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Abstract. In this paper, we discuss how to check Probablistic Com-

putation Tree Logic (PCTL) logic operators over infinite state Discrete

Time Markov Chains (DTMC). Probabilistic model checking has been

largely applied over finite state space Markov models. Recently infinite

state models have been considered when underlying infinite Markov mod-

els have special structures. We propose to consider finite state models

providing bounds on transient and the stationary distributions in the

sense of the �st stochastic order to check infinite state models. The op-

erators of the PCTL logic are then checked by considering these finite

bounding models.

1 Introduction

Model checking is a method to automatically check if complex performability
guarantees expressed by using formal logics are satisfied or not. Stochastic model
checking is a recent extension of traditional model-checking techniques for the
integrated analysis of both qualitative and quantitative system properties. Model
checking for different classes of stochastic processes and specification logics have
been developed [4, 12, 8] and have been also implemented in different model
checkers [16, 13]. However in almost all works, the state space size is considered to
be finite. To perform model checking by numerical analysis we need to compute
transient-state or steady-state distribution of the underlying Markov chain [5].
The numerical methods exist only for finite state models, however for special
structured chains like QBD (Quasi Birth Death) models despite the infinite state
spaces efficient numerical algorithms called matrix-geometric solutions exist. In
[19], Continuous Stochastic Logic (CSL) over Continuous Time Markov Chains
(CTMC) model checking has been extended to infinite space QBD models, and
in [20] models with product-form solutions have been considered.

In this paper we propose to consider model checking of general infinite
Markov chains with the stochastic comparison techniques. These techniques have
? this work is supported by ANRSETI06-002



been largely applied in different areas of applied probability as well as in reliabil-
ity, performance evaluation, dependability applications [17]. Intuitively speaking,
this method consists in computing bounding distributions rather than the exact
distributions by analysing “simpler” bounding chains.

Bounding methods can be applied in model checking context since one needs
to verify if some thresholds are satisfied or not without computing the exact val-
ues. In [2], the bounds on state reachability probabilities of Markov decision pro-
cesses are computed by abstraction of the underlying model defined on smaller
state spaces. If the verification of the considered property can not be concluded,
the abstract model is refined until a verdict to the property can be deduced from
the computations. The stochastic comparison techniques have been applied in
[18, 7] to overcome state space explosion problem in the model checking context.
In [18], PRCTL [3] state formulas are considered by using stochastic bounding
techniques. In [7], a method to simplify the checking of CSL operators by means
of class C bounding Markov chains having closed-form solutions for transient
and the steady-state distribution is given.

Our approach in this work is based on the truncation of the underlying
infinite chains which are intractable and the computation of finite stochastic
matrices providing, via stochastic comparison, bounds on the relevant probability
quantities for the model checking. The idea of truncation is very natural and
seems necessary to be able to deal numerically with general infinite DTMCs.
It has been proposed to compute approximations of stationary distributions of
infinite Markov chains [21, 14]. However approximations are not useful for model
checking. Moreover we need to compute bounds also on transient distributions
in order to check path formulas and transient operators.

In the model checking context we must sum the probabilities of a set of states
from a distribution of the underlying model. This set of states depends on the
considered formula and the distribution is the steady-state distribution for the
stationary operator while we must consider a transient distribution for a path
formula. The stochastic comparison has the advantage of providing bounds on
the steady-state as well as transient distributions. Moreover the �st stochastic
order considered in this work allows to deduce bounds on the partial sums of
distributions. In this paper, since we must establish the stochastic comparison
of distributions, one having finite size and the other having the infinite size,
we apply the stochastic comparison of the images of these distributions on a
common space. We present this method and discuss its application to check
different formulas depending also on the comparison operator ≤ or ≥.

The remaining of the paper is organised as follows: In section 2, we give a
brief introduction on the stochastic comparison approach and the Probabilistic
real time Computation Tree Logic (PCTL) for Discrete Time Markov Chains
(DTMC)s. Section 3 is devoted to the bounding of infinite DTMCs by finite
DTMCs. We explain in section 4, how these bounds can be used to check PCTL
operators over infinite DTMCs.



2 Preliminaries

2.1 Stochastic Comparison

Stochastic comparison is an useful tool to compare random variables and stochas-
tic processes when studying stochastic systems. First, we give the basic defini-
tions and theorems letting to compare random variables and DTMCs defined on
the same state space with respect to the usual stochastic order �st. Secondly
we present an interesting extension, called fg-comparison that we apply in this
work. This extension introduced by Doisy [9] allows to compare random vari-
ables and DTMCs which are not defined on the same state space by means of
state functions f and g. For further informations on the stochastic comparison
we refer to Stoyan’s book [17] as the main reference in the domain and to the
works [9], [10] and [22] for the fg-comparison.

Comparison of DTMCs on the same state space

Definition 1 Let X and Y be two random variables (r.v) taking values on a
totally ordered space E, and Fst the class of all increasing real functions on E.

X �st Y ⇐⇒ Ef(X) ≤ Ef(Y ), ∀f ∈ Fst whenever the expectations exist.

