
Resource-Aware Verification using Randomized
Exploration of Large State Spaces

Nazha Abed1, Stavros Tripakis2, and Jean-Marc Vincent1 ?

1 LIG, 51, avenue Jean Kuntzmann, 38330 Montbonnot Saint-Martin, France
2 Cadence Laboratories, 2150 Shattuck Avenue, Berkeley, CA 94704

Abstract. Exhaustive verification often suffers from the state-explosion
problem, where the reachable state space is too large to fit in main mem-
ory. For this reason, and because of disk swapping, once the main mem-
ory is full very little progress is made, and the process is not scalable.
To alleviate this, partial verification methods have been proposed, some
based on randomized exploration, mostly in the form of random walks.
In this paper, we enhance partial, randomized state-space exploration
methods with the concept of resource-awareness: the exploration algo-
rithm is made aware of the limits on resources, in particular memory and
time. We present a memory-aware algorithm that by design never stores
more states than those that fit in main memory. We also propose crite-
ria to compare this algorithm with similar other algorithms. We study
properties of such algorithms both theoretically on simple classes of state
spaces and experimentally on some preliminary case studies.

1 Introduction

To verify system correctness, one can proceed by exhaustive verification (e.g.
model checking) or testing. Model checking [1,2,3] has gained wide acceptance
within the hardware and protocol verification communities, and is witnessing
increasing application in the domain of software verification. When the state
space of the system under investigation is finite, model checking may proceed
in a fully automatic, push-button fashion. Moreover, should the system fail to
satisfy the formula, a counter example trace to the error state is produced.
Model checking however is not without its drawbacks, the most prominent of
which is state explosion: the phenomenon where the size of a system’s state space
grows exponentially in the size of its specification. State explosion can render the
model-checking problem intractable for many applications of practical interest.

Testing, on the other hand, is typically performed directly on the imple-
mented system. This has the advantage of checking the “real” system instead of
a model of it. The disadvantage is that anomalies are detected often too late,
resulting in high costs to correct them. Testing is inherently incomplete, as there
is no guarantee of covering the state space even after several experiments.

? This work is partially supported by the ANR SETIN Check-Bound and the Region
Rhône-Alpes, France.

2 Abed, Tripakis, Vincent

Researchers have developed a plethora of techniques aimed at curtailing state
explosion, by reducing the amount of memory necessary for states storage or re-
ducing the state space to explore. Examples of the approaches made to reach the
first goal are hash compaction [25] and bi-state hashing [22] which consists of
encoding the graph states by the memory bits via a hash function. The methods
that aim to reduce the state space include partial-order reduction methods [26];
which are based on the observation that executing two independent events in
either order results in the same global state and symmetry reduction [27]; which
uses the existence of nontrivial permutation group that preserves the state tran-
sition graph. There is also symbolic model checking techniques that operate on
sets of states rather than individual states, and represent such sets symbolically,
for instance, using binary decision diagrams (BDDs) [6]. In this paper we focus
on explicit enumerative state space exploration methods.

Other techniques aim at a partial, i.e., incomplete, exploration of the state
space, in particular, using randomized algorithms, which make decisions based
on outcomes of random experiments such as tossing a fair coin or generating
a random number. Randomized algorithms are extensively used, basically for
two reasons: simplicity and speed [4]. A consequence of using randomization is
that correctness or termination can often be asserted only with some controlled
probability.

The randomized algorithms proposed in the literature are mostly based on
random walks. A random walk on a graph starts from the initial state, and at
each step, chooses with uniform probability a successor of the current state and
visits it. This choice is independent from the traversal history, which is charac-
teristic of a Markov chain. When the random walk encounters a deadlock point,
it restarts from the initial state. The algorithm terminates when a target state
is reached or when the expected number of the visited states reaches a certain
limit. This method stores only an actual state and does not keep any information
about previously visited states, thus it has very little memory requirements.

This simple form of random walk was applied first to model-checking by
West [8] and more recently in [9,12,10]. Because it is completely memory free,
the random walk method cannot distinguish between visited and not visited
states, and so it may spend a large amount of time repeatedly visiting the same
states: we call this redundancy. Because of this, covering the entire graph (or
a high portion of it) may need a prohibitively large amount of time. Also, the
frequency (probability) of visits may be very variable from one state to another
(some states are more frequently visited than others). This frequency depends
on the graph structure as well as the algorithm behavior.

Several methods have been proposed to avoid these drawbacks. Some of these
methods try to force exploration direction, like the re-initialization methods that
restart the random walk process periodically to avoid blocking in a small closed
components for a long time. The re-initialization can be made from a random
state of the previous walk and not necessary from the initial state. This has
the advantage to minimize redundancy and reach deep states [11]. The local
exhaustive search combined to random walk [14] explores better some regions

Resource-Aware Verification using Randomized Exploration 3

of interest (dense regions for example) which cannot be well explored with only
simple random walk. This may be the case for example if one knows that it
is near a target node. Guided search decides of the next exploration direction
based on general information about the graph and system semantics. In [15], the
authors use a metric to estimate reachability probability of a target node. To
gain in memory and time, the parallelization method of random walk seems to
be very useful and efficient. It explores more states [14] and reduces significantly
the error probability [12].

