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Abstract— We have designed a tool to partition a Markov
Chain and have used the censoring technique and strong sto-
chastic comparison to obtain bounds on rewards and the first
passage time. We present the main ideas of the method, the
algorithms, the tool and some numerical results.

I. INTRODUCTION

We present CUT , a software tool we have developed
to bound some rewards on Discrete Time Markov Chains
(DTMCs) and which is based on strong stochastic bounds
and Markov chain censoring. The tool is a set of C programs
to build a finite DTMC which can provide stochastic upper
bounds for some steady-state and transient rewards and the
first passage time as well. The original model may be a
finite or infinite ergodic Markov chain. Previous algorithms
to numerically compute stochastic bounds have used the
lumpability approach (see [2] for the algorithms and [3] for
the tool associated) and only considered finite DTMC. Here
we show how we can compute bounds using the Censored
Markov Chain (CMC) approach and how we can deal with
large and even infinite Markov Chains. We first give in the
next chapter an introduction to CMCs and to the stochastic
complement matrix and we present the key idea for several
algorithms recently developed.

II. CMCS AND STOCHASTIC BOUNDS

Consider a discrete time irreducible Markov chain {Xn :
n = 1, 2, . . .} with state space S. Suppose that S = E ∪ Ec,
E ∩ Ec = ∅ and the subset E is finite. Suppose that the
successive visits of Xn to E take place at time epochs 0 <
n1 < n2 < . . . <. Then the chain {XE

t = Xnt , t = 1, 2, . . .}
is called the censored chain (CMC) with censoring set E [8].
Let Q denote the transition matrix of chain Xn. Consider the
partition of S to obtain a block description of Q :

Q =
(

QE QEEc

QEcE QEc

)
E
Ec (1)

The CMC only watches the chain when it is in E. The matrix
of the CMC is (Th. 2 in [8]) :

SE = QE + QEEc

( ∞∑
i=0

(QEc)i

)
QEcE (2)

Assume that (QEc) does not contain any recurrent class, the
fundamental matrix is

∑∞
i=0(QEc)i = (I − QEc)−1. CMCs

have also been called restricted or watched Markov chains.
When the chain is ergodic, there are strong relations with
the theory of stochastic complement [6]. Note that it is not
necessary here that the chain is ergodic and we can study the
absorbing time. In many problems Q can be large or infinite
and therefore it is difficult to compute (I −QEc)−1 to finally
get SE . Deriving bounds from QE and some information on
the other blocks without computing SE is therefore an in-
teresting alternative approach. In CUT , we have implemented
several algorithms to compute bounds for CMCs : (1) Truffet’s
algorithm [7] ; (2) many algorithms based on graphs and paths ;
(3) DPY algorithm that some of us have already presented [1]
and which is based on blocks QE and QEcE . In the following
we restrict ourselves due to the space limitation to the first
two types of algorithms.

A. Bounds

Consider two probability distributions p and q, we say that
p is smaller than q in the strong stochastic sense (p ≤st q) iff∑n

j=k pj ≤
∑n

j=k qj for k = 1, 2, . . . , n.
It is known that monotonicity [4] and comparability of the

transition probability matrices yield sufficient conditions for
the stochastic comparison of Markov chains and their steady-
state distributions. Vincent’s algorithm [4] is the simplest
solution to obtain a monotone upper bounding matrix of a
stochastic matrix. To build a monotone upper bound of QE

(which is only substochastic), Truffet’s method consists in
the following 2 steps : first add the slack probability in the
last column of QE to make it stochastic and then apply
Vincent’s algorithm to obtain a monotone upper bound TE

to SE . Let T (M) be the stochastic matrix obtained when
we apply Truffet’s method on substochastic matrix M . The
methods used in CUT are justified by the following theorem
whose proof is given in [5] :

Theorem 1: Let LE be an element-wise lower bound to SE ,
LE ≤ SE . Then SE ≤st T (LE) and for any substochastic
matrix LE ≤ ME ≤ SE we have SE ≤st T (ME) ≤st T (LE).