Property 1. For two r.v X and Y taking values on a totally ordered space E
X �st Y ⇐⇒ Prob(X > a) ≤ Prob(Y > a),∀a ∈ E

In the case of finite state space {0, 1, . . . , N}, the �st-comparison of random
variables can be characterised through the following probability inequalities.

Property 2. Let X and Y be two r.v taking values on E = {0, 1, . . . , N}, and
p = [p0, . . . , pN ], q = [q0, . . . , qN ] be probability distributions of X and Y .

X �st Y ⇔
N∑

k=i

pk ≤
N∑

k=i

qk for i = N,N − 1, · · · , 0. (1)

X �st Y ⇔
j∑

k=0

pk ≥
j∑

k=0

qk for j = 0, 1, · · · , N. (2)

Let us remark that in the sequel we interchangeably use the notations X �st Y

and p �st q. We apply the following definition to compare Markov chains.

Definition 2 Let {X(n)} (resp. {Y (n)}) be a DTMC. We say {X(n)} �st

{Y (n)}, if X(n) �st Y (n), ∀n.

In the case of time-homogeneous DTMC chains, the monotonicity and the com-
parability of transition matrices yield sufficient conditions to compare stochas-
tically the underlying chains [17, p.186].



Theorem 1 Let P (resp. Q) be the transition matrix of the time-homogeneous
Markov chain {X(n)} (resp. {Y (n)}). The comparison of Markov chains is es-
tablished ({X(n)} �st {Y (n)}), if the following conditions are satisfied :

i- X(0) �st Y (0),
ii- at least one of the probability transition matrices is monotone, that is, either

P or Q is �st monotone :
∀i, j such that i ≤ j, either P[i, ∗] �st P[j, ∗] or Q[i, ∗] �st Q[j, ∗]

iii- the transition matrices are comparable in the sense of the �st order :

P �st Q ⇐⇒ P[i, ∗] �st Q[i, ∗], ∀i ∈ E

where P[i, ∗] denotes the ith row of matrix P.

In the following property, we give the comparison of Discrete-Time Markov
chains (DTMCs) in terms of distributions for the sake of readability.

Property 3. Let {X(n)} (resp. {Y (n)}) be a DTMC, Πn
X (resp. Πn

Y) its transient
distribution at time n, and ΠX (resp. ΠY) its steady-state distribution (if it
exists). If {X(n)} �st {Y (n)} then Πn

X �st Πn
Y, ∀n and ΠX �st ΠY.

fg-Comparison of DTMCs We now define the fg-comparison between two
probability measures p and q which are not defined on the same state space. Let
p (resp. q) be defined on the state space E (resp. F ); f (resp. g) be a surjective
function from E (resp. F ) into a state space G; {X(n)} (resp. {Y (n)}) be a time-
homogeneous DTMC defined on the discrete space E (resp. F ) with transition
matrix P (resp. Q). The fg-comparison between p and q is defined as follows:

Definition 3
p �fg

st q ⇐⇒ p̃ �st q̃

where p̃ = fp is the image measure of p by f (∀i ∈ G, p̃i =
∑

j∈E,f(j)=i pj).

The following example illustrates this type of comparison: E = {1, 2, 3, 4},
F = {1, 2, 3} and G = F . The function f : E → F is defined as f(1) = 1, f(2) =
f(3) = 2 and f(4) = 4 and g is the identity function. Hence, p̃ = (p̃1, p̃2, p̃3) =
(p1, p2+p3, p4) and (p1, p2, p3, p4) �fg

st (q1, q2, q3) ⇐⇒ (p̃1, p̃2, p̃3) �st (q1, q2, q3) ⇐⇒∑3
k=i p̃k ≤

∑3
k=i qk, i = 3, 2, 1. For instance, (0.4, 0.2, 0.3, 0.1) �fg

st (0.35, 0.45, 0.2).

Definition 4 The DTMC {X(n)} is said to be less than the DTMC {Y (n)}
with respect to the order �fg

st , if X(n) �fg
st Y (n), ∀n.

Definition 5 P is �f
st-monotone if and only if, P[x, ∗] �f

st P[y, ∗], ∀x, y ∈ E,
such that f(x) ≤ f(y)

Definition 6 P �fg
st Q if and only if, ∀x ∈ E,∀y ∈ F such that f(x) = g(y),

P[x, ∗] �fg
st Q[y, ∗]



Theorem 2 {X(n)} �fg
st {Y (n)} if the following conditions are satisfied :

X(0) �fg
st Y (0), P �fg

st Q and P is �f
st-monotone or Q is �g

st-monotone.

We have the �fg
st comparison between transient distributions and the state-

state distribution, if the underlying chains are comparable in this sense:

Property 4. Let {X(n)} (resp. {Y (n)}) be a DTMC, Πn
X (resp. Πn

Y) its transient
distribution at time n, and ΠX (resp. ΠY) its steady-state distribution (if it
exists). If {X(n)} �fg

st {Y (n)} then Πn
X �fg

st Πn
Y, ∀n and ΠX �fg

st ΠY.