Other methods use some additional memory to keep a subset of the visited
states. These states are used to report the counter example trace as done in trac-
ing methods or to limit revisits of same nodes and improve the coverage as done
in caching methods [16] [17]. Caching is an exploration algorithm that focuses
on the strategy of nodes storing and deletion from the cache. The exploration
scheme can be deterministic, as in a breadth-first or depth-first search (BFS,
DFS), or random. In [20], the proposed algorithm uses BFS with a randomized
partial storage. When the memory is full, the algorithm proceeds at a lower
speed but does not give up. As reported in [20], this algorithm can save 30%
of the memory with an average time penalty of 100%. Other methods that use
randomization in a verification context include [?,?,?,?,?,?]. COMPLETE

All the methods mentioned above that are based on random walk improve
the redundancy of exploration but the cover time can still be very large. In this
paper, we propose methods that aim to further improve exploration by avoiding
redundancy and reducing the cover time. First, we propose a generic scheme
that aims to encompass special instances of algorithms. Then, we propose the
Uniform Random Search (URS) algorithm, which is based on a different selection
function than random walk (RW). While RW is a depth-oriented algorithm, URS
can go in depth, in breadth or in a uniform fashion. We can also control the rate
of depth or breadth exploration by tuning a mixing parameter.

A major novelty of our exploration scheme lies in the fact that it explicitly
uses a parameter N that represents the maximum number of states that can be
stored in main memory at any given time. Thus, our algorithms are resource-
aware, and in particular, memory-aware. Main memory is the main bottleneck
in exhaustive verification, for reasons we explain below. Our scheme tries to
overcome this by explicitly taking into account the resource constraints and
using them to make decisions during the exploration.

The randomized algorithms proposed are sound, which means that if a bug is
found then the model is indeed incorrect. As in [12,10], they are probabilistically
complete, in the sense that if after several iterations no bugs are found, then
the system is correct with some probability which depends on the number of
iterations and visited states.

WE NEED TO COMMENT WHAT’S THE DIFFERENCE WITH
YOUR CONCUR PAPER

The rest of the paper is organized as follows: The proposed scheme and
algorithm are detailed in section 2. Section 3 gives some general theoretical

4 Abed, Tripakis, Vincent

results that are projected on two cases of regular graphs. Experimental results
are summarized in section 4, while section 5 contains our conclusion.

2 Context and Algorithms

We model a system as a directed transition graph G(M,v0,Succ), where, M
is a finite set of nodes representing the system states, v0 is the initial node
(v0 ∈ M) and Succ is the transition function: it takes as input a node v and
returns as output the set of all successors of v. We do not dispose of the entire
transition graph. We can, however, construct and explore it gradually by means
of the initial state and the transition function Succ. We assume that the available
main memory can store at most N states. N can be computed by dividing the
size of the memory, by the size of the memory representation of each state. To
generate randomized algorithms, a pseudo-random numbers generator is given.
The generated numbers can be considered as uniformly distributed in [0, 1], based
on which, other distribution laws can be generated if necessary.

To verify a given safety property stated as an invariant φ, the simplest method
is to explore the graph G and verify φ for each state s ∈ G. If we use an exhaustive
deterministic exploration, the computer’s memory will be rapidly filled by the N
first reachable states (N depends on the available memory as said above). Then,
the computer will typically spend most of its time swapping memory to/from disk
with very few additional states explored. This is clearly non-scalable: running
the model-checker for several days may result in only a few additional visited
states than running it only a few hours. Instead, we choose a memory-aware,
randomized, partial exploration, and repeat it several times with different paths
(consequence of randomization) to cover as many reachable states as possible.

One wishes, naturally, that the randomized algorithm explores the state space
efficiently, i.e., quickly and using reasonable memory resources. Since the memory
size is given and finite, a good exploration is defined mainly according to the
time it takes: one can hope to cover with a randomized algorithm a considerable
percentage of the reachable graph in less time than with the exhaustive algorithm
which will be quickly blocked because of the swapping.

2.1 A generic randomized exploration scheme

A random exploration algorithm can be cast into the generic scheme shown in
Figure 1. P represents the algorithm parameters, for example the memory size
N , the number of initial parallel runs in the case of a parallel random walk [14],
ect. This last parameter, among others, can be modified during the algorithm
execution according to the available resources and exploration needs. The set I
contains global information on the graph structure, for instance, mean number
of successors per node, mean number of loops, strongly connected components,
etc. Note that this type of information can be collected on the fly and used to
guide and optimize the exploration [15].

Resource-Aware Verification using Randomized Exploration 5

V : set of stored nodes;
P : algorithm parameters;
I : global information;
v : node;

V ← V0; //Set of initial nodes
P ← Par; //Algorithm parameters
I ← I0; //Initial global information

While (not stop condition) do
v ← select(V, P, I);
check(v); //verify if the property holds
(V, I) ← update(V, v, P, I);

done

Fig. 1. The general randomized exploration scheme

A specific algorithm that fits the above scheme is defined by specifying the
stop condition and the two functions select and update. With these three pa-
rameters, one can define many variants of the general algorithm, including many
found in the literature. The stop condition can be, for example, the presence of
a deadlock, exhaustion of the expected number of steps or simply reaching a tar-
get state. Some algorithms in the literature emphasize state storage and deletion
strategies (FIFO, LFU, LRU, random ...), like the caching techniques [17] [16],
so they focus in optimizing the update function. The update function modifies
the sets V and I in order to optimize the consumed resources and make the
evolution of the exploration effective. As mentioned in the introduction, our in-
terest is mainly the exploration strategy itself, that is the select function. The
select function chooses at each step the next node v, to be visited from the set
of successors of V ; the already visited states still in memory. This choice can be
guided by the information in I.

In this scheme, the random walk algorithm has as stop condition the reacha-
bility of a deadlock point or the reach of a target node according to the algorithm
goal. The select function is a uniform random choice between the successors of
the current node (the single stored in V), when the update function consists
on simply replacing the current node by the one lastly chosen. In presence of a
deadlock, the current node takes the value of the initial state and so on.

