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Abstract—1

End to end QoS of communication systems is essential for
users but their performance evaluation is a complex issue. The
abstraction of such systems are usually given by multidimensional
Markov processes whose analysis is very difficult and even
intractable, if there is no specific solution form.

In this study, we propose an algorithm in order to auto-
matically derive aggregated Markov processes providing upper
and lower bounds on performance measures. We applied the
algorithm to the analysis of an open tandem queueing network
with rejection in order to derive performance measure bounds.
Parametric aggregation schemes have been proposed in order
to compute bounds on loss probabilities and end to end mean
delays. Therefore a tradeoff between the accuracy of the bound
and the size of considered Markov chains is possible.

Keywords: Markov processes, Stochastic comparisons, Tandem
queueing networks, performance measures bounds.

I. INTRODUCTION

QoS is still a topic that attains a lot of attention in both wired
and wireless worlds. It is evident that the future networking
environment will be strongly characterized by the heterogene-
ity of networks, especially regarding the network access part,
although having IP as the common denominator. In this paper,
we propose to evaluate the performance of the whole network
from the source to the destination node in order to guarantee
to every user an end to end QoS.

Usually, systems are represented by multidimensional pro-
cesses with very large state spaces. As a result, quantitative
analysis is difficult if there is no specific solution form (prod-
uct form solutions, ...). Since, exact performance measures can
only be obtained using numerical methods [15] with small
sizes, it is important to develop new powerful mathematical
tools. In this paper, we propose to use a mathematical method
based on stochastic comparisons of Markov processes. The key
idea of this method is the following: given a large size Markov
process, we propose to bound it by a smaller new Markov
process which provides bounds on performance measures. In
[1], we apply this method on mobile networks in order to
obtain dropping handover bounds. In [4], we use it to compute
loss rates packets in an optical switch, and in [2] for the loss
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rates packets in an IP switch. [11] presents in details this
method and apply it to evaluate cell loss rates in an ATM
switch. These different studies lead to define the main steps
of the generation of an aggregated bounding Markov process
on multidimensional state spaces. In the case of totally ordered
state spaces, the lumpability and the stochastic ordering have
been combined to derive bounding Markov chains [6], [14].

In [3], we have defined an algorithm generating aggre-
gated Markov processes, but only providing upper bounds
on performance measures as loss probabilities. In the present
paper, the proposed algorithm is more general : the aggregated
Markov process provides upper or lower bound on perfor-
mance measures. Moreover, not only loss probabilities are
computed, but end to end mean delays are also estimated. The
relevance of this algorithm is that it can be applied for general
multidimensional processes, endowed with only a preorder (so
not necessarily a total order), on the state space. We have
proved using the stochastic comparison methods that proposed
aggregated Markov processes provide performance measures
bounds.

As an application of our algorithm, we evaluate the perfor-
mances of a system represented by a series of network nodes
(switches or routers), where only one flow of packets transits.
The performance study of this system is performed in order to
verify that end to end Quality of Service (QoS) constraints are
maintained. This system can be represented as an open tandem
queueing network with rejection. This tandem queues system
does not have a product-form solution. One way of analyzing
such queueing system is to solve numerically for the sta-
tionary probability vector of the underlying Markov process.
Meanwhile, memory complexity limits this approach to small
queueing networks. Most of the studies about tandem queues
are approximative methods based on system decomposition.
For instance, tandem queues with blocking have been analyzed
in [10] using approximation algorithms for any number of
queues.

This paper is organized as follows. In the next section, we
present the algorithm generating aggregated bounding Markov
processes, and in section III, we prove that the algorithm
constructs aggregated Markov processes providing bounds on



performance measures. In section IV, we apply the algorithm
to a tandem queues system in order to evaluate the loss
probabilities and the end to end mean delays. Numerical
results show that the methodology is really interesting. Main
results are discussed in section V, and comments about further
research items are given. Finally, we resume in an appendix
the stochastic ordering theory used in this paper.

