
Different Monotonicity Definitions in Stochastic
Modelling!

Imène Kadi1, Nihal Pekergin2, and Jean-Marc Vincent3

1 PRiSM, University Versailles-Saint-Quentin, 45 Av. des Etats-Unis 78000 France
2 LACL, University Paris-Est, 61 avenue Général de Gaulle 94010, Créteil, France

3 LIG, project MESCAL, 51, av. Jean Kuntzmann, 38330 Montbonnot, France
email : imene.kadi@prism.uvsq.fr
nihal.pekergin@univ-paris12.fr

jean-marc.vincent@imag.fr

Abstract. In this paper we discuss different monotonicity definitions
applied in stochastic modelling. Obviously, the relationships between the
monotonicity concepts depend on the relation order that we consider on
the state space. In the case of total ordering, the stochastic monotonicity
used to build bounding models and the realizable monotonicity used in
perfect simulation are equivalent to each other while in the case of partial
order there is only implication between them. Indeed, there are cases of
partial order, where we can’t move from the stochastic monotonicity to
the realizable monotonicity, this is why we will try to find the conditions
for which there are equivalences between these two notions. In this study,
we will present some examples to give better intuition and explanation
of these concepts.

1 Introduction

Simulation approaches constitute an alternative for performance evaluation,
when numerical methods fail. In fact, they are usually used to model complex sys-
tems, such as, optical networks, distributed computer systems, stochastic Petri
networks, and so on. In this paper we advocate the use of perfect simulation and
combining this technique with stochastic monotonicity to speed up the compu-
tation. This method is based on the more general theory of coupling for Markov
chains. Let us first review some ideas about coupling. Assume that we compute
with the same random sequence of random numbers a sample path beginning
at any initial state. If at time t two sample-paths are in the same state (we say
that they couple), they will continue forever during all the simulation. When all
the sample-paths have coupled, we obtain a sample state. We may use the state
to initialize the simulation or consider it as a sample, thus it is not necessary
anymore to continue the simulation.

It is known for a long time that coupling in the future does not provide
samples distributed according to the steady-state distribution. But Propp and
! partially supported by french projects ANR-Blanc SMS, ANR- SETi06-02

Wilson have proved that coupling from the past (CFTP), also called backward-
coupling, gives an exact sample of the steady-state distribution [11]. Coupling
from the past is similar to coupling in the future but the initial time of the
simulation will be chosen randomly whereas the final time is deterministic. In
other words the Markov chain is not started at time 0 but sufficiently far away
in the past such that at time 0 all the paths are coupled.

This method is extremely efficient. But many practical and theoretical prob-
lems remain to be solved for discrete Markovian systems to obtain a fully versa-
tile technique. One of the problem we must consider is the number of operations
we need to obtain a sample. The general backward algorithm tries to couple
sample-paths beginning in every state in the state space. Thus modelling very
large state space systems requires some model transformations. Furthermore the
number of operations is at least linear in the size of the state space. The mono-
tonicity property of the event structure of the model (which is formally defined
in the next section) allows us to use a more efficient algorithm which sandwiches
all sample-paths to couple into extreme ones.

We consider in this paper different monotonicity definitions applied in differ-
ent context of stochastic modelling. First of them is the stochastic monotonicity
concept associated to a stochastic ordering relation. This implies that the evolu-
tion of the underlying model is monotone regarding to the considered stochastic
order. This monotonicity concept is one of the sufficient conditions to build
bounding models [14]. For performability analysis of complex models, bounding
models rather than the original one are considered to verify if performability re-
quirements are satisfied by the original model. Obviously the bounding models
must be easier to analyze than the original one [6].

In general the considered order relation on the state space is a total ordering.
However the partial order is more suitable for multidimensional models. We
explain first the stochastic monotonicity for a state space endowed with at least
a pre-order and study the relationships with other monotonicity definitions.