2.2 Model checking DTMC

In this subsection, we briefly present the logic called Probabilistic real time Com-
putation Tree Logic (PCTL) [12] which allows to express formulas over discrete
time Markov chains.

DTMC and notations Throughout this paper, the considered DTMCs may
be finite or infinite with a countable state space. A labelled finite (resp. infinite)
DTMC M is a 3-tuple (S,P, L) where S is a finite (resp. infinite countable) set
of states, P : S×S → R+ is the transition matrix and L : S → 2AP is a labelling
function which assigns to each state s ∈ S, the set L(s) of atomic propositions
a ∈ AP that are valid in s, AP denotes the set of atomic propositions.

For a DTMC, there are two types of state probabilities : transient proba-
bilities where the system is considered at time n and steady-state probabilities
when the system reaches an equilibrium if it exists. In the sequel, ΠM

α (s′, n)
denotes the probability to be in state s′ at time n with initial distribution α.
ΠM

α (s′) = limn→∞ΠM
α (s′, n) is the steady-state probability to be in state s′.

If M is ergodic, ΠM
α (s′) exists and it is independent of the initial distribution,

so we will denote it by ΠM(s′). For Markov chain M we denote by ΠM
α (n) the

transient distribution at time n when the initial distribution is α and by ΠM the
steady-state distribution. For S′ ⊆ S, we denote by ΠM

α (S′, n) (resp. ΠM(S′))
the transient probability to be in states of S′, ΠM

α (S′, n) =
∑

s′∈S′ ΠM
α (s′, n)

(the steady-state probability to be in states of S′, ΠM(S′) =
∑

s′∈S′ ΠM(s′)).
In the case of an unique initial state s (i.e. α(s) = 1 and α(s′) = 0 for s 6= s′),
we simply write ΠM

α (n) by ΠM
s (n).

A path through a DTMC M can be finite or infinite. For instance a finite
path σ of length k is a sequence of states σ = s0, s1, · · · , sk with si ∈ S and
P(si, si+1) > 0 ∀i. We denote by pathss the set of all paths starting from state
s and by σ[i] the ith state si of the path σ.

Syntax of PCTL We give here the syntax of PCTL as defined in [12] and its
extension by a steady-state operator that has been proposed in [3]. Let n be an
integer, p a probability and / a comparison operator ∈ {≤,≥}. In the sequel, we



denote by Sφ or φ-states the set of states that satisfy φ and by |= the satisfaction
relation. The syntax of PCTL is:

φ ::= true | a | φ ∧ φ | ¬φ | P/p(φ U≤nφ) | S/p(φ)

In this paper, for the sake of simplicity, we do not consider the next state
operator and the other Boolean connectives (false, ∨, ⇒) that are derived in the
usual way. Let us present the semantics of these formulas as defined in [12]:

s |= true for all s ∈ S

s |= a iff a ∈ L(s)
s |= ¬φ iff s 6|= φ

s |= φ1 ∧ φ2 iff s |= φ1 ∧ s |= φ2

s |= P/p(φ1 U≤nφ2) iff ProbM(s, φ1U≤nφ2) / p

s |= S/p(φ) iff ΠM
s (Sφ) / p

ProbM(s, φ1U≤nφ2) denotes the probability measure of the paths σ starting
in s (σ ∈ pathss) satisfying φ1 U≤nφ2 i.e. ProbM(s, φ1U≤nφ2) = Prob{σ ∈
pathss | σ |= φ1 U≤nφ2}. P/p(φ1 UIφ2) asserts that the probability measure
of paths satisfying φ1 U≤nφ2 meets the bound given by /p. The path formula
φ1 U≤nφ2 asserts that φ2 will be satisfied within n time units and that all
preceding states satisfy φ1, i.e.

σ |= φ1 U≤nφ2 iff ∃i ≤ n such that σ[i] |= φ2 and ∀j < i, σ[j] |= φ1

S/p(φ) asserts that the steady-state probability for φ-states meets the bound /p.
Similar to the steady-state operator S/p(φ), we define a transient-state operator
T @n

/p (φ) such that: s |= T @n
/p (φ) iff ΠM

s (Sφ, n) / p.

Checking PCTL operators In [12], a methodology has been proposed to check
bounded until operator, P/p(φ1U≤nφ2). Let us consider the following partition
of S into three subsets:

– the success states, are labelled with φ2

– the failures states, are states which are not labelled with φ1 nor φ2

– the inconclusive states, are states labelled with φ1 but not with φ2

Let M[φ] be the DTMC defined from M = (S,P, L), by making all φ-states
(states satisfying φ) in M absorbing, i.e. M′ = (S,P′, L) where P′(s, s′) =
P(s, s′),∀s′ ∈ S if s 6|= φ and if s |= φ then P′(s, s) = 1 and P′(s, s′) = 0. It has
been shown that ProbM(s, φ1 U≤nφ2) can be computed by means of transient
distributions of DTMC M′ which is obtained from M by making success states
and failures states absorbing. In fact once a success state is reached before n

time units, φ1U≤nφ2 is satisfied regardless of which states will be visited in the
future. On the other hand, φ1U≤nφ2 is violated once a failure state is visited.
Formally, M′ = M[¬φ1 ∧ ¬φ2][φ2] = M[¬φ1 ∨ φ2] and we have the equation
ProbM(s, φ1 U≤nφ2) =

∑
s′|=φ2

ΠM′

s (s′, n) ([15]).