As we are interested in the exploration strategy, we propose a Uniform Ran-
dom Search (URS) algorithm based on a new select function: see Figure 2. We

6 Abed, Tripakis, Vincent

have a set V of already visited states. V is of size N : that is, the algorithm
ensures that there are never more than N states in V . Initially this set contains
the initial state v0. At each step i, the URS algorithm picks uniformly one visited
state u from V , and then uniformly chooses one successor v of u. Note that this
does not imply a uniform choice from all the visited node successors. If v is not
already visited then it is checked with respect to the safety property and added
to the set of visited states. The algorithm stops, and eventually restarts, when
the memory is full (j = N) or when the expected number of steps, n, is reached.

Uniform Random Search – URS

V : set of stored nodes;
N : Maximum size of V ;
n : Maximum number of steps;
v, u : nodes;
i, j : integers;

V ← {v0};
i ← 0;
j ← 0;

While ((j ≤ N) and (i ≤ n)) do
u ← pick uniformly a node in V ;
If (Succ(u) 6= ∅) then

v ← pick uniformly a node in
Succ(u);
If (v /∈ V) then

check(v);
V ← V ∪ {v};
j ← j + 1;

end If
end If
i ← i + 1;

done

Simplified, Memory-Aware Deep
Random Search – SDRS

V : set of stored nodes;
N : Maximum size of V ;
n : Maximum number of steps;
v : current node;
i, j : integers;

V ← {v0};
v ← v0;
i ← 0;
j ← 0;

While ((j ≤ N) and (i ≤ n)) do
If (Succ(v) = ∅) then

v ← pick uniformly a node in V ;
else

v ← pick uniformly a node in
Succ(v);
If (v /∈ V) then

check(v);
V ← V ∪ {v};
j ← j + 1;

end If
end If
i ← i + 1;

done

Fig. 2. The URS and SDRS algorithms

[11] presents an extended random-walk based algorithm called Deep Random
Search (DRS). The stop condition of DRS does not consider the limited memory

Resource-Aware Verification using Randomized Exploration 7

size and supposes that the set of “non-closed” nodes (i.e., that have at least one
non-visited successor) fits in main memory. In this paper we use a simplified, but
memory-aware, version of DRS, that we call SDRS. Like URS, SDRS can keep
at most N states in memory at any given time. This puts the two algorithms in
the same framework and allows comparisons. SDRS has the same stop condition
as URS. The select and update functions of SDRS are the same as for simple
random walk except that the current node is reset to a node chosen randomly
in V and not to the initial node.

When the main memory is full, the algorithms are stopped, the memory is
emptied and the algorithms are restarted. This can be repeated several times.
The re-initialization can be done from the initial state or from another randomly
chosen state from the set V of states visited during the last exploration. Note
that the initialization from the initial state often does not result in a very high
degree of redundancy because the number of states in each repetition is very large
and can usually match the graph’s diameter. In the rest of the paper, we will
consider two situations in our analysis and experimental results. In one situation
we suppose that the main memory is large enough to contain the entire state
space of the graph under exploration. In this case, we will speak of the versions of
the algorithms URS and SDRS where these do not have to be reinitialized. In the
second, more realistic case for industrial-size examples, the main memory cannot
store the entire state space, and the algorithms are run multiple times, after re-
initialization as described above. In this case, we will denote the algorithms by
RURS and RSDRS to emphasize the fact that they are re-initialized.

2.2 Evaluation criteria

URS and SDRS are only two of the many possible memory-aware, randomized
exploration algorithms one can think of. The question is, which algorithm is
better, in which cases, and what exactly does “better” mean? To answer these
questions, we need some criteria to evaluate performance of such algorithms. We
define such criteria in two ways: stochastic and experimental.

One useful criterion is mean cover time. The cover time is the number of steps
needed by a given algorithm which starts at the initial state to cover (i.e., visit)
some percentage of the set of reachable states.3 The mean cover time gives a good
indication on the capacity of the algorithm to reach states and explore most of
the graph. Cover time also reflects what can be termed response time, with an
error ε. For example, if one needs a response about the system correctness with
probability of error ε = 0.05, the necessary time for giving this response can be
defined as the cover time of 95% of the graph. Some exploration algorithms will
provide this answer in less time than others.

When the set of reachable states is unknown, we compare the number of
covered nodes (i.e., visited nodes). As the number of the visited nodes increases,
3 For the random walk, in the case of undirected graphs, the mean cover time of any

graph is polynomial [24]. In the case of directed graphs it is in general exponential,
except for some restricted classes [12]. These classes are so restricted that they are
not very interesting for model checking.

8 Abed, Tripakis, Vincent

the probability that a node already visited is revisited typically increases (redun-
dancy). It results from this, that the number of newly visited nodes decreases
according to the execution time Te. From this fact, the coverage progression is,
typically, a logarithmic curve according to Te. This is confirmed by our theoret-
ical and experimental results.

Another useful criterion is the minimum reachability probability over all reach-
able nodes. Reachability probability is the probability that a given node v of a
graph G is visited by a given algorithm A, denoted denoted PG,A(v). Note that
the model checking problem can be often seen as searching for a target (e.g.,
error) state. The reachability probability of a target state is thus meaningful.
Due to the fact that the considered exploration algorithms are random, the list
of visited nodes V is a random variable that depends on the algorithm and the
particular graph structure. Thus, the membership of a given node v to V is a
random variable of which the probability PG,A(v) for a given graph G and a
given algorithm A differs from a node to another. The minimum reachability
probability criterion is the minimum over all nodes of these probabilities:

πmin(G, A) = min
v

PG,A(v)

In general, re-iterating the randomized algorithm improves the probability of
reaching states and finding errors.