The remaining monotonicity definitions are related to perfect simulation
(sandwiching property). The first concept is called realizable monotonicity and
was defined in [4]. The other definition is used in a software to provide perfect
simulation of queueing networks (http://www-id.imag.fr/Logiciel/psi/). This is
called event monotonicity and has been defined in more general terms in [7].

In this paper we present these definitions by emphasizing if the state space is
totally ordered or not. We then compare them to give insights for the implications
between them. We have considered relations between monotonicity definitions
in a totally ordered state space [9]. In this case, the stochastic monotonicity and
the event monotonicity are equivalent to each other. Therefore it is possible to
construct bounding and stochastic monotone models in order to do monotone
perfect simulations of systems which are not event monotone.

This paper is organized as follows: The next section is devoted to a brief
presentation of considered stochastic models, perfect simulation, and stochastic
ordering. In section 3, we give the different definitions of monotonicity: first the
monotonicity in the sense of strong stochastic ordering then the realizable and

event monotonicity used in perfect simulation. We present monotone perfect
simulation of realizable monotone models in section 4. In section 5, we study
the relationships between the stochastic monotonicity and the realizable mono-
tonicity in order to see if stochastic monotone models can be used to perform
monotone perfect simulation. So we show that these notions are different in the
case of a totally and partially ordered state spaces. This is why we try to find
cases of equivalence of these two notions under a partial order, and we give
algorithms to construct event monotone systems in these cases.

2 Preliminaries

Markovian Discrete Event Systems (MDES) are dynamic systems evolv-
ing asynchronously and interacting at irregular instants called event epochs [7].
These systems are defined by means of a state space X , a set of events E , a set
of probability measures P , and a transition function Φ. P(e) ∈ P denotes the
occurrence probability of event e ∈ E while Φ(x, e) denotes the state to which
the system moves from state x upon the occurrence of an event e ∈ E .

Definition 1 (event) An event e is an application defined on X , that associates
to each state x ∈ X a new state y ∈ X .

Definition 2 (transition function) Let Xi be the state of the system at the
ith event occurrence time. The transition function Φ : X × E → X , defines the
next state of the system Xn+1 resulting from Xn upon the occurrence of an event
en+1:

Xn+1 = Φ(Xn, en+1) (1)
Φ must obey to the following property to generate P:

pij = P(φ(xi, E) = xj) =
∑

e|Φ(xi,e)=xj

P(E = e) (2)

Markov processes constitute a special, perhaps the most important subclass of
stochastic processes [1]. We restrict ourselves here to the investigation of discrete
state space and in that case refer to the stochastic processes as chains. Discrete
Time Markov Chains(DTMC) are considered first, that is, Markov processes
restricted to discrete, finite, or countably infinite state space, X , and a discrete-
parameter space T (time). For the sake of convenience, we set T ⊆ N0.

We consider in this work only time-homogeneous Markov chains, i.e, the
conditional distribution function of a state Xn+1 does not depend on observation
time, that is, it is invariant with respect to time epochs n.

Definition 3 (DTMC) A given stochastic process {X0, X1, ..., Xn+1, ...} at the
consecutive points of observation 0, 1, ..., n + 1 constitutes a DTMC if the fol-
lowing relation on the conditional probability mass function(pmf), that is, the
Markov property, holds for all n ∈ N and all xi ∈ X :

P(Xn+1 = xn+1|Xn = xn, Xn−1 = xn−1, ..., X0 = x0) = P(Xn+1 = xn+1|Xn = xn).
(3)

Let X = {0, 1, 2, ...} and write conveniently the notation for the conditional
pmf of the process’s one-step transition from state i to state j at time n:

pij(n) = P(Xn+1 = xn+1 = j|Xn = xn = i). (4)

The one-step transition probability pij are given in a non-negative, stochastic
4 transition matrix P:

P = P(1) = [pij]

p00 p01 p02 . . .
p10 p11 p12 . . .
p20 p21 p22 . . .
...

...
...

. . .

The following proposition gives how we can construct a transition function Φ for
a time-homogeneous DTMC with a probability transition matrix P [8].

