcE QEc

)

E
Ec



Then, the censored process XE(t) is a Markov chain and its transition probability
matrix is given by:

SE = QE + QEEc

(

∞
∑

i=0

(QEc)i

)

QEcE (5)

When Q is irreducible the transition probability matrix of the censored chains
is the stochastic complement matrix defined by Meyer and we have the following
results [11]:

Theorem 2. If Q is irreducible, with steady state distribution ΠQ = (ΠE ,ΠEc)
and transient distribution at discrete time epoch t, Πt

Q = (Πt
E ,Πt

Ec). Then the

steady state distribution ΠSE
and the transient distribution at time t, Πt

E of the
censored matrix SE are given by:

ΠSE
=

ΠE
∑

i∈E ΠE(i)
and Πt

SE
=

Πt
E

∑

i∈E Πt
E(i)

(6)

The transition matrix of the censored chain can be decomposed into two
parts. QE is an element-wise lower bound of SE . QEEc

(
∑∞

i=0(QEc)i
)

QEcE rep-
resents all the paths entering Ec, staying in this set for an arbitrary number of
transitions and finally returning to E. Assuming that QEc does not contain any
recurrent class we have:

∑∞

i=0(QEc)i = (Id − QEc)−1. But the state space is
so huge that this operation is too complex. Thus instead of computing SE we
advocate that we can obtain stochastic bounds of this matrix.

As QEEc

(
∑∞

i=0(QEc)i
)

QEcE contains all the paths, we will only keep some
of them in consideration and we obtain more accurate bounds of SE . The main
idea is that only some elements of QEc are generated and stored during the
construction of the Markov chain.

3 Bounds for Censored chains

We first prove some technical lemmas and then give the theorems to provide
bounds.

Lemma 2. Let P and Q be two stochastic or sub-stochastic matrices of size
n× n. if P �el Q then θ(Q) �st θ(P ).

Proof. ∀ 1 ≤ i ≤ n and ∀ 1 ≤ q ≤ n we have:

n
∑

j=q

θ(Q)[i, j] = 1−
∑

j<q

Q[i, j] ≤ 1−
∑

j<q

P [i, j] =

n
∑

j=q

θ(P )[i, j]

Thus θ(Q) �st θ(P ).

Lemma 3. Let P and Q be two stochastic matrices, if P �st Q then r−1v(P ) �st

r−1v(Q).



Proof. It follows from Property 3 and Eq. 4 that if P �st Q then v(P ) ≤el v(Q).
This implies following Property 3 that r−1v(P ) �st r−1v(Q).

We now present the two fundamental theorems which allow to bound a cen-
sored Markov chain. For both theorems, let {Xt, t ≥ 0} be a denumerable DTMC
with transition matrix Q and E a finite subset of state space S. Let SE be the
matrix of the censored Markov chain and QE the block of Q restricted to states
in E.

Theorem 3. For all sub-stochastic matrix M such that QE �el M �el SE, we
have

SE �st r−1vθ(M) (7)

Proof. We assume that M �el SE . We apply Lemma 2 to obtain: θ(SE) �st

θ(M). But SE is a stochastic matrix. Thus θ(SE) = SE and we get: SE �st θ(M).
We now apply lemma 3 which implies that: r−1v(SE) �st r−1vθ(M).

We finally remark that due to the definition of operators r and v we have
SE �st r−1v(SE) and we obtain that SE �st r−1vθ(M) to complete the proof.

Similarly we can obtain a lower bound with operator γ and the modified
version of Vincent’s algorithm to obtain monotone lower bound. The following
theorem explains how we can improve this bound. If we are able to improve the
element-wise lower bound M , we also improve the stochastic upper bound for
SE . However remember that X �st Y does not exclude that X = Y and the
improvement on the stochastic bound can be zero (see for instance the first part
of the example in Section 4).

Theorem 4. For all sub-stochastic matrices M1 and M2 such that M1 �el

M2 �el SE, we have:
r−1vθ(M2) �st r−1vθ(M1) (8)

Proof. As we assume that M1 �el M2 Lemma 2 shows that: θ(M2) �st θ(M1).
But θ(M1) and θ(M2) are stochastic matrices. We then apply Lemma 3 to
obtain r−1vθ(M2) �st r−1vθ(M1) to complete the proof.