Note that reachability probability depends on the resources that are available
to an algorithm A, for instance, the available memory and time. In the case
of URS and SDRS, for example, it depends on parameters N and n. Thus,
another useful criterion is the mean number of covered nodes, for given resource
parameters.

In practice, there are several types of graphs, and an algorithm performs
differently depending on the form of the explored one. To compute precise ana-
lytic results, we have analyzed regular classes of graphs: trees and grids. Regular
graphs are suitable to study analytically the behavior of exploration algorithms
for several reasons:

– Although the model checking graphs are not regular, they contain frequently
regular components [7].

– One can manipulate regular graphs to compute probabilistic measures ana-
lytically, which is practically impossible for graphs of irregular topology.

– By tuning the two parameters of a regular tree (depth and degree), we can
get large or deep graphs and define a density factor suitable to our study.

– Trees and grids constitute two extreme cases of general graphs. In trees, there
are no intersections between the successors, and in grids, there is intersection
between all successors. Other graphs can be considered as an intermediate
case between this two ones.

3 Theoretical results

This section aims at a theoretical comparison of randomized exploration algo-
rithms in terms of various statistics. More precisely, we investigate exact com-

Resource-Aware Verification using Randomized Exploration 9

putations of the mean cover time, the mean number of covered nodes and other
related criteria such as reachability probabilities, for URS and SDRS. We do this
for two simple types of graphs: trees and grids. We first provide some general
results that apply to any graph.

For URS, the ordered sequence Vn = (v1, ..., vn) of visited nodes in n steps can

be represented as a sequence w1,
α1︷︸︸︷... , w2,

α2︷︸︸︷..... , w3,
α3︷︸︸︷..... , ..., wk−1,

αk−1︷︸︸︷..... , wk︸ ︷︷ ︸
Wn=(w1,...,wk)

,
αk︷︸︸︷...

where each wi corresponds to a novel visited node followed by αi redundant
visits, that is the considered sequence Vn is constituted by n − k repeated
nodes interlaced in an ordered set of k distinct nodes wk = (w1, ..., wk). Let
wk−1 = (w1, ..., wk−1) and denote by F (wi) (resp. C(wi)) the set of fathers
(resp. children) of the node wi, i = 1, .., k.

Lemma 1. The probability P(wk, n) to cover node wk in n steps by URS is:

P(wk, n) = α(wk)P(wk, n− 1) + β(wk)P(wk−1, n− 1)

α(wk) =
1
k

k∑
i=1

|C(wi) ∩ wk|
|C(wi)|

, β(wk) =
1

k − 1

∑
v∈F (wk)∩wk−1

1
|C(v)|

Note that α(wk) is a redundancy factor, equal to the probability to revisit a
node at step n (no node is newly covered), while β(wk) is an innovation factor
expressing the probability to cover at step n a new node, which must be wk,
since the set wk is stored in order of visits.

The elementary recursion for SDRS is a bit more complicated than for URS
and one must distinguish closed and open points of exploration. The exploration
is said to be in a closed point at step n, if it has reached a deadlock at step n−1,
it attempted, unsuccessfully, in step n to choose a successor from this deadlock
and so it will be reinitialized in step n + 1 from a uniformly randomly chosen
state of Vn. An open point is a point of the walk which is not a closed point.

Lemma 2. Let P(wk, n, C) (resp. P(wk, n,O, v) be the probability to cover in n
steps the set of nodes wk and to be, by step n, in a closed point (resp. in an open
point at node v). Then:

P(wk, n, C) =
|D(wk)|

k
P(wk, n− 1, C) +

X
v∈D(wk)

P(wk, n− 1, O, v)

P(wk, n, O, v) =
X

u∈F (v)∩wk

hP(wk, n− 1, O, u)

|C(u)| +
P(wk, n− 1, C)

k|C(u)|

+1wk (v)
“P(wk−1, n− 1, O, u)

|C(u)| +
P(wk−1, n− 1, C)

(k − 1)|C(u)|

”i
where D(wk) is the set of deadlock nodes in wk and 1wk

(v) = 1 if v = wk and
1wk

(v) = 0 otherwise.

10 Abed, Tripakis, Vincent

The discussion on relation between redundancy and cover time has
been omitted (it is commented in the .tex so it does not appear below)
but I find it interesting...

3.1 Case of Trees

We consider an m-ary tree of depth h, that is, every non-leaf node has m succes-
sors, and every path from the root to a leaf has length h. Recall that n denotes
the number of successive steps in a run of the algorithm.

The elementary recursion in lemma 1 (resp. in lemma 2) leads to a much more
simplified one, depending only on the numbers of nodes of wk in each level of
the tree and not on wk itself. Consider Kn = (K1

n, ...,Kh
n), the vector of random

variables expressing the number of explored nodes at each level j = 1, ..., h, at
step n, and let Purs(Kn = k) the probability to cover the vector k = (k1, ..., kh)
in n steps by URS algorithm. For SDRS, we distinguish Psdrs(Kn = k,C) and
Psdrs(Kn = k,O) that denote the probabilities of covering k in the closed and
open cases respectively. For URS, for example, the aggregation (summation) of
the elementary recursion in lemma 1 on the set of all sequences wk having kj

nodes in the level j, j = 1, ..., h, gives the following simplified recursion :

Purs(Kn = k) = α(k) Purs(Kn−1 = k) +
h∑

j=1

βj(k) Purs(Kn−1 = k − 1j)

where k − 1j = (k1, ..., kj − 1, ..., kh), 1 ≤ j ≤ h. In the r.h.s. of this equation,
as in the elementary one, two terms appear. The first one PR

urs(Kn = k) =
α(k) Purs(Kn−1 = k) is a redundancy term, while the second PI

urs(Kn = k) =∑h
j=1 βj(k) Purs(Kn−1 = k − 1j) is the innovation term. The repetition factor

α(k) is given by α(k) = mkh+k−1
mk . The innovation ones are βj(k) = mkj−1−kj+1

m(k−1) .
These recursions were, in fact, computed in the goal to obtain the result of

theorem 1 below related to the mean cover time. The mean time TA(k) to cover
k nodes by an algorithm A (URS or SDRS) can be expressed in function of the
innovation probabilities as following:

TA(k) =
∑
|k|=k

TA(k), TA(k) =
∞∑

n=k

nPI
A(Kn = k)

With some further investigations, the mean times Turs(k) and Tsdrs(k) of cov-
ering k by URS and SDRS, respectively, are given in the following theorem:

Theorem 1.