Definition 4 A probability transition matrix P, on a partially ordered state
space (X ,%), can be described by a transition function Φ : X × U → X , which
defines the next state as

Xn+1 = Φ(Xn, Un+1) (5)

where U is a random variable taking values in an arbitrary probability space U ,
such that, for all x, y ∈ X : P(Φ(x, U) = y) = pxy.

2.1 Perfect Sampling

Based on the transition function Φ, the following algorithm provides directly a
sample of the steady state distribution. Let X be finite state space set.

Algorithm 1 Backward coupling simulation
1: n=1;
2: E[1]=Generate-event();
3: repeat
4: n=2.n;
5: for all x ∈ X do
6: Y [x] ← x; {initialization of trajectories, size of vector Y is |X |}
7: end for
8: for i=n downto n/2+1 do
9: E[i]=Generate-event(); {generation of new events from -n/2 +1 to -n}

10: end for
11: for i=n downto 1 do
12: Y ← Φ(Y, E[i]); {generation of trajectories through events E[i], }
13: end for
14: {Y [x] is the state reached at time 0 for the trajectory issued from x at time -n}
15: until All Y [x] are equal; {Coupling of all trajectories at time 0}

4 The elements in each row of the matrix sum up to 1.

Let Eτ be the expectation of the coupling time, |X | be the size of the state
space and op(Φ) be the average number of operations to compute the transited
state. Clearly the average number of operations before coupling is |X |.Eτ.op(Φ).

Function Φ has a lot of influence on the number of operations. First the way
it is implemented has a linear influence because of term op(Φ).

2.2 Stochastic ordering

Here we present the stochastic ordering of random variables and Markov chains.
We refer to [14] for further informations. Let X be a discrete countable state
space. We consider that X is endowed with at least a pre-order %.The strong
stochastic ordering associated to % will be denoted by %st.

A stochastic order can be defined by means of two approaches. The first way
is to define them from a set of functions. The stochastic order defined in this
case are called integral order. The second way is to define them from increasing
sets which is more useful when the state space is not totally ordered.

Definition 5 (stochastic ordering) Let X and Y be two random variables
taking values on X .

X %st Y ⇔ Ef(X) ≤ Ef(Y)

for all function f : X → R which is not decreasing according to relation %
whenever the expectations exist.

When the state space is totally ordered, the above definition implies the
following property:

Property 1 Let X and Y be two random variables taking values on X , with a
total order !, and let FX and FY be respectively their distribution functions:

X !st Y ⇔ FX(a) ≥ FY (a), ∀a ∈ X

From the order relation (at least pre-order) % on X , we can define increasing
sets on X .

Definition 6 (increasing set) Any subset Γ of X is called an increasing set
if x % y and x ∈ Γ implies y ∈ Γ.

The stochastic order %st is defined as follows from increasing sets:

Definition 7 (stochastic ordering with increasing sets) Let T and V be
two discrete random variables and Γ an increasing set defined on X

T %st V ⇔
∑

x∈Γ

P(T = x) ≤
∑

x∈Γ

P(V = x), ∀Γ

3 Different definitions of monotonicity

Here we present different monotonicity definitions used in stochastic modelling.
First we give the stochastic monotonicity associated to the stochastic order %st

then give the monotonicity definitions used for the perfect simulation.

3.1 Stochastic monotonicity

Following [14, 10] let us give the definition of the stochastic monotonicity for
probability transition matrices of time-homogeneous DTMCs..

Definition 8 (stochastic monotonicity) Let P be a stochastic matrix, P is
st-monotone if and only if for any probability vectors on X , u and v, if u %st v
implies that uP %st vP.

Property 2 Let P be the transition probability matrix of a time-homogeneous
Markov chain {Xn, n ≥ 0} taking values in X endowed with relation order %.
{Xn, n ≥ 0} is st-monotone if and only if,

∀(x, y) | x % y and ∀ increasing set Γ ∈ X
∑

z∈Γ

pxz ≤
∑

z∈Γ

pyz (6)

If the state space is totally ordered, the st-monotonicity implies that the rows
of P are increasing:

Property 3 In the case of totally ordered state spaces, P is st-monotone if and
only if for all i, we have Pi,∗ !st Pi+1,∗.