II. AN ALGORITHM FOR THE STATE SPACE REDUCTION

The stochastic comparison is a mathematical tool which
allows to compute bounds on transient distributions and the
stationary distribution of a Markov process. In fact, if the un-
derlying Markov process does not have a specific solution form
like a product-form or matrix-geometric solutions, etc. the
computation of stationary probability distributions becomes
difficult or intractable for large state spaces. By means of
the stochastic comparison method, it is possible to overcome
this problem by reducing the size of the state space of the
underlying Markov process.

A. The proposed approach

We focus on performance measures computed as an in-
creasing reward function on the stationary distribution. In fact
we can consider transient reward functions with stochastic
comparison approach in the same way, but we give here only
the stationary rewards for the sake of brevity.

Let {X(t), t ≥ 0} be a Markov process defined on a
multidimensional and preordered (not necessarily a totally
ordered) state space E, with an infinitesimal generator Q.
We suppose that the process is irreducible so the stationary
distribution Π exists. We denote by R a performance measure
computed on Π as follows

R =
∑

x∈E

Π(x)f(x) (1)

where f is an increasing reward function on distribution Π
according to the preorder defined on E. If there is no specific
solution for distribution Π, then it is very difficult to obtain
as the state space E is very large. We propose an algorithm
which builds a new Markov process on a subset of E, by
gathering some states and by mapping them into one state.
This algorithm can be applied only if two conditions are ver-
ified. First, we need to define on the state space E a preorder
¹ compatible with R (R is written as an increasing reward
function f on Π according to ¹). Secondly, {X(t), t ≥ 0}
must be ¹st monotone (see Definition 5 in the appendix). The
main steps of the algorithm are the definition of the aggregated
state spaces with the mapping functions, and the construction
of the infinitesimal generator matrices of aggregated processes.

B. Aggregated bounding Markov processes

We present the algorithm which generates the aggregated
Markov process {Xs(t), t ≥ 0} (resp. {X l(t), t ≥ 0})
representing the upper bound (resp. the lower bound) defined
on the state space Ss (resp. Sl) with the infinitesimal generator
Qs (resp. Ql). First, we explain how to derive the mapping

function Ags : E → Ss (resp. Agl : E → Sl) for the upper
bound (resp. the lower bound). Some states are not aggregated
which means that they are exactly represented, and others are
put together in order to be mapped into one state.
• If a state xi of E is not aggregated with other states, then
it is mapped into the same state xi. So Ags(xi) = xi (resp.
Agl(xi) = xi) for the upper bound (resp. lower bound). And
xi is called a ”simple” state of Ss (resp. Sl).
• If the states of the set of states {x1, . . . , xi, . . . , xn} of E
where x1 ¹ x2 . . . ¹ xn are put together, then for the upper
bound (resp. the lower bound), Ags(x1) = . . . = Ags(xi) =
. . . = Ags(xn) = xn and xn is called a ”macro” state of Ss,
(resp. Agl(x1) = . . . = Agl(xi) = . . . = Agl(xn) = x1 and
x1 is called a ”macro” state of Sl) .

Note that the mapping function must be defined as an
increasing function, in order to have the monotonicity property
verified (see section III.A).

We introduce MAgs , the matrix representation of the map-
ping function Ags, described for Theorem 2 of the Appendix.
The infinitesimal generator Qs is defined from Q and MAgs

as follows:

∀x ∈ Ss, Qs[x, ∗] = Q[x, ∗]MAgs

where Q[x, ∗] represents the row in matrix Q corresponding
to state x. And equivalently, the infinitesimal generator Ql is
computed from Q and MAgl as follows:

∀x ∈ Sl, Ql[x, ∗] = Q[x, ∗]MAgl

As we can see, the main advantage of this algorithm is to
generate automatically an aggregated Markov process provid-
ing performance measure bounds. Obviously, the bounds are
more accurate if Qs and Ql are defined close to Q. However,
the definition of the mapping functions Ags and Agl, which
means the choice of the states to aggregate is not simple, and
is fixed after trying different aggregation schemes in order to
see their impact on the quality of the bounds.