ΠM′

s (s′, n) denotes the probability of reaching state s′ in n steps in the
DTMC M′ when starting in s. Consequently,

s |= P/p(φ1 U≤nφ2) iff ΠM′

s (Sφ2 , n) / p (3)

To check the steady-state operator S/p(φ) (resp. the transient-state operator
T @n

/p (φ)) it suffices to verify that the steady state probability (resp. the transient
distribution probability at time n) to be in φ states, meets the bound /p:

s |= S/p(φ) iff ΠM
s (Sφ) / p (4)

s |= T @n
/p (φ) iff ΠM

s (Sφ, n) / p (5)

3 Bounding Infinite DTMCs by Finite DTMCs

In the sequel, {Y (n)} denotes an infinite state space, time-homogeneous DTMC
taking values in {0, 1, 2, . . .}, with transition matrix R = (ri,j)i,j≥0. We want to
define a finite DTMC {X(n)} such that {X(n)} �fg

st {Y (n)} for some state func-
tions f and g. In this section, we will give two such lower bounding finite DTMCs.
The first bound is valid with a monotonicity condition on the transition matrix
R while there is no condition for the second bound. Since a time-homogeneous
DTMC is completely defined by its transition matrix and its initial distribution,
the proposed bounding chains ({X(n)}) are given in terms of their transition
matrices and initial distributions. Let us remark here that the bounding algo-
rithms given in this section are inspired from bounding algorithms [1, 11], so we
do not give their proofs. Moreover their complexities in the worst-case without
any sparse implementation neither optimisation is quadratic. We first give the
definition of partial monotonicity which is required for the first bound.

Definition 7 A transition matrix P is said partially �st-monotone from level
K, if P [i, ∗] �st P [j, ∗] ∀i, j ≥ K such that i < j

3.1 First bound

We first construct a finite state-space transition matrix by truncating the un-
derlying infinite state transition matrix, R at state N and by augmenting the
probabilities of column N to make the truncated matrix stochastic. By doing
so, we do not remove states greater than N but they are aggregated to state N .
Let Q = (qi,j)0≤i,j≤N be the matrix defined by :

qi,j =
{

ri,j , 0 ≤ i ≤ N, 0 ≤ j ≤ N − 1∑
k≥N ri,k, 0 ≤ i ≤ N, j = N

(6)

In the sequel we call N the truncation level and Q the stochastic truncated matrix
of R at level N . Remark that the quantity

∑
k≥N ri,k can be easily computed

since it is equal to 1−
∑N−1

k=0 ri,k.



The second step consists in constructing P = (pi,j)0≤i,j≤N through Algo-
rithm 1. The input parameters are the truncated matrix Q, and the probability
vector q defined from row N+1 of R as q = (rN+1,0, . . . , rN+1,N−1,

∑
k≥N rN+1,k).

Therefore P is a stochastic matrix which is �st-monotone, lower bound in the
sense of �st of Q (P �st Q) and the Nth row of P is less than vector q in
the sense of �st order (P [N, ∗] �st q). Let ν = (ν0, ν1, ν2, . . .) be the initial

Algorithm 1:
Input : stochastic matrix A; probability vector p.

Output : B such that 1)stochastic matrix, 2)�st-monotone, 3)B ≤st A,

4)B[N, ∗] �st p.

bN,0 = max(aN,0, p0)1

for i = N − 1 downto 0 do

bi,0 = max(ai,0, bi+1,0)2

end

for j = 1 to N do

bN,j = max(
Pj

k=0 aN,k,
Pj

k=0 pk)−
Pj−1

k=0 bN,k3

for i = N − 1 downto 0 do

bi,j = max(
Pj

k=0 ai,k,
Pj

k=0 bi+1,k)−
Pj−1

k=0 bi,k4

end

end

distribution of the Markov chain {Y (n)}, i.e., the distribution of Y (0). Proba-
bility vector µ = (µ0, µ1, . . . , µN ) is defined on {0, 1, . . . , N} such that µi = νi,
if i < N and µN =

∑
k≥N νk. Let define the state spaces E = {0, 1, . . . , N}

and F = {0, 1, 2, . . .}. f is the identity function on E (f(i) = i,∀i ∈ E) and
function g : F → E is defined as: g(i) = i if i < N and g(i) = N if i ≥ N . We
now demonstrate that the truncated finite state transition matrix constructed as
explained above provides a lower bound on the infinite state transition matrix.

Proposition 1 Let {Y (n)} be an infinite DTMC with state space {0, 1, 2, . . .}
and a transition matrix R which is partially �st-monotone from level N + 1. If
{X(n)} is a finite DTMC with state space E = {0, 1, . . . , N} defined by the initial
distribution µ and the transition matrix P as given above, then {X(n)} �fg

st

{Y (n)}.