In the following example, we discuss the st-monotonicity by considering re-
spectively a total order and then a partial order relation on the state space to
show that there is no implication. Let us remark here that we consider partial
orders compatible with the considered total order in the sense that the rela-
tions for the partial order exist also in the total order, but some states are not
comparable under the partial order.

Example 1

P =

1/2 1/6 1/3 0
1/2 1/6 0 1/3
1/2 0 1/6 1/3
0 0 2/3 1/3

First we consider a total order: X = {a, b, c, d} and a ! b ! c ! d. We can
see easily that the rows are increasing (property 3), so the matrix is stochastic
monotone in the total ordering. Now we consider a partial order: a % b % d;
and a % c % d. The increasing sets are Γ1 = {d}, Γ2 = {c, d}, Γ3 = {b, d},
Γ4 = {b, c, d}, Γ5 = {a, b, c, d}. P is not monotone with respect to this order.

For instance, for Γ3 = {b, d}, the probability measure for row b is 1/6 + 1/3,
while this measure is 1/3 for row d. Since b % d, this violates the monotonicity.

Therefore we can see that the monotonicity with a total order does not imply
the monotonicity with a partial order. From a first view, it may seem to be a
contradiction, because with total order we must compare all of the rows, however
with partial order we consider only comparable states. For example, we do not
compare row b and c for partial order in this example. However we do not have
the same increasing sets for these cases, for instance Γ3 = {b, d} is not an
increasing set with total order.

Property 4 If P is !st-monotone with respect to a total order defined on X ,
then P is not always %st-monotone with respect to a partial order defined on X .

3.2 Realizable monotonicity

First, we will give the definition of realizable monotonicity, used in Fill and
Machida’s works on the perfect simulation [5].

Definition 9 (realizable monotonicity) Let P be a stochastic matrix defined
on state space X . P is said to be realizable monotone, if there exists a transition
function Φ as in Eq. 5, such that Φ preserves the order relation i.e. for all u ∈ U,
we have Φ(x, u) % Φ(y, u), whenever x % y.

There is an other definition of monotonicity used to perform perfect simulation
of finite queuing networks by software Psi2 [15].

Definition 10 (event monotonicity) The underlying model is said to be event
monotone, if the transition function by events (Eq. 1) preserves the order ie. for
each e ∈ E

∀(x, y) ∈ X x % y =⇒ Φ(x, e) % Φ(y, e)

This notion of event monotonicity is the same as the realizable monotonicity
if the set of events E is pre-defined. So a system is realizable monotone means
that there exists a finite set of events E for which the system is event monotone.
In the case of finite DTMCs, the cardinality of the set of events is upper bounded
by the number of non null entries of the transition matrix.

Example 2 Let (X , %) be a partial ordering state space, X = {a, b, c, d}, a %
b % d and a % c % d ;

We consider three events with the following probabilities pe1 = 1/6, pe2 =
1/3, pe3 = 1/2.

P =

1/2 1/3 0 1/6
1/2 1/6 0 1/3
1/2 1/3 0 1/6
0 1/3 1/6 1/2

1/6 1/6 1/6 1/6 1/6 1/6
a a b d
b a b d
c a b d
d b c d

e3 e2 e1

a a b d
b a d b
c a b d
d b d c

If we consider the initial set of event, we can see from the first table that P is
realizable monotone, but it is not event monotone, for instance we have in the
second table, for event pe1 = 1/6 , Φ(b, e1) = b is incomparable with Φ(d, e1) = c.
But if we change the set of events, and define new events following the first
table, we obtain an event monotone system. For instance, we can, from the table
of realizable monotonicity, divide the interval [0,1] into monotone events, we
obtain five events with the following probabilities pe1 = 1/3, pe2 = 1/6, pe3 =
1/6, pe4 = 1/6, pe4 = 1/6.

