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Abstract. The paper presents an approach that enables the elaboration
of an automatic prover dedicated to the refinement of database applica-
tions. The approach is based on a strategy of proof reuse and on the
specific characteristics of such applications. The problem can be stated
as follows. Having established a set of basic refinement proofs associated
to a set of refinement rules, the issue is to study how these basic proofs
can be reused to establish more elaborate refinements. Elaborate refine-
ments denote refinements that require the application of more than one
refinement rule. We consider the B refinement process. In B, substitu-
tions are inductively built using constructors. For each B constructor,
we have formally defined the necessary and sufficient conditions that en-
able the reuse of the basic proofs. An application of our approach to
data-intensive applications is presented.
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1 Introduction

The last decade has seen a growing use of databases in several different do-
mains: e-business, financial systems, smart cards, etc. Although these areas are
not critical (no human risk), economic interests are involved and a certain degree
of safety is required. Our project aims at providing users with a complete formal
environment for the specification and the development of database applications
[13]. For this, we use the B formal method, developed by Jean-Raymond Abrial
[1]. Tt is a complete method that supports a large segment of the development life
cycle: specification, refinement and implementation. It ensures, thanks to refine-
ment steps and proofs, that the code satisfies its specification. It has been used
in significant industrial projects and commercial case tools [2, 3] are available in
order to help the specifier during the development process.

The specification of a database application is composed of two parts: speci-
fication of the data structure by using an Entity/Relationship model and spec-
ification of user transactions which describe the functionalities of the system.
These transactions are built on a set of generic basic operations (insert, delete
or update elements). We have proposed a method that allows this specification
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to be described using the B specification language [9]. The obtained specifi-
cation is then refined up to an implementation using the relational database
model. In the database area, data refinement is usually achieved by the appli-
cation of a well-known algorithm that generates a relational schema from an
Entity /Relationship schema [8,6]. In the B method, refinement process is gen-
erally manual, since target implementation languages can be various. We have
defined a specific refinement process, dedicated to our application domain, that
is automated [17]. A set of elementary rules refining the data structure and the
basic operations have been elaborated [10]. It is based on the above-mentioned
algorithm. An elementary refinement proof is associated to each rule, that en-
sures the correctness of the transformation.

Software engineers are resistant to use approaches based on formal methods
mainly because of the proof phase that requires significant skills. In order to
assist them, we have considered the automation of the refinement proof. In other
words, we have studied the automation of transaction refinement. The problem
addressed in the paper can be stated in this way. The B refinement process being
monotonous, the refinement of a transaction comes down to the refinement of
the basic operations which it is built on and the refinement of the B constructors
used to combine the basic operations. Thus, is it possible to reuse the elementary
refinement proofs to establish the proof of the refinement of a transaction ? For
each B constructor, we have defined a set of reuse constraints, independently
of any application domain. Then we have demonstrated that, in the database
area, most of these constraints are always satisfied. This allows a great number
of refinement proofs to be automatically discharged. This is a very interesting
result. Indeed, if we want to extend the use of formal methods in other domains
than those where they are usually applied (i.e. critical systems) we absolutely
need to provide assistant tools with a lot of things which are automatically
achieved or produced.

Improvement of proof processes by reusing already computed proofs is an
active research area. Several techniques have been developed. Most of them are
developed for the proof by induction of mathematical theorems. Among them,
we can mention: reusing by transformation [15,16], reusing by type isomorphism
[5], reusing by generalization [18,19] and reusing by sub-typing [14]. In [16], two
different representations of natural numbers are considered: a binary represen-
tation and the usual representation using the two constructors 0 and successor.
The authors have developed a tool that transforms each proof computed within
one of the two representations into the other. In [14], if the type A is a subtype
of B, a coercion function that transforms each term of type A into a term of
type B is defined. This function permits to replay for A all the proofs already
computed for B. This technique is largely used within the Cog prover which is
a strongly typed language [4]. In [5], a theoretical foundation for proof reuse,
based on type isomorphisms in dependent type theory is presented. Our work
can be compared with the works of [18] and [19]. These works are based on the
analysis of already established proofs, by producing an explanation or a justifi-
cation of why it is successful. In order to reuse it, both the formula and its proof



Design of an Automatic Prover 3

are generalized. To our knowledge, reuse of proofs in a refinement proof process
remains an unexplored problem.