So the algorithms mainly consist in computing an element-wise lower bound
of SE which is obtained by adding some probability to QE and then apply
operators θ and Vincent’s algorithm. We show in the next section how we can
improve element-wise lower bounds of SE . We now show that bounds on censored
chains can provide bounds for some performances measures on the original chain.
First we have a very simple property, the proof of which is a simple application
of theorem 2.

Property 4. Let i and j be two states in S. If i ∈ E and j ∈ Ec then:

ΠQ(i) ≤ΠSE
(i) and ΠQ(j) ≤ΠSEc (j) (9)

We can derive bounds for steady-state rewards, absorbing probabilities and
absorbing time. Assume that we have derived two monotone stochastic matrices
UE and LE such that: LE �st SE �st UE.



Property 5 (Steady-state rewards). Let w : S → R be the reward function that
assign to each state i ∈ S a reward value w(i). Assume that w(i) ≥ 0 for all i.
Let E be the set of states which has a positive reward. Assuming that we sort
the states in E such that function w is non decreasing. We clearly have:

R =
∑

i∈S

w(i)ΠQ(i) =
∑

i∈E

w(i)ΠE(i) ≤
∑

i∈E

w(i)ΠSE
(i) ≤

∑

i∈E

w(i)ΠUE(i)

We obtain an upper bound on the reward.

Property 6 (Probability of Absorption). We consider a chain with a finite number
of absorbing states. Assume that all these absorbing states are in E and assume
that the initial state is in E. Assume also that the states which immediately
precede absorbing states are also in E. Then the absorption probabilities in the
initial chain and in the censored chain are the same.

Proof. Remember that when we have a block decomposition of a transition ma-

trix with absorbing states equal to

[

Id 0
F H

]

, matrix M = (Id−H)−1 exists and

is called the fundamental matrix [16]. Furthermore the entry [i, j] of the product
matrix M ∗F gives the absorption probability in j knowing that the initial state
is i.

We assume that the absorbing states are gathered in the first part of set E.
Thus we can describe the matrix of the chain by its block decomposition:





Id 0 0
R A B

0 C D





According to lemma 1, the transition matrix of the censored chain is:

[

Id 0
R A

]

+

[

0
B

]

∑

i

[D]i
[

0 C
]

which is finally equal to:

[

Id 0
R A + B

∑

i DiC

]

. As D is transient, we have:
∑

i Di = (Id−D)−1. And the fundamental matrix of the censored chain is:

(Id−A−B(Id−D)−1C)−1.

The fundamental matrix of the initial chain is: M =

[

Id−A B
C Id−D

]−1

. To

obtain the probability we must multiply by

[

R
0

]

and consider an initial state in

E. Thus we only have to compute the upper-left block of F . According to [12]
page 123, it is equal to:

(Id−A−B(Id−D)−1C)−1



if blocks (Id − A) and its Schur complements are non singular. This is clearly
true. So we have the same absorption probability in Q and in SE and bounds
for the censored chain will also be bounds for the initial chain.

Property 7 (Average Time for Absorption). We consider a chain X with several
absorbing states and the same block decomposition. Let Y be the censored chain.
Let i be an initial state in E, j an arbitrary state in S and k an absorbing state.
Let ZX [i, j] be the average number of passages in j before absorption knowing
that the initial state is i for chain X . We have:

1. ZX [i, j] = ZY [i, j] if j is in E.
2. E(Ti,k(Y )) ≤ E(Ti,k(X)).

Proof. Again remember that the average number of visits in j when the initial
state is i is entry [i, j] of the fundamental matrix. The proof of the previous
property states that the upper-left block of the fundamental matrix of X is
equal to the fundamental matrix of Y . This equality implies the first part of the
property. The second part is a consequence of the first part and of the average
number of visits to states in Ec which are positive in X and equals to 0 in Y .

4 Algorithms

The algorithms must find some paths which are contained in the fundamental
matrix (Id − QEc)−1, thus there is clearly a trade-off between complexity and
accuracy. So we have developed several algorithms and data structures to deal
with paths exploration. The aim is to deal with chains which are so large that
the transition matrix does not fit in memory.