pe1 pe2 pe3 pe4 pe5

a a a b b d
b a a b d d
c a a b b d
d b c d d d

We summarize the relationships between these types of monotonicity by the
following scheme 1. We can see that there is no implication between monotonicity
under the total order and a partial order compatible with the total order nei-
ther for the stochastic monotonicity nor the realizable monotonicity. When the
state space is totally ordered, both monotonicity notions are equivalent while for
partially ordered state spaces the realizable monotonicity implies the stochastic
monotonicity.

order
Partial

Total
order

Stochastic monotonicityRealizable monotonicity

Realizable monotonicity Stochastic monotonicity

Event System Transition matrix

Fig. 1. Relations between monotonicity notions in total and partial order

4 Realizable monotonicity and perfect sampling

When the operator Φ is realizable monotone, the algorithm could be simplified
by making iteration only on maximal and minimal values of the state space. If
the trajectories issued from minimal and maximal states are coupled, due to the
realizable monotonicity, trajectories issued from all other states are also coupled.
The perfect simulation of monotone models will clearly reduce the computation
and memory complexity to obtain a sample [15].

We give in the following backward-coupling for event monotone models. Let
us turn now to the expectation of the coupling time for event-monotone systems.
In the algorithm M (resp. m) denotes the set of maximal (resp. minimal) ele-
ments in the state space. This algorithm has the same convergence properties as
Algorithm (1). Thus the expected number of operations is (M + m).Eτ1.op(Φ).

Algorithm 2 Backward-coupling simulation (event monotone version)
1: n=1;
2: E[1]=Generate-event();
3: repeat
4: n=2.n;
5: for all x ∈ M ∪ m do
6: Y [x] ← x; {initialization of trajectories,size of vector Y is |M ∪ m|}
7: end for
8: for i=t downto t/2+1 do
9: E[i]=Generate-event(); {generation of new events from -n/2 +1 to -n}

10: end for
11: for i=n downto 1 do
12: Y ← Φ(Y, E[i]); {generation of trajectories through events E[i], }
13: end for{Y [x] is the state reached at time 0 for the trajectory issued from x at

time -n}
14: until All Y ([x] are equal; {Coupling of maximal and minimal trajectories at time

0}

5 Stochastic monotonicity and perfect simulation

Now we discuss how one can perform a monotone perfect simulation of a stochas-
tic monotone DTMC. So we will study the relations between the stochastic mono-
tonicity and the realizable monotonicity, and find the conditions that allow us
to move from a stochastic monotone DTMC to an event monotone MDES.

5.1 Totally ordered state space

When the state space is totally ordered the stochastic monotonicity and the
realizable monotonicity are equivalent [9]. However the stochastic monotonicity
is necessary but not sufficient for realizable monotonicity for partially ordered
state spaces. [4]

Theorem 1 When the state space is totally ordered (!), the stochastic mono-
tonicity and the realizable monotonicity are equivalent.

This result has already been proved, but for a better comprehension we will give
a proof to this theorem.

Proof. – Realizable monotonicity =⇒ Stochastic monotonicity From the real-
izable monotonicity definition, we have for each two states x and y ∈ X :

if x ! y then ∀u ∈ [0, 1] : Φ(x, u) ! Φ(y, u) (7)

The function Φ is the inverse probability distribution function. Let X and Y
be two random variables corresponding respectively to rows x and y of P.
So Φ(x, u) = F−1

X , ∀u.
From equation 7, we obtain :

F−1
X (u) ! F−1

Y (u), ∀u

this implies that for each state a ∈ X :

FX(a) ≥ FY (a)

It follows from the definition of the strong stochastic ordering (property 1)
that X !st Y . Thus, the model is stochastically monotone.