In the following, we briefly give an overview of the B refinement process
(Section 2). In section 3, we present the framework of our work and explain why
we can consider to define a reuse proof strategy in the refinement process of
data-intensive applications. A formal definition of reuse constraints is presented
in Section 4. Section 5 describes how they behave for database applications and
enable the implementation of an automatic prover within Atelier B. The benefits
expected from such reuse strategy and future works are discussed in Section 6.

2 Overview of B and its refinement process

The B language is based on first order logic extended to set constructors and
relations. The operations are specified in the generalized substitution language,
which is a generalization of the Dijkstra’s guarded command notations. The
B method is a model-based method. A system is described in terms of abstract
machines that contain state variables, invariant properties expressed on the vari-
ables and operations described in terms of preconditions and substitutions.

Refinement is the process that transforms an abstract specification into a less
abstract one. These transformations operate on data and/or operations. Data
are refined by adding new variables or replacing the existing ones by others which
are supposed to be more concrete (closer to a target implementation language).
Operation refinement consists in eliminating non-determinism. The last step of
the refinement process produces an implementation component which is to be
used as the basis for translation into executable code. Both specification and
refinement give rise to proof obligations. Specification proofs ensure that oper-
ations preserve the invariant, whereas refinement proofs ensure the correctness
of a refined component with respect to its initial component.

In order to prove the correctness of refinements, we use the relational seman-
tics of substitutions based on the definition of the two predicates Trm(S) and
Prd(S) associated to any substitution S. These predicates are defined in the
B-Book [1] by:

Trm(S)A[S](z = z) . (1)

Prd, . (S)A-[S|(z' # ) . (2)

Intuitively:

Trm(S): gives the necessary and sufficient condition for the termination of S,
Prd, 5+(S): gives the link between the values of variables z before (denoted z)
and after (denoted z') the execution of S.

Notations: In the remainder of the paper, we need the following notations:

— Each substitution S is indexed by the set z of all the variables of the speci-
fication where S is defined : S,

— Prdy,, (S;) where y C z means that we consider the restriction of Prd; ,(S;)
to the set of variables y. In general, y represents the set of the variables
modified by S,.
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— In order to simplify expressions, Prd; 5 (Sz) is denoted Prd(Sy).

Correctness of refinements: With the previous definitions, correctness of
refinements is expressed as follows.

Let S, and T, be two substitutions. Let J(a,b) be the predicate, called the
gluing invariant, that states the relation existing between a and b. T} refines S,
according to J(a, b), denoted S, Cj(4,5) Tb, iff:

Fu,v. J(u,v) (3)
Va,b-(Trm(S,) A J(a,b)) —
[Trm(Ty) AV - (Prd(Ty) = 3a’ - (Prd(S.) A J(a',b")))] (4)

Let us explain each condition:

(3) means that the gluing invariant must be satisfiable(it isn’t a contradiction ),
(4) means firstly that for each possible interpretation of a that ensures the termi-
nation of S,, the corresponding set b (that satisfies the gluing invariant) ensures
the execution of T}, and secondly that, for each possible result b of T, there
must exist a corresponding result ¢’ of S, such that a’ and b’ satisfy the gluing
invariant J.

Simplification of refinement proofs: For some types of substitutions (e.g.
assignment), the proof of its termination doesn’t raise any difficulty : Trm(T}) is
trivially true. Thus the proof of correctness of a refinement consists in exhibiting
a value of a', associated to a given value b’ satisfying Prd(T}), that satisfies the
two predicates Prd(S,) and J(a',b"). So we have to prove that:

Aa’ - (Prd(S,) A J(a', b))
for given values of a, b, b’ satisfying:

Trm(S,) A J(a,b) A Prd(Ty)

We will use this simplified proof obligation to prove refinements in Section 3
because Trm(T}) is always trivially true in the examples we are considering.