Next, we prove using the stochastic comparisons of Markov
processes that our algorithm really provides aggregated bounds
(upper or lower).

III. ALGORITHM PROOFS AND RESULTS

Using the stochastic ordering theory presented in the Ap-
pendix, we prove that aggregated Markov processes represent
bounds for the Markov process {X(t), t ≥ 0}. So we have
to verify that : {Ags(X(t)), t ≥ 0} ¹st {Xs(t), t ≥ 0} and
{X l(t), t ≥ 0} ¹st {Agl(X(t)), t ≥ 0}.

We give only the proof for the lower bound, as the first one
has been presented in [3]. In order to apply Theorem 2 of the
Appendix, we have to prove the condition 2) which means the
monotonicity of one of the processes by mapping functions.

A. The monotonicity condition

We need to define the following proposition for a Markov
process {X(t), t ≥ 0} defined on E.

Proposition 1: If the following conditions 1 and 2 are
satisfied:



1) {X(t), t ≥ 0} is ¹st-monotone
2) f : E → S is an increasing function

then {f(X(t)), t ≥} is also ¹st-monotone
This proposition can be easily proved using the coupling

of processes [7], [8]. In our case, {X(t), t ≥ 0} is ¹st-
monotone, and Agl is an increasing function, then using
Proposition 1 we deduce that {Agl(X(t)), t ≥ 0} is also ¹st-
monotone. So condition 2) of Theorem 2 of the Appendix is
verified.

B. Infinitesimal generator comparisons

It follows from Theorem 2 of the Appendix that we have
to verify condition 3):

∀x ∈ Sl, y ∈ E | x = Agl(y), Ql[x, ∗] ¹st Q[y, ∗]MAgl

We have two cases for a state x ∈ Sl:
• if x is a simple state, then x is mapped to itself : x =
Agl(x). In this case, it follows from the definition of Ql that
Ql[x, ∗] = Q[x, ∗]MAgl , thus for a simple state x, we have
Ql[x, ∗] ¹st Q[x, ∗]MAgl .
• if x is a macro state, then ∃x1, . . . xn ∈ E such that
Agl(x1) = . . . = Agl(xn) = x. As x represents the lower
state, if xn º . . . ,º x1, then we have x = x1. In this case,
Ql is defined as Ql[x, ∗] = Q[x1, ∗]MAgl .

Since {Agl(X(t)), t ≥ 0} is ¹st-monotone, we have
Q[x1, ∗]MAgl ¹st Q[x2, ∗]MAgl ¹st . . . ¹st Q[xn, ∗]MAgl

[13], [7]. Therefore ∀1 ≤ i ≤ n, Ql[x, ∗] ¹st Q[xi, ∗]MAgl ,
and for a macro state x ∈ Sl, we have :

Ql[x, ∗] ¹st Q[y, ∗]MAgl , ∀y ∈ E | Agl(y) = x

As the inequality is true for all states x ∈ Sl, it follows
from Theorem 2 of the Appendix that if the condition 1) is
verified, we have:

{X l(t), t ≥ 0} ¹st {Agl(X(t)), t ≥ 0}
The upper bound follows similarly Theorem 2 of the Ap-

pendix :

{Ags(X(t)), t ≥ 0} ¹st {Xs(t), t ≥ 0}
C. Performance measures comparison

The stochastic comparison of stochastic processes generates
the stochastic comparison of transient and stationary probabil-
ity distributions :

ΠMAgs ¹st Πs and Πl ¹st ΠMAgl

For all performance measures R =
∑

x∈E Π(x)f(x), where
f is an increasing reward function on E, we have (as Ags is
a mapping function to an upper state):

R =
∑

x∈E

Π(x)f(x) ≤
∑

x∈Ss

ΠMAgs(x)f(x)

and from the stochastic ordering relation we have for the
upper bound:

∑

x∈Ss

ΠMAgs(x)f(x) ≤ Rs =
∑

x∈Ss

Πs(x)f(x)

It is similar for the lower bound, so we can deduce that for
all performance measures R written as an increasing reward
function f on the stationary distribution Π, we can compute
an upper (resp. lower) bound Rs (resp. Rl) on Πs (resp. Πl),
such that : Rl ≤ R ≤ Rs.