– Stochastic monotonicity =⇒ Realizable monotonicity
From the stochastic monotonicity, we have for each two states x and y ∈ X :

if x ! y then P [x, ∗] %st P [y, ∗] (8)

Let X and Y be two random variables corresponding respectively to rows x
and y of P. From equation 8 and property 1 of strong stochastic ordering
we obtain:

FX(a) ≥ FY (a), ∀a ∈ X (9)

Let u be a random variable, uniformally distributed in [0,1]. The equation 9
implies that :

∀u ∈ [0, 1] : F−1
X (u) ! F−1

Y (u)

We see that the function F−1 satisfies the conditions of monotonicity. So we
can always find a monotone transition function for the system.

Example 3 Let P3 be a transition matrix defined on a total ordered state space(X , !),
X = {a, b, c, d} and a ! b ! c ! d.

P3 =

1/2 1/6 1/3 0
1/2 1/6 0 1/3
1/2 0 1/6 1/3
0 1/6 1/2 1/3

It can be easily verified that P3 is st-monotone. This model can be described by
a transition function Φ, obtained by the inverse probability distribution function.

1/6 1/6 1/6 1/6 1/6 1/6
a a b c
b a b d
c a c d
d b c d

It can be easily seen from the table that this model is realizable monotone.

5.2 Partially ordered state spaces

We now consider a partial order on the state space and show that there is only
implication but not the equivalence between these two monotonicity definitions.

Theorem 2 In the case of partially ordered state spaces, if the system is realiz-
able monotone, it is also stochastically monotone.

Proof. By means of equation 2 and property 2, we can rewrite stochastic mono-
tonicity constraints of matrix P as follows

∀(x, y)|x % y and ∀Γ,
∑

z∈Γ

∑

u|φ(x,u)=z

P(U = u) ≤
∑

z∈Γ

∑

u|φ(y,u)=z

P(U = u)

From the realizable monotone definition, we have for each two states x and
y ∈ X :

if x % y then ∀u ∈ [0, 1] : x′ = Φ(x, u) % Φ(y, u) = y′

Thus if x′ belongs to an increasing set Γ , then y′ belongs to this set (definition
(6). The above inequalities are satisfied for all increasing set Γ , thus P is st-
monotone.

The reciprocal of this implication is not true. We will prove it by a counter
example: We consider a transition matrix P3 in a partially ordered state space.
X = {a, b, c, d} and a % b % d; a % c % d.

P3 =

1/2 1/6 1/3 0
1/3 1/3 0 1/3
1/2 0 1/6 1/3
0 1/3 1/3 1/3

It can be easily verified that P3 is st-monotone. This model can be described by
transition function Φ, obtained by the inverse probability distribution function
by considering the total order a ! b ! c ! d.

1/6 1/6 1/6 1/6 1/6 1/6
a a b c
b a b d
c a c d
d b c d

It can be seen from the table that it is not realizable monotone, for instance, we
have for u ∈ [3/6, 4/6] Φ(a, u) = b is incomparable with Φ(c, u) = c .

We can not find another transition function which makes this system realiz-
able monotone.

Proposition 1 It is not possible to construct a realizable monotone transition
function for the above example.

Proof. Since b % d and c % d, the transitions from states b, c, d to state d with
probability 1/3 must be associated to the same interval u. Similarly, since a % b
and a % c the transitions from states a, c to state a with probability 1/2 must
be associated to the same interval u, the transitions from states a, b to state a
with probability 1/2 must be associated to the same interval u .

So, for states b, and c it remains only an interval of ue = 1/3 to assign. For
b the transition which is not associated is to state b, and for c there are two
transitions, one is to state a and the other is to state c. Now, we discuss the
case of state a, where a % c and a % b. For state a, we have an interval of 1/2
to assign, the transitions which are not associated are to state b and c. If we
associate b to the interval ue, we have a case of non comparability with state
Φ(c, ue) = c. Similarly, if we associate c to the interval ue, we will have a case
of non comparability with state Φ(b, ue) = b. Thus it is not possible to build a
realizable monotone transition function.

5.3 Case of equivalence in partial order

We will give a case of partial order for which there is an equivalence between
the stochastic monotonicity and the realizable monotonicity, we will then give
an algorithm to construct the monotone transition function Φ which can be used
in Psi2 to do monotone perfect simulation.