3 Reuse of proofs during the refinement process: an
illustrative example

Our project aims at providing software engineers with a formal method for
the specification and the development of safety data-intensive applications. The
global framework of our project, represented by Figure 1, includes two main
phases: Specification and Refinement. Both phases use a formal method (B in
our case) and thus can be validated by proofs. Nevertheless, establishing proofs,
and specially refinement proofs, is a long, hard and tedious task. A solution to
assist engineers is to build tools in order to automate parts of the proofs. Of
course, this is not possible in general but only for specific areas where a generic
strategy of refinement may be defined. This is what we propose for data-intensive
applications.
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Firstly, we describe the characteristics of the abstract specifications of such
applications. Then we illustrate, through an example, the refinement process and
how it can be automated.

A ] e ©
UML Diagrams :

Translation Phase Proof

| Abstract model (B Language)

Refinement Phase oof

Proof

Concrete Model (B Language)

Coding Phase

| Relational Database Structure +Programs |

Fig. 1. Formal mapping of a UML conceptual model into a relational implementation
using the B method

3.1 Elaboration of the abstract model of an application

The first step of our development is to construct a B abstract model. It is derived
from UML diagrams (class diagram, state/ collaboration diagrams) by using a
set of translation rules. A description of this translation and a comparison with
other work are already described in [9, 11] and are out of the scope of this paper.
Which is important to have in mind in order to understand our approach is that
the different UML diagrams are dedicated to data-intensive applications, with
precise semantics defined in [12]. In particular, a class diagram is defined with
the semantics of an E/R diagram. A consequence is that the specification we
generate has always the same characteristics. It is composed of two layers:

a)The internal layer contains all the variables that define the state of the appli-
cation and a set of basic operations that act upon them. The variables represent
the classes, associations and attributes of the class diagram. The basic opera-
tions comprise insert and delete operations for each class and association and
update operations that change the value of the attributes.

Let us consider the example of a simplified video club. A cassette is either
loaned by a customer or available in a shop. Each customer and each shop are
identified by an attribute, called a key, respectively NumCu and NumSh. They
are natural numbers. Figure 2 presents the corresponding UML class diagram
which gives a synthetic view of the data of the application.

The derived B specifications are as follows (just the relevant parts are given):

Loan € Cassette -+ Customer A Available € Cassette -+ ShopA
NumCu € Customer — NAT A NumSh € Shop — NAT
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Customer 0..1 Loan
NumCuy K}
Available
Shop
0.1
NumSh{K}

Fig. 2. Class diagram of a video club

Cassette, Customer and Shop are variables representing the existing instances
of the corresponding classes; the Loan and Awvailable variables represent the cor-
responding monovalued' associations.

Basic operations are automatically generated from the class diagram. For
example, AddLoan(ca, cu) creates a new link in the association Loan that relates
a cassette ca to a customer cu; DeleteAvailable({ca}) deletes the links, related
to a given set of cassette (here {ca})), from the association Awailable. In B, these

operations are expressed by the two substitutions 2:

Loan := Loan U {ca — cu} and Available := {ca} < Available

b) In the external layer, user transactions are specified. A transaction is spec-
ified by a B operation that calls the basic operations of the internal layer using
different B constructors (test, parallel substitution, ...). No additional variables
are defined in this layer. Moreover, variables of the internal level can be modi-
fied only by using basic operations. For example, let us consider the transaction
LoanCassette(ca, cu, sh) that loans a cassette ca to a given customer cu from
a shop sh. This transaction is constructed by calling the two basic operations
DeleteAvailable and AddLoan using Parallel and IF constructors as follows?:

IF Available(ca) = sh THEN
AddLoan(ca, cu) ||
DeleteAvailable({ca})

END

Note that in reality a class diagram may contain a great number of classes
and associations, whereas a transaction involves few classes and associations and
has a low algorithmic complexity. The transaction LoanCassette has been defined
in order to facilitate an intuitive presentation of our approach. A more realistic
transaction would be a little bit more complex, which would just require more
steps of refinement.