Turs(k) = (1− α(k))S1
urs(k)− α(k)S0

urs(k)

Tsdrs(k) =
hX

j=1

hX
l=j

h
cj,l(k)S1

sdrs(k − 1j,l) + dj,l(k)S0
sdrs(k − 1j,l)

i
+ a(k) S1

sdrs(k)− b(k) S0
sdrs(k)

k − 1j,l = (k1, ..., kj − 1, ..., kl − 1, ..., kh)

Resource-Aware Verification using Randomized Exploration 11

See appendix ?? for the proof and the explicit formula of the intermediate statis-
tics and the coefficients a(k), b(k), cj,l(k) and dj,l(k). the appendix will be
removed, we don’t have space... we cannot refer to a theorem where
some of the terms are not defined...

Applying the previous result, we obtain the mean cover time computed ex-
actly for URS and SDRS and shown in Figure 3 (left) for three parameterized
trees. The notation T (h, m) means that the considered tree is of height h and
degree m. Note that the mean cover time is plotted in function of the coverage
level (percentage of reachable nodes that are covered) rather than in terms of
number of covered nodes. Given the fact that our primary interest here is redun-
dancy, the case of a set of covered nodes going beyond the memory size is not
considered. It was, then, possible to make the comparison up to the full coverage
where we obtained the more significant difference in term of mean cover time
between the two algorithms.

10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Coverage

M
e
a
n
 t
im

e

Theoretical mean time, URS vs. DRS, Tree

URS, T(10,2)

DRS, T(10,2)

URS, T(6,4)

DRS, T(6,4)

URS, T(5,6)

DRS, T(5,6)

0 2000 4000 6000 8000 10000
0

500

1000

1500

Time

M
e
a
n
 n

b
.
o
f
c
o
v
e
re

d
 n

o
d
e
s

Theoretical mean nb. of covered nodes, Memory: 15%

URS, T(10,2)

DRS, T(10,2)

URS, T(6,4)

DRS, T(6,4)

URS, T(5,6)

DRS, T(5,6)

Fig. 3. Mean cover time (left) and mean number of covered nodes (right) for Trees

We can see in Figure 3 that the URS algorithm takes on average less time
than SDRS to cover a given proportion of the graph. This is observed mainly for
proportions more than 70% and for large trees. We define the density factor DF
of an m-ary tree of depth h by the ratio m

h . In fact, the higher the density factor
is, the larger the difference between the cover times of the algorithms is. In the
case of a “thin” tree, which has small DF (typically < 0.05), SDRS can perform
better than URS but this can be obtained only for extremely thin graphs.

In the following of this section we return to the more actual case, when the
graph to explore is too large with respect to the memory size. We start by noting
the relation in lemma 3, that holds for all algorithms A on all graphs G, between
the probability PA(Kn = k) to cover k nodes in n steps and the reachability
probabilities PA(v|Kn = k) to have, in n steps, reached a node v and covered
exactly k nodes. Note that, in the case of trees, these last probabilities depend

12 Abed, Tripakis, Vincent

only on the node level i and not on the node v itself, because of symmetry. In
the case of a grid, we must compute the probability to reach corner and non
corner nodes at each level i.

Lemma 3.

PA(Kn = k) =
1

k

X
v∈G

PA(v|Kn = k)

As we said above, the criterion considered here is the mean number of covered
nodes function of time. Thanks to lemma 3, this can be computed basing on
reachability probabilities that we first compute by returning to the elementary
recursions of the algorithms. In fact, as previously, by summing these recur-
sions on the set of the sequences wk, containing the node i and having in each
level j = 1, ..., h, kj nodes, one obtains recursive formula for the reachability
probabilities Purs(i|Kn = k), Psdrs(i|Kn = k,C), Psdrs(i|Kn = k,O), and then
Psdrs(i|Kn = k) = Psdrs(i|Kn = k,C) + Psdrs(i|Kn = k,O). These probabilities
are defined exactly as previously except the fact that the node i is now consid-
ered to be covered. Note that these probabilities are associated with URS and
SDRS without repetition and then computed for a number of covered nodes k
less than the re-initialization threshold (the memory size) N . For example, for
URS, one obtains, with γ(k) = 1

m(k−1) , :

Purs(i|Kn = k) = α(k) Purs(i|Kn−1 = k) +

hX
j=1

βj(k) Purs(i|Kn−1 = k − 1j)

+ γ(k)
h
Purs(i− 1|Kn−1 = k − 1i)− Purs(i|Kn−1 = k − 1i)

i
Once these probabilities are calculated, one sets

PA(i, s) =
∑
|k|≤N

PA(i|Ks = k), P∗A(i, s) =
∑
|k|=N

PA(i|Ks = k)

where N denotes the memory size and A denotes indifferently one of the algo-
rithms URS or SDRS. Their repeated versions will be noted RA. Then, the mean
number of covered nodes of RA in function of time n is given in the theorem 2:

Theorem 2. If N is the memory size or a prefixed threshold of re-initialization,
then the mean number of covered nodes by RA is given in function of time n as:

Cov(n) =

hX
i=0

miPRA(i, n), where

PRA(i, n) = PA(i, n) +

nX
n1=M

[P∗A(i, n1) + (1− P∗A(i, n1))PRA(i, n− n1)]

Figure 3 (right) shows the evolution of the number of covered nodes in func-
tion of time. These curves, representing the behavior of the repeated algorithms
RURS and RSDRS, are plotted for three trees. The repeated algorithms are
experimented for a memory size (N) of 15% w.r.t. the size of the graph. We

Resource-Aware Verification using Randomized Exploration 13

have considered other memory sizes (10% and 20%), but the results are simi-
lar: RURS algorithm performs, clearly, better than RSDRS, especially near to
the total coverage rate. We observe also that the difference between RURS and
RSDRS in the number of covered nodes is more important as more as the DF
is greater.

Note that by using the reachability probabilities PA(i, n) (resp. PRA(i, n)),
one can compute the minimum reachability probabilities for URS and SDRS
(resp. for RURS and RSDRS) in function of time. This criterion can be very
interesting in practice if, in order to detect efficiently an eventual bug in the
system, which corresponds to a defective node in the modeling graph, one can
take account of the worst case where the bug is localized in a node of minimum
reachability probability. Note that the number of such nodes can be great as in
the case of tree like graphs.

3.2 Case of Grids

We place ourselves here in the context of multi-dimensional grid. As in the pre-
vious section, we are interested in efficient computations of statistics like the
mean cover time and the mean number of covered nodes for URS and SDRS.
We will analyse this matter basing on the fundamental recursion in lemma 1
and 2. We first note that all possible (macroscopic and then less difficult to com-
pute) recursion for URS or SDRS should be a summation of the corresponding
elementary one on some suitably chosen set Sk of sequences wk: the coefficients
in the elementary recursion must be constant on Sk and the set of the wk−1’s,
when wk ∈ Sk, must be easy to identify. For clarity sake, we analyse in details
the equation in lemma 1 for our algorithm URS. The coefficients α(wk) and
β(wk) in this recursion must be constant on Sk and the set of the wk−1’s, when
wk ∈ Sk, must be easily parameterizable. This seems to be very difficult to ob-
tain, or impossible, even in the case of infinite, oriented, grid, but this problem
will be overcome as explained below. In this case the output degree of the nodes
is the same, say d, and one has:

α(wk) =
∑k

i=1 |C(wi) ∩ wk|
k.d

, β(wk) =
|F (wk) ∩ wk−1|

(k − 1).d

The difficulties to sum the elementary recursion satisfied by URS and SDRS,
are due essentially to the great rate of communications (intersections) in the case
of the grid. However, this is the same reason for which these recursions are useful
in practice to calculate exact exploration statistics in this case, especially by
meaning some managements. In fact due to intersections, the number of ordered
sequences, with distinct nodes, generated by the algorithms is reasonable in
many cases of study. Note also that the sizes of grids to be considered are in
general little, as are grids in model-checking domain.

Figure 4 gives the results of comparisons of the mean covering time for three
grids, where G(L, d) means that the grid is of degree d and the length of each
side is L+1. It is clear that the URS algorithm outperform SDRS. Its superiority
is even more clear than in the case of graphs without intersections (tree).

14 Abed, Tripakis, Vincent

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Coverage

M
e

a
n

 t
im

e

Theoretical mean time, URS vs. DRS, Grid

URS, G(2,8)

DRS, G(2,8)

URS, G(7,3)

DRS, G(7,3)

URS, G(11,2)

DRS, G(11,2)

0 2000 4000 6000 8000 10000
50

100

150

200

250

300

350

Time

M
e

a
n

 n
b

.
o

f
c
o

v
e

re
d

 n
o

d
e

s

Theoretical mean nb. of covered nodes, Memory: 15%

URS, G(16,2)

SDRS, G(16,2)

URS, G(7,3)

SDRS, G(7,3)

URS, G(4,4)

SDRS, G(4,4)

Fig. 4. Mean cover time (left) and mean number of covered nodes (right) for Grids

Moreover, for the repeated algorithms RURS and RSDRS, the mean number
of covered nodes has been plotted in function of time for different grids. The
reported result in Figure 4 corresponds to a memory size of 15% w.r.t. the size
of the graph. As for trees, the algorithms RURS and RSDRS are experimented
for three grid graphs and for three memory sizes (N) of 10%, 15% and 20% w.r.t.
the size of the graphs. The results are similar for the three memory sizes: the
performances RURS are clearly better than RSDRS. The superiority of RURS
is more marked for high coverage and great values of the DF . This superiority
is, again, more clear for grids than for trees.

4 Experimental results

We complement our theoretical analysis with a set of experimental results. We
implemented the two algorithms URS and SDRS on the model checker IF [28]
and ran them on several examples. Several measures were computed for each
algorithm. The examples have been chosen according to the experimental needs.
First, to compute the mean cover time, we have chosen some examples of medium
size, in order to be able to repeat the algorithms a sufficient number of times to
achieve full coverage of the reachable state space. These examples have differ-
ent density factors, which allows us to analyse their behavior according to this
parameter. Second, in order to compare the randomized algorithms with the
exhaustive BFS algorithm implemented in IF, we have used the same examples,
with more processes and/or data, to get graphs of very large (unknown) sizes.