Clearly QE is an element-wise lower bound of SE and the
theorem generalizes Truffet’s method. It also states that the
more accurate the element-wise lower bound of SE , the more
accurate the stochastic upper bound of SE . To find a better
lower bound than QE , we must consider again the definition
of the transition matrix for a CMC (Eq. 2). The fundamental



matrix clearly has a sample-path structure which can be used
to obtain more accurate bounds.

Remark 1: (
∑∞

i=0(QEc)i)[j, k] is the sum of all probability
of paths entering in Ec from j and leaving it after an arbitrary
number of visits inside Ec from k.
We only need to add some paths instead of generating all
of them because we need element-wise lower bounds of the
fundamental matrix. This is the main idea of the approach
based on paths. We have adapted several well-known graph
algorithms to find some paths and compute their probability.
The first passage time bound is also justified by this path
structure of the fundamental matrix.

Remark 2: Assume that we want to compute the first pas-
sage time distribution of state j in E when the initial state
k is in E. In the censored chain, all the paths going through
Ec appear with smaller lengths. Thus the passage time in the
censored chain provides a stochastic lower bound of the real
passage time.

B. Algorithms and the design of CUT
The algorithms must find some paths which are summed

up in the fundamental matrix thus there is a trade-off between
their complexity and the accuracy of the stochastic comple-
ment matrix that they provide. We have developed several
algorithms and data structures to deal with paths exploration.
The aim is to deal with chains which are so large that the
transition matrix does not fit in memory. The first step is
to obtain the states and transitions of the chain from some
specifications. Within the tool the transitions are described by
evolution equations of states with events. We proceed by a
Breadth-First Search from a chosen initial state to generate the
set E of states. Each transition is associated to an event which
is described by a probability that may be state-dependent
and by the transitions it triggers for each of the states. The
states are described by a multidimensional vector, therefore
they are included into a Cartesian product. The user has to
modify 4 functions written in C to specify the Cartesian
product including the states, the initial state to perform the
visit, the probability of a transition, and the evolution equation
which describes all of the transitions. He must also provide
some parameters (typically the size of the components and the
maximal number of states in a path). Finally one must compile
the tool.

We always assume that matrix QE fits in memory with
sparse format. But we also have several algorithms and data-
structures to deal with set Ec and the three other blocks when
they fit or not in memory. We do not present here the details
of the algorithms because of the lack of space but we just give
some highlights (the theory and the algorithms are presented
in [5]).

The first step is to remove the single loops because they
do not help to find the first path from E to E going through
Ec. The loops will be added at the end of the algorithm to
generate a set of paths and increase the lower bound of the
probability. The two basic techniques are Breadth-First Search
and Shortest Path algorithms. Breadth-First Search algorithm

generates all the paths of length smaller than d while Shortest
Path algorithm gives the path with the higher probability when
the cost of link (a, b) is |log(Q(a, b))|. We add a constraint on
the length to avoid paths with a very large number of states (i.e.
d). Remember that we compute the shortest path according to a
cost function but not the path with the shortest hop number. We
compute the probability of the paths we have found and add
it to the corresponding elements of QE to obtain an element-
wise lower bound LE to SE . Note that we do not generate all
the paths and that the path lengths are upper bounded by d so
we can deal with an infinite Markov chain.

C. An example

We present a rather abstract model to give some results
and time measurements. We consider a set of N resources :
they can be operational or faulty. We have two types of faults
(hard/soft). The fault arrivals follow independent Poisson pro-
cesses with rate λh = 0.0001 and λs = 0.5. The distribution
of times to fix a fault are exponential with rate µh = 0.02
and µs = 1 except when all the resources are faulty. In that
case, the repairman can speed up the fixing and with rate
µ = 1 all the resources are repaired. Note that the considered
chain is not NCD because of the transitions with rate µ. We
present in Table 1, the probability p to have N resources
operational, the upper bound on this probability and the time T
(in second) to compute them. Numerical examples are obtained
by gathering in set E the states with 0 hard error. We can see
that computation times are drastically reduced using bounding
approach. It also provides results when exact analysis fails
(N = 10000).

model size Exact Bound
N space size T p T p
100 5151 1.57 3.61e-6 0.17 4.12e-6
500 125751 168.47 7.51e-7 0.91 8.71e-7
1000 501501 603.14 4e-7 2.31 4.80e-7
10000 50015001 - - 123.01 2.89e-7
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