1 An association is called monovalued if one of its maximum multiplicities is 1

2 The complete operations include preconditions that we omit here because they
haven’t any influence on our refinement process

% Such a transaction can be also described using state/collaboration diagrams, more
detail can be found in [9,11].
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3.2 The refinement process

The second phase of our approach consists in refining the B abstract specifica-
tion obtained in the previous phase in order to generate a relational database
implementation. Taking into account the specific characteristics of the specifi-
cation, the global refinement can be achieved in two successive steps: the first
step concerns the refinement of the internal layer (i.e. variables and basic oper-
ations), the second one concerns the refinement of the external layer (i.e. user
transactions).

a) Variables and basic operations refinement
The refinement is based on the algorithm used in database design [6], thus we
exactly know how the data are refined. This allows us to define a set of elementary
generic refinement rules that act both on variables and basic operations [10].
Let us take the example of the refinement rules related to a monovalued
asociation. Let C' and D be two classes linked by a monovalued association f. In
B, f is specified by a function from the variable C to the variable D. Let v be the
key of the class D, of type T. In B, v is specified by an injective total function
from D to T. The data refinement of the association f consists in replacing f by
a new attribute, called fi, in class C which is a reference to the key of D (in a
relational database, it will be defined by a foreign key). In B, f; is specified by
a function from C to T and the gluing invariant is fi = (v o f). The refinement
of a basic operation related to an association is just a rewriting of the operation
in order to take into account the association refinement. The following table
sums up the refinement of the add and delete operations, which AddLoan and
DeleteAvailable are instantiation of:

RULE Abstract_Subst.|Concrete_Subst. |Gluing invariant
Rule_Add|f :=fU{c—d} |fi:=HU{c— v(d)}fi=(vof)
Rule_Del [f:=C, <9f A=C<a9f fi=(of)

where:
— ¢ and d are elements of C' and D respectively.
— ()} is a subset of C.

To establish the correctness of Rule_Add and Rule_Del, we have to carried out
the two following proofs:

- Proof of Rule_Add (Pagq): 3f'.(Prd(f := fU{c— d}) A(f{ = vof')) for
values of f, v, fi, f{ satisfying: (i = vo f)APrd(fy .= fiU{c— v(d)})

- Proof of Rule_Del (Ppe): f'.(Prd(f := Cy 9 f) A(f] = vof")) for values of
frvhi, £ satistying: (i = (vo f) A Prd(fi := C1 € f1))

The proofs of these two rules are discussed in Section 5.

We have defined about 120 rules. With Atelier B (version 3.5), 70% of the
proofs of these rules have been automatically discharged. However, just the easier
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proofs are concerned: the proofs related to the Trm predicates. The remaining
proofs were rather hard and sometimes very tedious to achieve. Nevertheless,
due to the generic feature of the rules, it is possible to define proof tactics that
enable the automation of the refinement proofs. It means that, once the proof
of a generic refinement rule has been achieved, it is possible to reuse it in all the
instantiations of the rule.

Let us apply this strategy on our example. AddLoan and DeleteAvailable
are refined by the refinement rules Rule_Add and Rule_Del. This gives the two
concrete substitutions:

Awailable; := {ca} <9 Available; and Loan; := Loany U {ca — NumCu(cu)}

To establish the correctness of these refinements, we just need to instantiate the
generic proofs (Pagq) and (Ppe;). This instantiation is achieved by taking: (f =
Loan,v = NumCu, ¢ = ca,d = cu) and (f = Available,v = NumSh, C; = {ca})
respectively.

b)Transactions refinement

The basic operations being refined, the following step deals with the refinement
of user transactions. Recall that transactions act only upon variables defined in
the internal layer. Thus the refinement of a transaction is an algorithmic refine-
ment. As the specification of a transaction is based on the specification of basic
operations, the refinement of a transaction uses the refinement of these latter.
More precisely, the B refinement process being monotonous, the refinement of
each transaction comes down to the refinement of the operations that it calls
and the refinement (or rewriting) of the different B constructors that relate these
operation calls.