IV. APPLICATION AND NUMERICAL RESULTS

We propose to apply the proposed algorithm to the perfor-
mance evaluation of an open tandem queueing network.

A. Open tandem queueing network

The system understudy represents a path in a network
defined as a series of network nodes (switches, routers) where
transits only one flow of packets. We suppose that the leftmost
node has the index 1, and indexes increase in the path until
node n. This system can be represented by n finite capacity
queues in tandem. Queues are numbered from 1 to n starting
from the leftmost queue.

External arrivals occur only in queue 1 , and after this
flow transits in queues 2, . . . , n if there is enough place in
each queue. We suppose that arrivals are Poisson process in
queue 1 with rate λ, and in each queue i, the service time is
Exponential with rate µi, and the capacity is finite denoted by
Bi. After a service in queue i, the packet transits to the next
queue i + 1 if there is enough place, otherwise the packet is
lost.

This system is represented by a Markov process {X(t), t ≥
0} on E = {0, . . . , B1} × . . . × {0, . . . , Bi} × . . . ×
{0, . . . , Bn}. Each state x ∈ E is represented by a vector
x = (x1, . . . , xi, . . . , xn), where xi is the number of packets
waiting in queue i. We suppose that the stationary distribution
denoted Π exists.

The goal of this performance study is to compute the loss
probabilities Pi of any queue i, and the end to end mean delay
D. Pi is given by :

Pi =
∑

x∈E|xi=Bi

Π(x) (2)

For the end to end mean delay, we have the following
assumptions. For each queue i we denote by: λi the effective
arrival rate, Di the mean delay, and by Ni the mean number of
packets. The effective arrival rates are computed as follows:
λ1 = λ(1 − P1), and λi = λi−1(1 − Pi) for 1 ≤ i ≤ n.
The mean delay Di for node i is computed through the Little
formula: Di = Ni

λi
, where Ni =

∑
x∈E xiΠ(x). The end to

end end mean delay D is obtained by summing the mean
delays Di through the path: D =

∑n
i=1 Di.

The resolution of {X(t), t ≥ 0} in order to compute
distribution Π is very difficult: there is no product-form,
and the number of states increases exponentially with the
number of components. We apply the algorithm to construct
aggregated bounding Markov processes in order to derive the
performance measure bounds. The following two conditions
must be verified to apply the algorithm.



B. Algorithm conditions

The first one is the definition on the state space E of an
order compatible with the performance measures. We propose
the component-wise partial order:

∀x, y ∈ E x ¹ y ⇔ x1 ≤ y1, . . . , xn ≤ yn

We choose this preorder because it allows to make com-
parisons on each queue, and it is compatible with the loss
probabilities Pi, and the mean number Ni in each queue i
which is used for the computation of the end to end mean
delays. Both can be written as increasing reward function f
according to the order ¹ defined on E.

From expression of Pi (equation (2)), for a state x ∈ E, the
reward function f is: f(x) = 1 if xi = Bi, and = 0 otherwise,
thus f is an increasing reward function according to the order
¹ defined on E.

The mean delay Di is computed from the mean number Ni

of packets in queue i. In this case, f is also an increasing
function : it equals xi for the state x where the ith com-
ponent equals xi, and 0 otherwise. The second condition is
the monotonicity of the process then we have to prove that
{X(t), t ≥ 0} is ¹st-monotone.

Proposition 2: The considered tandem queue with rejection
is ¹st-monotone.

This proposition is proved in [3].