The algorithms compute some paths leaving immediately state i in E and
coming back to E in any state. The output of the algorithms is a row vector called
q whose the jth entry contains the probability of the paths from i to j which
have been selected. Thus if we add q to row i of QE we obtain a more accurate
element-wise lower bound for row i of SE : QE [i, ∗] ≤el QE [i, ∗] + q ≤el SE [i, ∗].

Note also that all the rows do not have the same importance for the compu-
tation of the bound. Due to the monotonicity constraints, the last rows are often
completely modified by Vincent’s algorithm. Thus it is much more efficient to
try to improve the first rows of QE than the last ones. This is illustrated by the
following example.

QE =









0.1 0.3 0.2 0.1
0.1 0.4 0.2 0
0.2 0.1 0.5 0.2
0.3 0 0.4 0









Truffet’s approach gives:

θ(QE) =









0.1 0.3 0.2 0.4
0.1 0.4 0.2 0.3
0.2 0.1 0.5 0.2
0.3 0 0.4 0.3









r−1vθ(QE) =









0.1 0.3 0.2 0.4
0.1 0.3 0.2 0.4
0.1 0.2 0.3 0.4
0.1 0.2 0.3 0.4











Now suppose that one has computed the probability [0.1, 0.1, 0, 0.1] of some paths
leaving E from state 4 and entering again set E after a visit in Ec. This is a
lower bound of the set of all paths beginning in state 4. Let M be the improved
element-wise lower bound.

M =









0.1 0.3 0.2 0.1
0.1 0.4 0.2 0
0.2 0.1 0.5 0.2
0.4 0.1 0.4 0.1









θ(M) =









0.1 0.3 0.2 0.4
0.1 0.4 0.2 0.3
0.2 0.1 0.5 0.2
0.4 0.1 0.4 0.1









r−1vθ(M) =









0.1 0.3 0.2 0.4
0.1 0.3 0.2 0.4
0.1 0.2 0.3 0.4
0.1 0.2 0.3 0.4









And the bound does not change despite the computation of paths beginning in
state 4. Assume now one has improved the first row and we have got the same
vector of probability for the paths: [0.1, 0.1, 0, 0.1].

M =









0.2 0.4 0.2 0.2
0.1 0.4 0.2 0
0.2 0.1 0.5 0.2
0.3 0 0.4 0









θ(M) =









0.2 0.4 0.2 0.2
0.1 0.4 0.2 0.3
0.2 0.1 0.5 0.2
0.3 0 0.4 0.3









r−1vθ(M) =









0.2 0.4 0.2 0.2
0.1 0.4 0.2 0.3
0.1 0.2 0.4 0.3
0.1 0.2 0.4 0.3









Clearly this bound is now much better than the original one.
We consider the directed graph G = (S, DE) associated to the initial Markov

chain where DE is the set of directed edges. If Q(i, j) > 0 then there exists an
arc from i to j in G and arc (i, j) has probability Q(i, j). The directed edges (or
arcs) in the graph are labelled with a positive cost. A path P is an ordered list of
consecutive arcs. The cost of path P is the sum of the cost of arcs which belong
to P multiplied by their number of occurrences in P . Indeed an arc may appear
several times in a path. The probability of path P (denoted as Pr(P)) is the
product of the probability of the arcs which belongs to P . Again we must take
into account the number of occurrence of the arcs in the path. The set of paths
beginning in i a node of E, then jumping to a node in Ec, staying in Ec for an
arbitrary number of jumps and finally entering again E in state j is denoted as
SP i,j .

The main idea is to select paths with high probabilities and to perform this
selection very quickly. We present here two type of algorithms: the Shortest
Path approach and Breadth First search. The first one builds one path to every
destination while the second builds all the paths whose lengths are smaller than
a parameter ∆. We also show that we can take into account the self loops to
obtain easily an infinite set of paths rather than a single one.

4.1 Shortest Path

We use Dijkstra’s shortest path algorithm. The length taken into account in the
algorithm is the cost c() which is positive. The following property states how we
first compute the cost to obtain the path with the highest probability.

Property 8. If for all arcs in DE, the cost is defined as c(i, j) = −log(Q(i, j)) then
the shortest path according to cost c is also the path with maximum probability.
Note that as Q(i, j) < 1 the cost is positive.