For example, let us take the refinement of the transaction LoanCassette. The
refinement step that corresponds to the refinement of the associations Loan and
Available reuses the refinement of the basic operations AddLoan and DelAvail-
able. In addition, the predicate of the IF constructor is rewritten according to
the concrete variables Loan; and Awailable;. So, the transaction LoanCassette is
refined by 4 °:

IF (NumSh™" o Available,)(ca) = sh THEN
Available; := {ca} <9 Available, ||
Loan, := Loany U {ca — NumCu(cu)}
END

As the variables Loan and Awailable are refined separately, the gluing invariant is
equal to the conjunction of the gluing invariants associated to the refinement of
the associations Available and Loan: (Available; = NumSho Available)A(Loan, =
NumCu o Loan).

To simplify expressions, we use the following notations:

* The parallel constructor will be refined by the sequence constructor during one of
the next steps

5 The exact specification would be two calls to the operations that correspond to the
refinement of AddLoan and DelAwvailable.
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— 81 = (Available := {ca} 9 Available) and S» = (Loan := Loan U {ca — cu})

— T = (Availabler := {ca} 4 Awvailable;) and T> = (Loani := Loani U {ca —
NumCu(cu)})

— a1 = {Available} and a2 = {Loan}

— b1 = {Available; } and by = {Loan, }

- a=a1Ua2 andb:blubQ

— J(a,b) = (J(a1,b1) A J(az, b2)) = (Availables = NumSh o Awvailable) A (Loani =
NumCu o Loan)

— C1 = (Available(ca) = sh) and Co = (NumSh™" o Awvailable; (ca) = sh)

To check the correctness of the refinement, we must prove:
da' . [Prd(IF C; THEN(S;||S:)END) A J(a', b')] (Gy)
for given values of a, b, b’ satisfying the following hypotheses:

Trm(IF C; THEN(S; || S;) END) A
Prd(IF C,;THEN(T, || T,)END) A
J(a,b)

Not surprisingly, this proof is not automatically discharged by Atelier B. How-
ever, at a certain step of the elaboration of the interactive proof, the prover
comes down to the proofs (Pagq) and (Ppe) (instantiated on AddLoan and
DelAvailable). Tt is very interesting because it means that it is possible to reuse
the basic proofs established for the refinement of the basic operations. In the
following, we explain how the interactive proof is elaborated.

By applying the definition of Prd and Trm of a IF-THEN-ELSE substitution,
G1 becomes:

3 0,,.[(01 — PT‘d(SlHSQ)) A ("Cl — (0,{ =a; A\ aé = a2)) A J(al, bl)] (GQ)
for given values of a, b, b’ satisfying the following hypotheses:

True A
(Cg — PTd(T1||T2) N (_‘02 — (bi = bl A bé = bg))) N
J(a,b)

To prove the goal G,, the prover generates four sub-proofs given in the following
table:

Goal Hypotheses

()|  3Fa'.(Prd(51]|S2) A J(a’, b)) C1 A Ca A Prd(T1||T2) A J(a, b)

(2)|  Fa'.(Prd(51]|S2) A J(a’, b)) Ci A=Ca A b} = b1 A bl = by A J(a,b)
(3)|3d'.(a} =a1 Aah=axAJ(a/, b)) —CiLA ConPrd(Ti||T2) A J(a,b)
(4)[3a'.(a] = a1 Aa}=as AJ(a',b")|~C1 A=Co A b, = b1 A by = bz A J(a,b)

The last proof is automatically discharged by the prover. Indeed, it is trivially
true for af = a; and @} = a2 because of the hypotheses b] = by, by = bs and the
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invariant J(a,b). The second and the third are proved interactively by reductio
ad absurdum. Indeed the predicate Cs being a rewriting of the predicate C,
the two predicates are equivalent. So, both the conjunctions (C; A —=C3) and
(=Cy A Cy) are contradictory. It remains to interactively achieve the first proof
(1).