C. Performance measure bounds

We have verified the two conditions of the algorithm, then
we can apply it in order to compute performance measure
bounds. We define two aggregated Markov processes: the
upper bound {Xs(t), t ≥ 0} on the state space Ss ⊂ E, with
infinitesimal generator Qs, and the lower bound {X l(t), t ≥
0} on the state space Sl ⊂ E, with infinitesimal generator Ql.
Aggregation schemes associated to the mapping functions are
specified precisely in section IV.D.

State spaces Ss and Sl are generated from E, and in-
finitesimal generator Qs and Ql are computed from Q. So
we obtain the aggregated Markov processes : {Xs(t), t ≥ 0}
and {X l(t), t ≥ 0} such that

{Ags(X(t)), t ≥ 0} ¹st {Xs(t), t ≥ 0}
and

{X l(t), t ≥ 0} ¹st {Agl(X(t)), t ≥ 0}
For the performance measures, we have the following

proposition :
Proposition 3: We have :

∀1 ≤ i ≤ n, P l
i ≤ Pi ≤ P s

i , and
n∑

i=1

Dl
i ≤ D ≤

n∑

i=1

Ds
i

Proof: As the loss probabilities Pi and the mean packet
number Ni in each queue i are written as increasing reward
functions on the stationary distributions, then from section
III.C, we have the following inequalities :

∀1 ≤ i ≤ n, P l
i ≤ Pi ≤ P s

i and N l
i ≤ Ni ≤ Ns

i (3)

The comparison of the loss probabilities is derived directly
from stochastic comparison of the processes. For the end to
end mean delays, we have to prove the inequalities. We denote
by λs

1 = λ(1 − P s
1 ), and for 2 ≤ i ≤ n λs

i = λs
i−1(1 −

P s
i ). Similarly, λl

1 = λ(1 − P l
1), and for 2 ≤ i ≤ n λl

i =
λl

i−1(1 − P l
i ). Therefore, it follows from inequalities on the

loss probabilities (Eq. 3): λs
i ≤ λi ≤ ∀I . From the Little

formula, we have for any queue i : Ds
i = Ns

i

λs
i

. Since Ni ≤ Ns
i ,

and λi ≥ λs
i , we have Di ≤ Ds

i .
Similarly, for the lower bound, as Ni ≥ N l

i and λi ≤ λl
i

we have : Di ≥ Dl
i. So we can deduce an upper bound and a

lower bound for the end to end delay D =
∑n

i=1 Di:
n∑

i=1

Dl
i ≤ D ≤

n∑

i=1

Ds
i

The relevance of this result is that we have solved the
problem of obtaining the loss probabilities and the end to end
mean delays by the computation of upper and lower bounds.
In the next section, we give some numerical results of the
loss probability bounds by considering different aggregation
schemes.

D. Numerical Results

In this analysis, we are interested in the packet loss proba-
bilities of the last queue and the end to end mean delays. We
propose the following aggregation scheme in order to com-
pute upper and lower bounds on the considered performance
measures. The scheme is based on a parameter ∆ (Delta)
which indicates the absolute difference between the number of
packets in queues i and j. The states for which the difference
between the number of packets in queues i and j is greater
than ∆ are aggregated to upper states for the upper bounds
and to lower states for the lower bounds. For lower states,
it is the same principle except that, if the difference between
the number of packets in queues i and j is greater than ∆,
then the number of packets in queue i becomes equal to the
number of packets in queue j by adding ∆. The aggregated
Markov chains are directly generated by taking into account
this modified dynamics and they are irreducible. Obviously,
the accuracy will be better for larger values of ∆ and we
have the exact process if ∆ = B. This aggregation scheme is
interesting since it lets to find a tradeoff between the accuracy
of bounds and the numerical complexity.