Theorem 3 When the state space is partially ordered in a tree, if the system
is stochastic monotone, then there exists a finite set of events e1, e2, ..., en, for
which the system is event-monotone.

 cm0
 c0n

 cmn

 cm n 1
 c1l 1
 c1l

 c0n

0a

a
1

an

l 1n c cln

 c

 c

00

0 n 1

Fig. 2. State space which is partially ordered as a tree

We consider one strongly connected component. Let A = {a1 ≤ a2 ≤ ...an}
be the states which are comparable with all others. This set contains at least the
root of the tree. F = {f1, ..., fm} denotes the set of leaves. Suppose that there
are m branches from an to each leaf fi. The branches from an to fi are called
Ci = {ci0, ..., cin = fi}, where ci0 is the successor of an. Obviously, the states
in a branch are totally ordered. We consider branch by branch. and for a given
branch Ci, we determine for all states x ∈ X , events eh, such that Φ(x, eh) = cij .
Let N be the number of states in X .

Now we will give the algorithm that construct the monotone transition func-
tion Φ, the idea of this algorithm can be summarized as follows: we consider

branch by branch and for branch Ci we find events which trigger transition to
a state of Ci. Then we consider the states of A and find events which trigger
transition to a state of A.

Algorithm 3 Stochastic monotonicity → event-monotonicity
E = ∅{the set of events is initially empty}
for k ∈ {1, · · ·m} do

{Consider branch Ck}
V = [v1, v2, ..., vN]{a vector representing the column index of the rightmost posi-
tive values for each row}
repeat

for i ∈ {1, 2 · · ·N} do
for j ∈ {vi, · · · , ck,l, ck,l−1, · · · ck,0, an, · · · a0} do

if pi,j = 0 then
j ← j + 1

end if
end for
vi ← j {update vector V }

end for
h ← h + 1 {the next event eh}
peh ← min1≤i≤N pi,vi{probability for event eh}
for i = 1 to N do

Φ(i, eh) ← vi

pi,vi ← pi,vi − peh{update matrix P}
end for

until
P

eh∈E peh = maxx∈F}(
Pn

i=0 px,cki)
end for
repeat

for i = 1 to N do
j ← vi

while pi,j = 0 do
j ← j − 1

end while
vi ← j {update vector V }

end for
h ← h + 1 {the next event eh}
peh ← min1≤i≤N pi,vi{probability for event eh}
for i = 1 to N do

Φ(i, eh) ← vi

pi,vi ← pi,vi − peh{update matrix P}
end for

until
Ph

i=1 peh = 1

Proof. To prove this algorithm, we must show that for all two comparable
states x and y, if x % y, than we can find a transition function Φ, such that
Φ(x, u) % Φ(y, u), ∀u. For each branch k of the tree, we have from the stochastic
monotonicity the following proprieties

pxckn ≤ pyckn

pxckn−1 + pxckn ≤ pyckn−1 + pyckn

. . .
pxck0 + ... + pxckn−1 + pxckn ≤ pyck0 + ... + pyckn−1 + pyckn

These proprieties satisfy the same conditions of the stochastic monotonicity in
a total order. This means that for each branch of the tree, we can construct a
monotone transition function by the same method used in the total order. Now,
if

∑n
i=0 pycki >

∑n
i=0 pxcki we must prove that for all u in the interval, which

represent
∑n

i=0 pycki −
∑n

i=0 pxcki , Φ(y, u) - Φ(x, u).
Let

diffk =
n∑

i=0

pycki −
n∑

i=0

pxcki

So, we must show that the sum of all the differences diffk is smaller than
(
∑

pxa + pxb). This can be verified in the following equation:

∑
pxa + pxb =

m∑

k=0

diffk +
∑

pya + pyb (10)

(10) =⇒
∑

pxa + pxb =
m∑

k=0

(
n∑

i=0

pycki −
n∑

i=0

pxcki) +
∑

pya + pyb

(10) =⇒
∑

pxa + pxb +
m∑

k=0

(
n∑

i=0

pxcki) =
m∑

k=0

(
n∑

i=0

pycki) +
∑

pya + pyb

(10) =⇒
∑

pxa + pxb +
m∑

k=0

(
n∑

i=0

pxcki) = 1 =
m∑

k=0

(
n∑

i=0

pycki) +
∑

pya + pyb

This last equation is evident because of the stochastic proprieties of the matrix.