Our implementations of URS and SDRS use a hash table to keep visited nodes
V . When a node is completely explored (having all its successors visited), it will
be deleted from the table to avoid redundant revisits. ON THE CONTRARY,
IF YOU DELETE IT FROM THE TABLE THEN YOU MIGHT
VISIT IT AGAIN SINCE IT IS NO LONGER IN V : are you sure this
is correct? I would suggest to remove it. In this work, we have described the

Resource-Aware Verification using Randomized Exploration 15

URS and SDRS algorithms, but our implementation is more general, following
the generic scheme, in particular in terms of the select function. Other variants
of this scheme apart from URS and SDRS will be reported in future work. Our
implementation allows the user to define the rate of leaves or internal nodes to
be explored –which reflects depth- or breadth-oriented exploration– by tuning
a mixing parameter. Choosing this parameter appropriately may require an a-
priori knowledge of the graph structure (density and diameter), although, in
some cases, this parameter may be computed and adapted on the fly.

4.1 Cover time

WE NEED TO GIVE SOME IDEA ON WHICH TYPE OF MA-
CHINE THESE EXAMPLES WERE RUN: MODEL, HOW FAST
PROCESSOR, HOW MUCH MAIN MEMORY

Each algorithm was tested on different graph examples: the Quicksort al-
gorithm, the Token Ring Protocol, Fischer’s Mutual Exclusion Protocol and a
Client/Server Protocol. Table 1 shows the size (i.e., number of states) and the
diameter (i.e., length of the longest acyclic path) of each example. The table
also shows the density factor of the graph of each example, defined as DF = m

h ,
where h is the graph diameter and m is the graph degree: m is computed ap-
proximately by reference to a regular tree of size M ≈ mh. Thus, for a graph of
size M , we let m = h

√
M .

Example Quicksort Token Fischer Server

Size (no. states) 6032 20953 34606 35182

Diameter 19 72 14 28

DF (density factor) 0.083 0.016 0.150 0.052

Table 1. Graphs description

For each example, we repeated the experiment 100 times and we computed
the mean cover time of 60%, 70%, 80%, 90% and 100% of the graph. The resulting
times (in seconds) are reported in Table 2. We observe that the URS algorithm
performs better except for the Token example. But even in this example URS
performs better for 100% coverage.

4.2 Resource-Aware vs. Exhaustive Verification

We have also experimented on very large graphs of unknown reachable size.
These have been obtained by scaling-up the number of processes and/or data of
the Token, Fischer and Server examples. Here we also compared URS and SDRS
with an exhaustive BFS algorithm. Note that URS and SDRS re-initialize in
these examples, since the state space does not fit in main memory: thus we denote

16 Abed, Tripakis, Vincent

Cov. level Algo Quicksort Token Fischer Server

60% URS 0.389 3.283 1.841 4.490

60% SDRS 0.641 0.752 4.070 7.441

70% URS 0.609 4.301 2.765 5.507

70% SDRS 0.871 1.084 5.726 8.893

80% URS 0.882 5.744 3.809 6.821

80% SDRS 1.411 1.584 8.173 11.966

90% URS 1.703 8.047 5.955 9.974

90% SDRS 4.202 2.480 13.327 19.158

100% URS 7.723 21.247 46.097 41.452

100% SDRS 12.459 25.221 125.091 99.460

Table 2. Mean cover time (seconds)

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9
x 10

5

Time (min)

N
b
.
o
f
c
o
v
e
re

d
 n

o
d
e
s

Number of covered nodes, Token

RURS

RSDRS

BFS

BFS limit after 9h50

0 5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Time (min)

N
b

.
o

f
c
o

v
e

re
d

 n
o

d
e

s

Number of covered nodes, Fisher

RURS

RSDRS

BFS

BFS limit after 9h50

0 5 10 15 20 25 30
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

6

Time (min)

N
b
.
o
f
c
o
v
e
re

d
 n

o
d
e
s

Number of covered nodes, Server

RURS

RSDRS

BFS

BFS limit after 9h50

Fig. 5. The number of covered nodes evolution

Resource-Aware Verification using Randomized Exploration 17

them by RURS and RSDRS in the plots that follow. The number of explored
states was collected over all runs and is plotted in Figure 5 as a function of time.

BFS stagnates as it approaches the limit of the the number of states that
can fit in main memory. URS and SDRS go beyond this limit, and can explore
up to 40% more nodes. Notice that the BFS limit occurs at a different number
of nodes for each of the three case studies, even though they all use the same
amount of main memory. This is because in each case study the amount of bytes
needed to store a single state is different: it is higher in Token than in Server,
and slightly higher in Server than in Fischer.

We observe that in the case of Fischer the randomized algorithms also stag-
nate after a certain amount of time. According to what we observed in our
previous experiments on medium-size graphs, this happens when reaching close
to 90% of the graph. In this case, exploring the “last” states becomes increasingly
difficult because of redundancy.

5 Conclusions and future work

We have proposed resource-aware randomized state space exploration as a direc-
tion for research in scalable verification methods. In particular, we have proposed
the URS algorithm that we believe to be the first memory-aware exploration
scheme, that explicitly uses main memory resource limits to guide its behavior.
Also, URS is not performing a typical random walk, in the sense that it may
choose to “branch” from different nodes along a random walk path. We have pro-
posed comparison criteria such as mean cover time and used these to compare
URS with a simplified version of the DRS algorithm proposed in [11]. We have
also shown via experiments, that these two algorithms, when repeated several
times, can explore a state space of more than 40% in addition to that explored
by an exhaustive exploration based on breadth-first search.

As part of future work we would like to experiment with industrial case
studies, for instance, from the hardware or software domains. We would also like
to implement and test other resource-aware verification algorithms. For instance,
instead of re-initializing when the memory is full, we could have a scheme where
some states in the visited set V are removed and replaced by new states. Different
policies to choose which states to remove could then be envisaged.