We give numerical results for a model with four buffers
in tandem. We suppose that the service rate µi is 100Mb/s
in each queue, the packet size is 512 bytes and we vary the
input bit rate λ from 50 Mb/s to 90 Mb/s. We give results for
the Packet Loss Probabilities (PLP) of the last queue and for
the end to end mean delays (MD). As the exact values can
be obtained only for limited state space sizes, we could not
take large queueing systems. First, we propose to compare the
exact values with the upper and lower bounds for system with
same capacity of buffer equal to Bi = B = 20 for 1 ≤ i ≤ 4.
The size of the exact Markov process is 194481 and we take
different values of ∆.



In figure 1, we give upper bounds for ∆ = 15, lower bounds
for ∆ = 15 and exact values for packet loss probabilities.
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In figure 2, we give upper bounds, lower bounds and exact
values for the end to end mean delays. Two values of Delta
are tested : ∆ = 10 and ∆ = 15. For ∆ = 10, the size of the
aggregated Markov process is 158071 and for ∆ = 15, the
size is 191751.
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In the both figures 1 and 2, we give exact values in order
to show the quality of the bounds. The aggregated scheme
provides accurate bounds.

We can notice that while ∆ increases, the bounds are tighter
since we approach to the exact values. On the other hand, if ∆
decreases, the size of the aggregated process decreases, thus
numerical analysis becomes tractable. Hence, the value of ∆
lets to find a tradeoff between the accuracy of the bounds and
the complexity of numerical resolution.

In figure 3, we study a system with larger buffer sizes.
We take take buffer sizes equal to 40, so the size of the
exact Markov chain is 2825761. Performance measures are
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computed for two values of ∆ : ∆ = 20 and ∆ = 15. The
size of aggregated chain with ∆ = 20 is equal to 2296141
and with ∆ = 15, it is equal to 1604036. In figure 3, we give
upper bounds and lower bounds for ∆ = 20 and ∆ = 15.
We can notice that the small difference between upper and
lower bounds which let us to conclude that our aggregated
scheme gives accurate bounds. Thus, this approach seems
promising, we are working in the numerical analysis for large
buffer sizes. Note that we have proposed in this paper a
particular aggregation scheme, it is possible to consider other
aggregation schemes. We are working to see the impact of
these schemes on the quality of bounds.

V. CONCLUSION

Performance evaluation of communication systems for end
to end QoS is important but complex to do. Quantitative
analysis of multidimensional Markov chains may be very
difficult, so we propose a general algorithm in order to reduce
the state space size. The so generated aggregated Markov
processes provide bounds on performance measures written as
increasing reward functions on the stationary distributions. The
algorithm has been applied to the analysis of an open tandem
queueing network with rejection. We derive two important
performance measures bounds : loss probabilities and end to
end mean delays. Different aggregation schemes can be used
since the constraints on the aggregated states are not restrictive.
The proposed aggregation scheme lets to construct easily the
underlying aggregated chains with different sizes. Thus we
can have a tradeoff between the accuracy of bounds and the
computation complexity. Furthermore, the proposed approach
can be also applied to provide transient bounds.

APPENDIX

We present in this appendix some theorems and definitions
about stochastic orderings used in proofs presented in this
paper.

Two formalisms can be used for the definitions: increasing
functions [13], [5] or increasing sets [9] .



The ¹st ordering is the most known stochastic ordering, it is
equivalent to the sample path ordering (see Strassen’s theorem
[13]). Stochastic orderings are defined only on discrete and
countable state space E, where a binary relation ¹ is defined
at least as a preorder [13].

We consider two random variables X and Y defined respec-
tively on E, and their probability measures given respectively
by the probability vectors p and q where p[i] = Prob(X =
i), ∀i ∈ E (resp. q[i] = Prob(Y = i), ∀i ∈ E). The ¹st

ordering can be defined using increasing functions as follows
[13]:

Definition 1: X ¹st Y ⇔ E[(f(X))] ¹ E[(f(Y ))] ∀f :
E → R, ¹-increasing whenever the expectations exist.
Different methods are associated to the ¹st ordering: the
coupling [13], [7], or the increasing set theory [9].
We present now the comparison of stochastic processes. Let
{X(t), t ≥ 0} and {Y (t), t ≥ 0} stochastic processes defined
on E.