Proof. Let m (resp. n) be a probability measure defined on E (resp. F ). Using
definition 3, m �fg

st n ⇐⇒ m̃ �st ñ. The image measure m̃ of m by f is equal to
m (m̃i = mi,∀i ∈ E) since f is the identity function. ñ = gn the image measure
of n by g is defined as ñi =

∑
k∈F,g(k)=i nk,∀i ∈ E. Hence, ñi = ni if i < N and

ñN =
∑

k≥N nk and

m �fg
st n ⇐⇒ (m0, . . . ,mN−1,mN ) �st (n0, . . . , nN−1,

∑
k≥N

nk) (7)



Since µ = (ν0, . . . , νN−1,
∑

k≥N νk), it is obvious from the last equation that
µ �fg

st ν then X(0) �fg
st Y (0). P is constructed by Algorithm 1, thus it is �st-

monotone : P [x, ∗] �st P [y, ∗],∀x, y ∈ E such that x ≤ y ( see ii- of theorem 1). f

is the identity function, so P [x, ∗] �f
st P [y, ∗], ∀x, y ∈ E, such that f(x) ≤ f(y).

It follows from definition 5 that P is �f
st-monotone.

It remains to prove that P �fg
st R. From definition 6, we must show that

∀x ∈ E,∀y ∈ F such that x = g(y), P [x, ∗] �fg
st R[y, ∗]. This is equivalent

to show that ∀i < N,P [i, ∗] �fg
st R[i, ∗] and P [N, ∗] �fg

st R[k, ∗],∀k ≥ N . By
construction of P , we have P �st Q, (∀i ≤ N,P [i, ∗] �st Q[i, ∗]). By definition
of matrix Q (equation 6), ∀i ≤ N,Q[i, ∗] = (ri,0, . . . , ri,N−1,

∑
k≥N ri,k). Hence,

∀i ≤ N,P [i, ∗] �st (ri,0, . . . , ri,N−1,
∑

k≥N ri,k) and we conclude from equation
7 that

∀i ≤ N,P [i, ∗] �fg
st R[i, ∗]

On the other hand, R is supposed to be partially �st-monotone from level
N + 1. Thus, R[N + 1, ∗] �st R[k, ∗],∀k > N . By property 1, we deduce
that

∑
j≥N rN+1,j ≤

∑
j≥N rk,j ,∀k > N and from property 2 we have q =

(rN+1,0, . . . , rN+1,N−1,
∑

j≥N rN+1,j) �st (rk,0, . . . , rk,N−1,
∑

j≥N rk,j),∀k > N .
By construction of matrix P with Algorithm 1, P [N, ∗] �st q, ie. P [N, ∗] �st

(rk,0, . . . , rk,N−1,
∑

j≥N rk,j),∀k > N . Thus P [N, ∗] �fg
st R[k, ∗],∀k > N , and it

follows from theorem 2 that {X(n)} �fg
st {Y (n)}.

3.2 Second bound

The second bound is constructed by truncating the infinite state space at state N

and by augmenting the probabilities of column 0 to make the truncated matrix
stochastic. Let S = (si,j)0≤i,j≤N be the truncated matrix defined as :

si,j =
{

ri,j , 0 ≤ i ≤ N, 1 ≤ j ≤ N

ri,0 +
∑

k>N ri,k, 0 ≤ i ≤ N, j = 0
(8)

Then we construct a monotone lower bounding matrix S for S through Algorithm
2. Thus S is �st-monotone and S �st S. Matrix T = (ti,j)0≤i,j≤N is obtained
from S by replacing its first row by the probability distribution (1, 0, . . . , 0).
Obviously, T is a stochastic matrix which is �st-monotone, and T �st S.

Let ν = (ν0, ν1, ν2, . . .) be the initial distribution of the Markov chain {Y (n)}
(Y (0)). The probability vector u = (u0, u1, . . . , uN ) is defined on {0, 1, . . . , N}
as u0 = ν0 +

∑
k>N νk and ui = νi if 1 ≤ i ≤ N . Let define state spaces

E = {0, 1, . . . , N} and F = {0, 1, 2, . . .}. f is the identity function on E (f(i) =
i,∀i ∈ E) and h : F → E is defined as: h(i) = i if i ≤ N and h(i) = 0 if i > N .

Proposition 2 Let {Y (n)} be an infinite DTMC with a transition matrix R =
(ri,j)i,j≥0. If {X(n)} is a finite DTMC with state space E = {0, 1, . . . , N} defined
by initial distribution u and transition matrix T as given above, then {X(n)} �fh

st

{Y (n)}.



Algorithm 2:
Input : stochastic matrix A.