As the set of variables modified by S; (resp. S») and the set of variables not
modified by S» (resp. S1) are disjoint, Prd(S;||S2) is rewritten into Prd(S;) A
Prd(S2). For the same reasons, the hypothesis Prd(T;||T>) is rewritten into
Prd(Ty) A Prd(Ts). Moreover, the sets of variables a; and a, are disjoint. So,
the goal and the hypotheses of the proof (1) are rewritten into:

Jag.(Prd(S1) A J(af, by)) (Gs)
under the hypotheses: Prd(T1) A J(a1,b) A Cy A Cs, and

Jay.(Prd(S2) A J (a3, by)) (Ga)
under the hypotheses: Prd(T2) A J(az, ba) A Cy A Cs.

Note that the hypotheses C} and Cs are not relevant to prove Gz and Gy. It
is easy to remark that these two proofs are exactly the same that have been
already established when we have proved the correctness of the basic operations
AddLoan and DeleteAvailable refinements. Thus, they are discharged.

This example shows that under some conditions (above, conditions on sets
of variables), it is possible to reuse the proofs of the refinement of the basic
operations which a transaction is constructed on, in order to prove the refine-
ment of the transaction. The different case studies we have carried out have
confirmed this fact: most of the proofs to be achieved for proving the refine-
ment of a transaction come down to the proofs of the refinement of its basic
operations, whatever the B constructors used to combine these basic operations.
The other proofs concern the refinement of the constructors themselves and are
generally automatically discharged. This has led us to examine in more detail
the formal definition of conditions that make the reuse of elementary refinement
proofs possible. The objective of such a study is to provide a formal basis to the
development of an automatic prover.

4 Defining reuse constraints

In B, substitutions are inductively constructed using B constructors (precon-
dition, parallel, sequence, ...). For each B constructor, we have defined the
necessary and sufficient conditions for reusing proofs. The complete results are
detailed in [17]. Hereafter, we present the case of the parallel constructor.

Assume that we have already computed the proofs for the two elementary
refinement rules:

Sal EJST(UJ,LLZ) Ta2 (Hl)
Ubl EJUV(bl,bZ) Vb2 (H2)
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Let J(a; U b1, a2 U b2) be a new predicate such that:

(Sﬂ1||Ub1) EJ(a1Ub17a2Ub2) (Tﬂ2||Vb2) (G5)

By definition of refinement, (H;) and (Hs) give the following hypotheses:

Vay,ax.(Trm(Sa,) A Jsr(a, a2)) —
[Trm(T.,) AV ay.(Prd(Ty,) — Ja;.(Prd(Sa,) A s (a1, a3)))] (Hj)

Y by, bo.(Trm(Up, ) A Jyv (b1, b2)) —
[Trm(Vy,) AY by.(Prd(Vy,) — 3b1.(Prd(Uy,) A Juv (b1, b5)))] (Hy)

And the goal (Gs) gives:

Yy, ea.(Trm(Se, || Up,) A J(c1, ¢2)) = [Trm( Ty, || Vi,) A
V ¢5-(Prd(Ta, || Vi,) = 3 1. (Prd(Sa,[|Us, ) A J (1, €3)))] (Gs)

where ¢; (resp. ¢2) denotes the union of a; and by (resp ax and bs).

The aim of the section is to present the reasoning that leads to, on one hand,
the determination of the conditions under that the already computed proofs (Hj)
and (Hy) can be reused to prove (Gg) and, on the other hand, the actual reuse
of these proofs.