Proof. Let P1 be this shortest path. Assume that there exists P2, a path such
that Pr(P2) > Pr(P1). As function logarithm is increasing we have: log(Pr(P2)) >
log(Pr(P1)). The probability of the path is the product of the probability of arcs.
Thus:

∑

(i,j)∈P2

log(Q(i, j)) >
∑

(k,l)∈P1

log(Q(k, l))

After substitution:
∑

(i,j)∈P2

c(i, j) <
∑

(k,l)∈P1

c(k, l)

And P2 is shorter than the shortest path; a contradiction.

Thus the algorithm searches the shortest path from state i in a graph where
the costs are defined as the negative of the logarithm of transition probabilities
and where the arcs from i to other nodes in E have been removed because we
want to get a path from i which passes through Ec and comes back to E. The
shortest path with the cost function may have a large number of arcs. Thus we
must give a bound on the number of arcs in the shortest path to avoid very large
number of iterations. Let ∆ be this bound. The following algorithm computes
the probability of the shortest path. In the algorithm, P is the set of generated
vertices, Γ (x) denotes the set of successors of node x and p(x) is the probability
to reach x from i in the selected paths.

Algorithm 1: Shortest path

Input : vertex i ∈ E; ∆
Output : row vector q: qj is the probability to return to j ∈ E from i
P = ∅; qz = 0 , z ∈ E
foreach vertex x ∈ Γ (i) such that x ∈ Ec do

p(x)=prob. of transition from i to x; put x in P

end

repeat

Select a leaf y ∈ P such that p(y) = maxleaf x∈P {p(x)}
foreach z ∈ Γ (y)\{y} do

p2 =(prob. of transition from y to z) ∗ p(y)
switch z do

case z ∈ E: qz = qz + p2

case z /∈ P : p(z) = p2; put z in P

case z is a leaf and p(z) < p2: p(z) = p2

end
end

until number of iteration > ∆;

Note that as we only search for successors of a limited number of nodes, only
a part of the transition matrix must be in memory. Even if the whole matrix



does not fit in memory it is sufficient that the states we really use during the
construction of the paths can be stored or generated.

4.2 Adding Self Loops

Once a path from i to j is selected it is possible to build an infinite set of paths
from i to j and to sum their probabilities in a closed-form formula. We just have
to use the directed cycles. The proofs of following properties are quite simple
and they are omitted here due to the limitation on the size of the paper.

Property 9. Let i and j be two arbitrary vertices in E. Let P be a path in SP i,j

with a probability p. Let k be a vertex which belongs to P and Ec such that
there exists a directed cycle using nodes of Ec going through k. Let q be the
product of the probabilities of the arcs in this directed cycle. Then the path Pk

built with P and k times the directed cycle is also in SP i,j and its probability
is p qk. Considering all these paths Pk for all values of k, we finally obtain a
probability equals to p

1−q
.

Computing a directed cycle may be difficult but it is quite simple to take
into account the self loops during the visits. Indeed self loops are directed cycles
and finding them does not require any new computational effort.

Property 10. Let P = (i, k1, k2, . . . , kl, j) be an arbitrary elementary path in
SP i,j . Suppose that every vertex km in the path has a self loop with probability
qkm

. If there is no loop in km we simply have qkm
= 0. Then all the path obtained

from P and an arbitrary number of visits in each loop is also in SP i,j . And the

resulting probability for all these paths is p
∏l

m=0
1

1−qm

.

4.3 Breadth First Search

We just build all paths of length smaller than ∆ using a Breadth First search
technique and computing their probabilities. Some of these paths return to a
node in E at step k ≤ ∆. We use in the algorithm the same notation for data
structure as in Shortest Path Algorithm and we finally denote by InE[y, z] the
probability to enter E through z leaving from y ∈ Ec.