Output : B such that 1) stochastic matrix, 2) �st-monotone, 3)B �st A.

bN,0 = aN,01

for i = N − 1 downto 0 do

bi,0 = max(ai,0, bi+1,0)2

end

for j = 1 to N do

bN,j =
Pj

k=0 aN,k −
Pj−1

k=0 bN,k3

for i = N − 1 downto 0 do

bi,j = max(
Pj

k=0 ai,k,
Pj

k=0 bi+1,k)−
Pj−1

k=0 bi,k4

end

end

Proof. Let m (resp. n) be a probability measure defined on E (resp. F ). m �fh
st

n ⇐⇒ m̃ �st ñ (definition 3). m̃ = m and ñ = hn the image measure of n by
h is defined as ñi =

∑
k∈F,h(k)=i nk,∀i ∈ E. Hence, ñi = ni if i ∈ {1, . . . , N},

ñ0 = n0 +
∑

k>N nk and

m �fh
st n ⇐⇒ (m0,m1, . . . ,mN ) �st (n0 +

∑
k>N

nk, n1 . . . , nN ) (9)

From this equation it is clear that u �fh
st ν, i.e X(0) �fh

st Y (0). Similar to
the proof of proposition 1, T is �f

st-monotone. To prove T �fh
st R, we must

show that ∀x ∈ E,∀y ∈ F such that x = h(y), T [x, ∗] �fh
st R[y, ∗]. This is

equivalent to show that T [0, ∗] �fh
st R[0, ∗], T [0, ∗] �fh

st R[i, ∗],∀i > N and that
∀i ∈ {1, . . . , N}, T [i, ∗] �fh

st R[i, ∗].
We have T [0, ∗] = (1, 0, . . . , 0) �st (ri,0 +

∑
k>N ri,k, ri,1, . . . , ri,N ),∀i > N

(property 2). It follows from equation 9 that T [0, ∗] �fh
st R[i, ∗],∀i > N . By

construction of T , we have T �st S, i.e, ∀i ≤ N,T [i, ∗] �st S[i, ∗]. By definition of
matrix S (equation 8), S[i, ∗] = (ri,0 +

∑
k>N ri,k, ri,1, . . . , ri,N ),∀i ≤ N . Hence,

T [i, ∗] �st (ri,0 +
∑

k>N ri,k, ri,1, . . . , ri,N ),∀i ≤ N . By equation 9, T [i, ∗] �fh
st

R[i, ∗],∀i ≤ N . Finally, it follows from theorem 2 that {X(n)} �fh
st {Y (n)}.

4 Checking Infinite DTMCs by Stochastic Comparison

In this section we propose to check PCTL operators over infinite discrete-time
Markov chains using the stochastic lower bounds given in the previous section.
Throughout this section, {Y (n)} is the underlying infinite DTMC for which
we want to check PCTL operators. Before introducing the checking procedures,
we first give the following proposition for the monotonicity properties of the
transition matrix when some states are permuted.



Property 5. Let N be a given integer. If the transition matrix R is �st-monotone,
then the infinite transition matrix RN obtained by permuting some states larger
than N is partially �st-monotone from level N + 1.

In fact by permuting some states of the matrix R we may loose the monotonicity
property and RN may not be monotone. However, since the permutations con-
cern only states which are not larger than N , it is obvious that RN is partially
�st-monotone from level N + 1.

It can be seen from equations 3,4 and 5 that to check the formula Fr =
{P/p(φ1 U≤nφ2), S/p(φ), T @n

/p (φ)} we have to sum the probabilities of a set of
states. We denote by SΣ this set of states and by PFr(SΣ) the probability of SΣ

states for the considered formula Fr. For instance, for Fr = P/p(φ1U≤nφ2), SΣ

is the set of φ2 states (SΣ = Sφ2) and PFr(SΣ) = ΠM′

s (Sφ2 , n) (see equation 3).
In general PFr(SΣ) is intractable because of the infinite state space except

the cases where the the underlying DTMC has some special structures. We
propose to compute bounds on PFr(SΣ) by considering finite state DTMCs. Let
P low

Fr (SΣ) ≤ PFr(SΣ) ≤ Pup
Fr(SΣ). Depending on the comparison operator /, we

can deduce if the underlying formula is checked or not through these bounds :

– / =≤: If Pup
Fr(SΣ) ≤ p, we can deduce that the underlying formula is checked.

– / =≥: If P low
Fr (SΣ) ≥ p, we can deduce that the underlying formula is

checked.
– In the other cases, it is not possible to decide the satisfaction or not and we

must refine the bounds by increasing the truncation level.

We apply the stochastic bounding approach to derive the bounding values Pup
Fr(SΣ),

P low
Fr (SΣ). Indeed the �st comparison of probability vectors allows to establish

the inequalities between the partial sum of probabilities (see equations 1, 2).
Thus the set SΣ must be reordered at the beginning or at the end of the state
space depending whether we want to obtain an upper or a lower bound on the
partial sum.

The finite state space lower bounding DTMC are constructed by truncating
the underlying infinite state space DTMC as explained in section 3. However
it is not possible to take into account all of the possible cases depending on
the comparison operator and the finiteness or not of the set Sφ. In the fol-
lowing subsections, we discuss how we can check by this method the operators
P/p(φ1 U≤nφ2), S/p(φ), T @n

/p (φ). Let us remark here that the same notations
as in section 3 are used in the sequel.