4.1 A relevant rewriting of the goal (Gg)

The first issue is to rewrite (Gg) in order to exhibit parts of (Hz) and (Hy).
In order to express the different predicates, we partition each set of variables
(a; and b;) into the set of the modified variables (a/™ and b™) and the set of
the unchanged ones (a{ and b{ ). Using these new variables, the four predicates
Trm(Sa, | Usy ), Trm(Tay|| Viy), Prd(Se,||Us,) and Prd(T,,|| Vs,) are defined as

follows®:

~—

Trm(Sa, ||Us,) = Trm(Sa,) A Trm(Up,

Trm(To, || Vi,) = Trm(Tyy) A Trm(Vy,)
PTd(Sa1||Ub1) PT‘dalm a™ (Sa1) A PTdbm b (Ubl) d{ = d1
Prd(T,,||Vs,) = Prdag oy (Tay) A Prdbm bm’(Vbz) dy = dy

where d; (resp. d») denotes the sub-set of variables of a; U by (resp. as U b2) that
the substitution Se, ||Us, (resp. T, || Vi,) doesn’t modify. So, we have:

di = (a] UB)) = (] UB]") (H)

By substituting these definitions in (Gg), eliminating of the universal quantifier
on the variables ¢; and ¢o, and applying the deduction theorem, we obtain the
following three goals:

6 d! = d; denotes a conjunction of a set of equalities. Each equality, of the form z’ = z,
is related to one variable z of d;.
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Trm(Ts,) (G7)

Trm(Vs,) (Gs)
VCé.(PTdaém,aémf(Taz) A PTdb;n,bg”(Vbz) A dé = d2
— 3 Cll.(PT‘dalm7a1mf(Sa1) A PTde,b{n/(Ubl) A d{ =di A J(Ci, Cé))) (Gg)

under the additional hypothesis:

Trm(S,,) (Hg)
Trm(Us,) (Hr)
J(e1, e2) (Hs)

4.2 Identification of the reuse conditions

Proof of (G7) by reuse. In order to prove (G7) by reusing (Hsz), we must be
able to deduce from our current environment the two hypotheses Trm(S,,) and
Jst (a1, a2). Trm(S,,) being the hypothesis (Hg), it remains to derive from the
hypothesis (Hg), (H7) and (Hs), the predicate Jsr(ay, az). So, the first condition
of reuse is:

‘ (Trm(Sa,) A Trm(Uy, ) A J(c1, ¢2)) — Jst(a, a) ‘ (Ho)

(Hg), (H7), (Hg), (Hy) and the instantiation of the variables a; and as by them-
selves in (H3) prove therefore (G7) and give an additional hypothesis:

Vas' . (Prd(T.,) = Jay.(Prd(Ss) A Jsr(ar', a2'))) (Hyp)

Proof of (Gg) by reuse. This proof is similar to the previous one. It requires
the following condition:

| (Trm(Sa,) A Trm(Uy,) A J (e1, 2)) = Juv (bi, b) |

and gives the following new hypothesis:
Y bo' . (Prd(Vy,) — 3 b1 .(Prd(Uy,) A Jyy (b], b2')) (Hip)

Proof of (Gy) by reuse. By eliminating of the universal quantifier and applying
of the deduction theorem, the goal becomes :

= Cll.(PTdalm,almr(Sal) A PT‘db{n,b{n/(Ubl) A d{ =d A J(Ci, Cé)) (Gg,l)

under the additional hypothesis :

Prdag o3 (Tay) (Hiz)
Prdyg pzr (Vi,) (Hy3)
dé = dQ (H14)

The instantiation of the universally quantified variables ay’ and b’ by themselves
in (Hyp) and (Hy1) and the substitution of ay and by by (ad® U ag) and (3" U bé)
respectively give :
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(Prdag oz (Tay) A ag = a}) - 3] .(Prd(Sa,) A Jsr(a), al' Udl')) (Hys)
(Prdyp pp (Vi) A b = 60) — 3. (Prd(Us,) A Juv (b, b2 U b)) (Hye)