Definition 2: We say that {X(t), t ≥ 0} ¹st {Y (t), t ≥ 0}
if X(t) ¹st Y (t),∀t ≥ 0

Methods as increasing sets and coupling can also be used
for Markov processes. Here we give the theorem of the
coupling of the processes [7], [13]. Two processes are defined
in this theorem:

{
X̂(t), t ≥ 0

}
(resp.

{
Ŷ (t), t ≥ 0

}
)) hav-

ing the same infinitesimal generator as {X(t), t ≥ 0} (resp.
{Y (t), t ≥ 0}).

Theorem 1: We say that {X(t), t ≥ 0} ¹st {Y (t), t ≥ 0}
if and only if there exists the coupling {(X̂(t), Ŷ (t)), t ≥ 0}
such that: X̂(t) ¹ Ŷ (t), ∀t ≥ 0

When the processes are defined on different states spaces
we can compare them on a common state space using mapping
functions. Let X(t) (resp. Y (t) ) be defined on E (resp F ),
and g (resp. h ) be a many to one mapping from E (resp. F )
to S.

The stochastic comparisons of these processes by mapping
functions is [5]:

Definition 3: We say that {g(X(t)), t ≥ 0} ¹st

{h(Y (t)), t ≥ 0} if g(X(t)) ¹st h(Y (t)), ∀t ≥ 0
Mapping functions used in this paper must be ¹-increasing.

Next, we give the definition of an increasing function f :
Definition 4: We said that f : E 7→ S is ¹-increasing if

and only if: ∀x, y ∈ E, x ¹ y ⇒ f(x) ¹ f(y)
For processes defined on different states spaces, Theorem

1 can be reformulated [5]. We present in the sequel only the
increasing set theory using infinitesimal generators matrices
because it is the formalism developed in the algorithms
presented in this paper. If we suppose that {X(t), t ≥ 0}
(resp. {Y (t), t ≥ 0} ) is a Markov process with infinitesimal
generator matrix Q1 (resp. Q2), then we present the theorem
of the stochastic comparison of Markov processes defined on
different state spaces using increasing set formalism [9], [13].

The mapping functions are represented by a matrix for-
malism as follows. Let Mg (resp. Mh) denote the matrix
representing the mapping g (resp. h).

Mg[i, j]i∈E and j∈S =
{

1 if g(i) = j
0 else

Theorem 2: If the following conditions 1, 2 and 3 are
satisfied:

1) g(X(0)) ¹st h(Y (0))
2) {g(X(t)), t ≥ 0} or {h(Y (t)), t ≥ 0} is ¹st-monotone
3) Q1[x, ∗]Mg ¹st Q2[y, ∗]Mh, ∀x ∈ E, y ∈ F, g(x) =

h(y)
then we have: {g(X(t)), t ≥ 0} ¹st {h(Y (t)), t ≥ 0}

where Q1[x, ∗] is the row in the matrix Q1 corresponding
to the state x. And,

Q1[x, ∗]Mg ¹st Q2[y, ∗]Mh

is equivalent to: ∀x ∈ E, y ∈ F | g(x) = h(y)
∑

g(z)∈Γ

Q1(x, z) ≤
∑

h(z)∈Γ

Q2(y, z), ∀Γ ∈ Φst(S)

where Γ is an increasing set from Φst(E), inducing the ¹st

ordering [9]. Note that the stochastic comparison of Markov
processes by mapping functions can be interesting for reducing
the state space size of Markov processes, in order to define
bounding aggregated Markov processes as we will see in this
paper.
The monotonicity of the Markov process is used in condition
(2) of this theorem. The monotonicity of a stochastic process
is defined as an increasing in t [7].

Definition 5: We say that {X(t), t ≥ 0} is ¹st -monotone
if X(s) ¹st X(t),∀s, t ∈ R+, s ≤ t
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