4.1 Checking P/p(φ1 U≤nφ2)

To check P/p(φ1 U≤nφ2), we first make the success states and the failures states
absorbing to obtain the DTMC M′ (see subsection 2.2). In addition, as it has
been proposed in [12] we aggregate the success states and the failures states into



two representative macro-states ssuccess and sfailures which are absorbing. Let
M′′ be the DTMC obtained after these transformations. From equation 3 we
deduce that

s |= P/p(φ1 U≤nφ2) iff ΠM′′

s (ssuccess, n) / p (10)

We distinguish in the following the cases when the set of inconclusive states
is finite and infinite. The case when the set of inconclusive states is finite is
interesting. Indeed we can compute ΠM′′

s (ssuccess, n) exactly since the DTMC
M′′ is finite. If the set of inconclusive states is infinite, we first choose an integer
N sufficiently large to take into account the macro-states ssuccess and sfailures

and a maximum of inconclusive states and also the initial state. In the following
{Y (n), n ≥ 0} is the infinite DTMC corresponding to M′′ with transition matrix
R. We distinguish the cases of the comparison operators / =≥ and / =≤.

– / =≥ : We permute the macro state ssuccess with state N . Let RN be the
matrix obtained after permutation. Let S be the truncated matrix of RN at
level N (equation 8). By proposition 2, {X(n)} �fh

st {Y (n)} and πX
u (n) �fh

st

πY
ν (n). By definition of functions f and h and equation 9, this is equivalent to

(πX
0 (n), πX

1 (n), . . . , πX
N (n)) �st (πY

0 (n) +
∑

k>N πY
k (n), πY

1 (n), . . . , πY
N (n)).

The success states are aggregated in state N , so we deduce from equa-
tion 1 that πX

N (n) ≤ πY
N (n) = ΠM′′

s (ssuccess, n). Thus if πX
N (n) ≥ p then

ΠM′′

s (ssuccess, n) ≥ p and P≥p(φ1 U≤nφ2) is satisfied, otherwise we cannot
conclude.

– / =≤ : We permute the macro state ssuccess with state 1. Let RN be
the matrix obtained after permutation. Using the second bound we have
{X(n)} �fh

st {Y (n)} and πX
u (n) �fh

st πY
ν (n). By definition of functions f

and h and equation 9, this is equivalent to (πX
0 (n), πX

1 (n), . . . , πX
N (n)) �st

(πY
0 (n) +

∑
k>N πY

k (n), πY
1 (n), . . . , πY

N (n)). We deduce from equation 2 that
πX

0 (n) + πX
1 (n) ≥ πY

0 (n) +
∑

k>N πY
k (n) + πY

1 (n) ≥ πY
1 (n). Recall that

with the considered permutation the success states are aggregated in state
1, so πX

0 (n) + πX
1 (n) ≥ ΠM′′

s (ssuccess, n). Thus if
∑1

k=0 πX
k (n) ≤ p then

ΠM′′

s (ssuccess, n) ≤ p and P≤p(φ1 U≤nφ2) is satisfied, otherwise we cannot
conclude.

4.2 Checking T @n
/p (φ)

We distinguish the cases of the comparison operators / =≥ and / =≤ and the
cases when the set of φ-states, Sφ is finite and infinite:

– / =≥ and Sφ is finite : In this case we first choose a truncation level, N suf-
ficiently large to take into account all φ-states. Let m be the cardinal of Sφ.
We first permute the φ-states with states from N−m+1 to N . Let RN be the
matrix obtained after permutation and S be the stochastic truncated matrix



of RN at level N (equation 8). We consider the same notations as in subsec-
tion 3.2 for T , u, f , h and the finite DTMC {X(n), n ≥ 0}. By proposition
2, {X(n)} �fh

st {Y (n)} and πX
u (n) �fh

st πY
ν (n). By definition of functions f

and h and equation 9, this is equivalent to (πX
0 (n), πX

1 (n), . . . , πX
N (n)) �st

(πY
0 (n)+

∑
k>N πY

k (n), πY
1 (n), . . . , πY

N (n)). The φ-states are states from N−
m+1 to N , so we deduce from equation 1 that ΠX

u (Sφ, n) =
∑N

k=N−m+1 πX
k (n) ≤∑N

k=N−m+1 πY
k (n) = ΠY

ν (Sφ, n). Thus if ΠX
u (Sφ, n) ≥ p then ΠY

ν (Sφ, n) ≥ p

and T@n
≥p (φ) is satisfied, otherwise we cannot conclude.

– / =≥ and Sφ is infinite : In this case we are obliged to truncate also the
φ-states. We choose the truncation level, N sufficiently large in order to take
more φ-states. Let S′φ be the subset of φ-states of cardinal m which are less
than N (S′φ = {s, 0 ≤ s ≤ N, s |= φ}). In the same way as the previous case,
we can show that ΠX

u (S′φ, n) =
∑N

k=N−m+1 πX
k (n) ≤

∑N
k=N−m+1 πY

k (n) =
ΠY

ν (S′φ, n) ≤ ΠY
ν (Sφ, n). Thus if ΠX

u (S′φ, n) ≥ p then ΠY
ν (Sφ, n) ≥ p and

T @n
≥p (φ) is satisfied, otherwise we cannot conclude.