References

1. J. P. Queille and J. Sifakis. ”Specification and verification of concurrent systems
in Cesar”. In Proceedings of the International Symposium in Programming, volume
137 of Lecture Notes in Computer Science, Berlin, 1982. Spriner-Verlag.

2. E. M. Clarke, E. A. Emerson, and A. P. Sistla. ”Automatic Verification of finite
state concurrent systems using temporal logic specifications”. In ACM TOPLA,
8(2),1986.

3. E. M. Clarke, O. Grumberg, and D. Peled. ”Model Checking”. MIT Press, 1999

18 Abed, Tripakis, Vincent

4. M. O. Rabin. “Probabilistic algorithms”. In J. Traub, editor, Algorithms and Com-
plexity: New Directions and Recent Results, pages 2-39. Academic Press, New York,
1976.

5. R. Motwani, P. Raghavan. ”Randomized Algorithms”. Cambridge University Press
2005

6. J. Burch, E. Clarke, D. Dill, L. Hwang, and K. McMillan. ”Symbolic model check-
ing: 1020 states and beyond”. In 5th Conference on Logic In Computer Science
(LICS), pages 428-439, june 1990

7. R. Pelánek, T. Hanžl, I. Černá, and L. Brim. Enhancing Random Walk state
space exploration. In FMICS ’05: Processing of the 10th international workshop
on formal methods for industrial critical systems, pages 98-105. ACM Press, 2005

8. C. H. West. Protocol validation by random state exploration. In International
Symposium on Protocol Specification, testing and Verification, 1986

9. D. Owen. and T. Menzies Lurch. A lightweight alternative to model checking. In
Proc. of Software Engineering and Knowledge Engineering (SEKE’2003), pages
158-165

10. R. Grosu and S. A. Smolka. ”Monte Carlo model-checking”. In Proc. of Tools and
Algorithms for Construction and Analysis of Systems (TACAS 2005), volume 3440
of LNCS, pages 271-286. Springer, 2005.

11. R. Grosu, X. Huang, S.A. Smolka, W. Tan and S. Tripakis. ”Deep Random Search
for Efficient Model Checking of Timed Automata”. In Proc. of MW’06, the 7th
Monterey Workshop on Composition of Embedded Systems, pages 37-48, Paris,
October 2006

12. P. Haslum. Model checking by random walk. In Proc. of ECSEL Workshop, 1999
13. M. Mihail and C. H. Papadimitriou. ”On the random walk method for protocol

testing”. In Proc. Computer-Aided Verification (CAV 1994), volume 818 of LNCS,
pages 132-141, 1994.

14. H. Sivaraj and G. Golpalakrishnan. Random walk based heuristic algorithms for
distributed memory model checking. In Proc. of Parallel and Distributed Model
Checking (PDMC’03), volume 89 of ENTCS, 2003

15. A. Kuehlmann, K. L. McMillan, and R. K. Brayton. Probabilistic state space
search. In Proc. of Computer-Aided Design (CAD 1999), pages 574-579. IEEE
Press, 1999.

16. J. Geldenhyus. State caching reconsidered. In SPIN Workshop, volume 2989 of
LNCS, pages 23-39, 2004

17. P. Godefroid, G. J. Holzmann, and D. Pirottin. ”State space caching revisited”.
In Proc. of Computer Aided Verification (CAV 1992), volume 663 of LNCS, pages
178-191, 1992

18. P. Godefroid. Using partial orders to improve automatic verification methods. In
Proc. 2nd International Conference on Computer Aided Verification, volume 531
of LNCS, pages 176-185, 1990

19. P. Godefroid. On the costs and benefits of using partial order methods for the
verification of concurrent systems. In Proc. Workshop on Partial Order Methods
in Verification, DIMACS series, volume 29, pages 289-303, 1996

20. E. Tronci, G. D. Penna, B. Intrigila, and M. Venturini. A Probabilistic approach
to automatic verification of concurrent systems. In Proc. of Asia-Pacific Software
Engineering Conference (ASPEC 2001), 2001

21. F. Lin, P. Chu, and M. Liu. Protocol verification using reachability analysis: The
state space explosion problem and relief strategies. Computer Communication Re-
view. volume 17(5):126-134, 1987

Resource-Aware Verification using Randomized Exploration 19

22. G. J. Holzmann. An analysis of bi-state hashing. In Proc. of Protocol Specification,
Testing and Verification, pages 301-314, 1995

23. G. J. Holzmann. Automated protocol validation in Argos, assertion proving and
scatter searching. In IEEE trans. on Software engineering, volume 13(6):683-696,
198717(5):126-134, 1987

24. U. Feige. ”A Tight Upper bound on the cover time for Random walks on graphs”.
In Random Structures and Algorithms. Volume 6(1), pages 51-54, 1995

25. U. Stem, and D. L. Dill. Improved probabilistic verification by hash compaction.
In Advanced Research Working Conference on Correct Hardware Design and Ver-
ification Methods, pages 206-224, 1995

26. R. Nalumasu, and G. Gopalakrishnan. An efficient partial order reduction algo-
rithm with an alternative provision implementation. In Formal Methods for System
Design, volume 20(3), pages 206-224, 1995

27. E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Form. Methods Syst. Des., 9(1-2): 77-104, 1996

28. M. Bozga, J. C. Fernandez, L. Ghirvu, S. Graf, J. P. Krimm, and L. Mounier. ”IF:
a Validation Environment for Timed Asynchronous Systems”. In Proc. Computer-
Aided Verification (CAV 2000), volume 1855 of LNCS, pages 543-547, 2000