5 Examples and Numerical Results

Due to the limitation on the size of the paper, it is not possible to present here
a real example. We have just designed an abstract model to test our algorithms
and show some numerical experiments. We consider a set of N resources: they
can be operational or faulty. In the considered model we distinguish two types of
faults: hard and soft, that we denote respectively by h and s. The fault arrivals
of (h and s) follow independent Poisson processes with rate respectively λh and
λs. The distribution of times to fix a fault are exponential with rate µh and µs

except when all the resources are faulty. In that case, the repairman can speed up



Algorithm 2: Breadth-First search

Input : vertex i ∈ E; ∆
Output : row vector q such that qz is the probability to return to z ∈ E
P = ∅;
foreach x ∈ Γ (i) such that x ∈ Ec do

p(x)=prob. of transition i to x; put x in P

end

P last = P ;
repeat

P
last
2 = ∅

foreach vertex x ∈ P last do

foreach vertex y ∈ Γ (x) do

switch y do

case y ∈ E: InE[x, y] =prob. of transition from x to y
case y /∈ P : p(y) = p(x)∗(prob. of transition from x to y); put y
in P and in P

last
2

case y ∈ P : p(y) = p(y) + p(x)∗(prob. of transition from x to
y); put y in P

last
2

end
end

end

P last = P
last
2

until number of iteration > ∆;
foreach y ∈ P do foreach z ∈ E do qz = p(y) ∗ InE[y, z]

the fixing and with rate µ all the resources are repaired. Under these Markovian
arrival hypothesis, the considered system can be modelled as a CTMC with state
space S = {(ns, nh), C = ns + nh ≤ N} where C represents the total number of
faulty resources, ns (resp. nh) represents the number of faulty resources caused

by soft (resp. hard) error. The size of the underlying chain is (N+1)(N+2)
2 . Note

that the considered chain is not NCD because of the numerical values of rate µ
we have considered in the examples.

We present in Table 1, the conditional probability p to have the N resources
operational and the upper bound on this probability. The censored state space
contains states with no faulty hardware components. The states are ordered
according to the decreasing number of software faulty components. The second
step is to determine an element-wise lower bound to SE . We apply the shortest
path algorithm presented previously in subsection 4.1 with considering self loops.
Remind that we have to fix the maximum number of arcs of shortest paths ∆
and the number of first rows R in which we will apply the algorithm to simplify
the computation of the bound. In the following table we present results for
different values of ∆ and R that represent parameters of the algorithm given
in column algorithm parameters. Numerical Results are computed in a 3.2
GHz Intel Pentium 4 CPU with 1.5 Go of memory under Linux 2.6.8 kernel
system. We also report computation time T (in second) needed to obtain the
exact and bounding probability. We can see obviously that computation times



model size Exact algorithm parameters Bound

N space size p T ∆ R p T

100 5151 3.622e-6 1.57 2 N/4 4.14361e-6 .06
N 4.14351e-6 .08

10 N/4 4.12148e-6 .07
N 4.12111e-6 .17

300 45451 1.224e-6 32.56 2 N/4 1.408871e-6 .16
N 1.40884e-6 .22

10 N/4 1.40141e-6 .23
N 1.40127e-6 .51

500 125751 7.528e-7 168.47 2 N/4 8.76306e-7 .27
N 8.76287e-7 .39

10 N/4 8.71677e-7 .38
N 8.71588e-7 .91

1000 501501 4.013e-7 603.14 2 N/4 4.82768e-7 .78
N 4.82757e-7 1.01

10 N/4 4.80213e-7 1.08
N 4.80164e-7 2.31

10000 50015001 - - 2 N/4 2.90822e-7 55.98
N 2.90815e-7 55.10

10 N/4 2.89280e-7 71.02
N 2.89250e-7 123.01

Table 1. λs = 0.5, λh = 0.0001, µs = µ = 1, µh = 0.02

are drastically reduced using the proposed bounding approach. It also provides
results when the exact analysis fails (N = 10000). Moreover, obtained results
confirm that it is not necessary to apply proposed algorithms to all rows. For
this example we do not remark a notable difference between bounds obtained
by considering all rows R = N or (R = N/4). We can therefore decrease the
complexity of the computation of the bounds by considering only some rows.

6 Concluding Remarks

We have proposed a new method to numerically obtain simple stochastic bounds.
This method may also help to find lower bound on the absorption time if the
chain is absorbing. The chain may be very large. We are still working to improve
this approach to infinite DTMC. Indeed, we must correctly define ordering and
censoring for transient and ergodic infinite DTMC. We only require that set E
must be finite and that the absorbing states must be observed. The method only
samples some paths in the non-observed part of the chain. This allows several
tradeoffs between accuracy and computation time. We proved that if we add
a new path in the samples the new bound we obtain is stochastically smaller
than the previous one when we compute upper bound. We hope that this new
approach will open new perspectives to study very large Markov chains.
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