– / =≤ and Sφ is finite : In this case we first choose an integer N sufficiently
large so that all states satisfying φ are less than N . Let m be the car-
dinal of Sφ. We permute the φ-states with states from 1 to m. Let RN

be the matrix obtained after permutation. Let S be the stochastic trun-
cated matrix of RN at level N (equation 8). By proposition 2, {X(n)} �fh

st

{Y (n)} and πX
u (n) �fh

st πY
ν (n). By definition of functions f and h and

equation 9, this is equivalent to (πX
0 (n), πX

1 (n), . . . , πX
N (n)) �st (πY

0 (n) +∑
k>N πY

k (n), πY
1 (n), . . . , πY

N (n)). We deduce from equation 2 that
∑m

k=0 πX
k (n) ≥

πY
0 (n) +

∑
k>N πY

k (n) +
∑m

k=1 πY
k (n) ≥

∑m
k=1 πY

k (n). Recall that with the
considered permutation the φ-states are states from 1 to m, so

∑m
k=0 πX

k (n) ≥
ΠY

ν (Sφ, n). Thus if
∑m

k=0 πX
k (n) ≤ p then ΠY

ν (Sφ, n) ≤ p and T @n
≤p (φ) is sat-

isfied, otherwise we cannot conclude. In the case when transition matrix R is
in addition �st-monotone, we can construct an upper bound for ΠY

ν (Sφ, n)
using the first bound exactly in the same way as for the steady state operator
with the comparison operator / =≤ (see section 4.3). Thus we can use two
bounds for checking T @n

≤p (φ) in this case.
– / =≤ and Sφ is infinite: If S¬φ is finite, we can check T @n

≤p (φ). Let m be the
cardinal of S¬φ. We permute the m states not-satisfying φ with states from 1
to m. We take the level of truncation N equal to m. Let RN be the matrix ob-
tained after permutation. Let S be the stochastic truncated matrix of RN at
level N (equation 8). By proposition 2, {X(n)} �fh

st {Y (n)} and πX
u (n) �fh

st

πY
ν (n). By definition of functions f and h and equation 9, this is equivalent to

(πX
0 (n), πX

1 (n), . . . , πX
N (n)) �st (πY

0 (n) +
∑

k>N πY
k (n), πY

1 (n), . . . , πY
N (n)).

We deduce that πX
0 (n) ≥ πY

0 (n) +
∑

k>N πY
k (n). Remark that with the con-

sidered permutation the set Sφ is constituted by state 0 and all states greater
than N . Thus πX

0 (n) ≥ ΠY
ν (Sφ, n) and if πX

0 (n) ≤ p then ΠY
ν (Sφ, n) ≤ p

and T @n
≤p (φ) is satisfied, otherwise we cannot conclude.



4.3 Checking S/p(φ)

By this methodology, this operator can be checked only when R is stochastically
monotone, the set of φ-states is finite and the comparison operator / =≤. Let us
remark that the second bound is not interesting for the steady-state case, since
we make the first state absorbing.

We first choose an integer N sufficiently large so that all states satisfying
φ are less than N . Let m be the cardinal of Sφ. We put the m φ-states at the
beginning of the state space, i.e, we permute the φ-states with states from 0 to
m−1. Let RN be the matrix obtained after permutation. This matrix is partially
�st-monotone from level N+1 (proposition 5). Let Q be the stochastic truncated
matrix of RN at level N (equation 6). By proposition 1, {X(n)} �fg

st {Y (n)}
and πX �fg

st πY By definition of functions f and g and equation 7, this is
equivalent to (πX

0 , . . . , πX
N−1, π

X
N ) �st (πY

0 , . . . , πY
N−1,

∑
k≥N πY

k ). When the first
m φ-states are in the beginning, we deduce from equation 2 that

∑m−1
k=0 πX

k ≥∑m−1
k=0 πY

k = ΠY (Sφ). Thus if
∑m−1

k=0 πX
k ≤ p then ΠY (Sφ) ≤ p and S≤p(φ) is

satisfied, otherwise we cannot conclude.

5 Conclusions

In this paper we propose an approach based on the stochastic comparison to
check PCTL operators over infinite DTMCs. We present two algorithms to con-
struct finite bounding matrices from the original Markov chain and show that
these bounding matrices provide useful inequalities for checking PCTL formulas.
The first proposed bound requires a monotonicity condition on the underlying
matrix but it is used only for the steady state operator.

The stochastic comparison approach has been applied in general to simplify
the analyse of complex systems. In this work, this approach is may be the unique
alternative to deal with general infinite DTMCs which are intractable. However,
the proposed method can be also used to simplify model checking of large finite
DTMCs by considering smaller ones. The stochastic comparison approach has
interesting potentials to perform model checking for infinite state models. We
envisage to consider some case studies to illustrate the feasibility of the proposed
approach and to study the tightness of the bounds. Also, we will investigate other
bounding schemes based on this approach.
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