6 Conclusion

In this paper, we study different monotonicity notions used in stochastic mod-
elling. The stochastic monotonicity associated to stochastic ordering relation and
the event and realizable monotonicity is used in perfect simulation. The mono-
tonicity concept depends on the relation order that we consider on the state
space. First, we show that if we have a monotone model on a total order, this
does not imply that it is monotone in the partial order for both monotonicity
notions.

Additionally, we have discussed the relationships between the stochastic
monotonicity and the monotonicity used to perform perfect simulation, in order
to see whether it is feasible to do monotone perfect simulation on a stochas-
tic monotone models. There are different mathematical tools to build bounding

models for complex discrete event systems. In conclusion, under a total order, the
different monotonicity definitions are equivalent to each other. However, under a
partial order, the realizable monotonicity implies the stochastic monotonicity. In
fact, we have shown that stochastic monotonicity are not sufficient to obtain an
event monotone model, but we must verify others conditions on the DTMC. For
instance if the partial order is a tree, we have proved that there is an equivalence
between the two notions of monotonicity, and we have developed an algorithm
which construct the realizable monotone transition function Φ, to do perfect
monotone simulation.

References

1. G. Bolch, S. Greiner, H. de Meer, and K. Trivedi. Queueing Networks and Markov
Chains. John Wiley & Sons, 1998.

2. A.A. Borovkov and S. Foss. Two ergodicity criteria for stochastically recursive
sequences. Acta Appl. Math., 34, 1994.

3. P. Diaconis and D. Freedman. Iterated random functions. SIAM Review, 41(1):45–
76, 1999.

4. James Allen FILL and Motoya Machida. An interruptible algorithm for perfect
sampling via markov chains. Department of Mathematical sciences, The Johns
Hopkins university.

5. James Allen FILL and Motoya Machida. Realizable monotonicity and inverse
probability transform, department of mathematical sciences, the johns hopkins
university.

6. J.M. Fourneau and N. Pekergin. An algorithmic approach to stochastic bounds.
In LNCS 2459, Performance evaluation of complex systems: Techniques and Tools,
pages 64–88, 2002.

7. P. Glasserman and D. Yao. Monotone Structure in Discrete-Event Systems. John
Wiley & Sons, 1994.

8. Olle Haggstrom. Finite Markov Chains and algorithmic applications. 2001. Matem-
atisk Statistik, Chalmers teknisk hogshola och Goteborgs universitet.

9. N. Pekergin J. Vienne J.M. Fourneau, I. Kadi and J.M. Vincent. Perfect simulation
and monotone stochastic bounds. Valuetools. Nantes , France, 2007.

10. William MASSEY. Stochastic ordering for markov processes on partially ordered
spaces. May 1987, Department of Mathematical sciences, The Johns Hopkins uni-
versity.

11. J. G. Propp and D. B. Wilson. Exact sampling with coupled Markov chains
and applications to statistical mechanics. Random Structures and Algorithms,
9(1&2):223–252, 1996.

12. O Stenflo. Ergodic theorems fory Iterated Function Systems controlled by stochastic
sequences. Doctoral thesis n. 14, Umea university, 1998.

13. O Stenflo. Ergodic theorems for markov chains represented by iterated function
systems. Bull. Polish Acad. Sci. Math, 2001.

14. Dietrich Stoyan. Comparison methods for queues and other stochastic models.
1983.

15. Jean-Marc Vincent. Perfect simulation of queueing networks with blocking and
rejection. Laboratoire ID-IMAG, Projet INRIA APACHE.