In order to be able to reuse these hypotheses to prove (Gg.1), the two hy-
potheses:

o =af (Hi7)
b =b] (His)

must appear in (Hy4). This means that each unchanged variable of T,, (resp.
Vb,) must remain unchanged by (T, || Vs,). So

'nbm=0  and B Nnar =90

(ng), (H17) and (H15); (H13), (ng) and (Hlﬁ) give:
3 a].(Prdg, a1 (Sa,) A Jsr(a], al*' Uab)) (Hyo)
301.(Prdy, 4 (U, ) A Juy (b, b3 U BS)) (Hyo)

4.3 Actual reuse of the proofs

Let sol,; and soly; be one of the already computed values of a; and b; that
satisfy the hypotheses (Hy9) and (Hayg) respectively. So:

[a1 := s0lo;]" Prda, o1 (Sa,) A [0y := s0lar]JsT(ay, a3 U al)
[b] == soly; | Prdy, 4 (Us,) A [b] == soly | Jyrv (b, b5*' U b))
Partitioning the variables a; (resp. by) into a/™ and af (resp. b and b/) allows
us to rewrite these last hypotheses as:
[0 := 5014,/ ] Prdapn o (Say ) A [0y := s0lar]JsT(ay, a3 U al)  (Hy)
(60" := soly | Prdyp ym (Uy,) A[b] := soly ]Jyy (b7, b3 U b)) (Has)

Reusing the proofs of Su; T j(a;,a5) Tap and Us, Cy(p,,8,) Vi, consists in checking
that the solutions sol,; and soly; are also a solution for the goal to prove. This
means that the tuple (sol,;,soly; ) has to satisfy (Gg.1). By definition of the
parallel substitution, we know that: a™ N b™ = ). So, the substitution of the
values sol,; and soly; in (Gog 1) gives:

[a] = solag |6 = 50l |Prdyp oz (S0)  (Go.o)

[a{ := sol f’||b1 := soly | Prdyy pp (Ub,) (Go.3)

[a1 := soly||by := solb/](d1 =d) (Go.4)

[a1 := soly ||b] := soly]J (a]™ U b™ U dy, a3® "Udy) (Go 5)

" [z := y] P denotes the substitution of each free variable z of P by y.
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One condition to prove (Gg ) (resp. (Gg.3)) by reuse of (Ha1) (resp. (Haz)) is

that the modified variables /" and b{ (resp. a{ and b{™) must be disjoint. i.e:

dnbr=0  and B Nar=90

The goal (Gg.4) is obvious because the variables d; denote the common un-
changed variables of a; and b;. Finally, we must be able to deduce the goal
(Gg 5) from the current hypothesis environment, that is, to prove that:

(Trm(Sa) A Trm(Up, ) A
Prdyp yrr (Vb,)
[b] :== Solai]PT‘d{;{n,b{"’(Uh)

(c1,¢2) A Prdgg oz (Tay) A
[a] := soly | Prdap o (Sa; )A
[a] := soly]Jsr(al, as™ U a))A
[b] == soly, | Juv (b}, b5*' U b)) —
[af := solq ||b] := soly T (a™ U b U dy, a® U b U dy)

—_—

J
A
A

=~ =~

Conclusion: let So; Cjorar,a) Tap and Up, Ejppy5,) Vi, be two already
proved refinements. Let J(a; U b1, a2 U by) a predicate such that:

i. (Trm(Sa,) A Trm(Up, ) A J(a3 U by, a3 U ba)) = Jsr(a1, az)
1. (Trm(Sal) A Trm(Ubl) A J(a1 U bl, ax U b2)) — JUV(b17 bg)
iii. ol Nbm =
. b{ Na™ =
v. ag Nnby =
. b; Na»=0
vii. Let a; and b be solutions of the refinements (Sa, Tjg;(ay,a0) Tan) and
(Uby Tyyy(b1,62) Vo) for given values of a; and b; respectively. If the values
a; and b] satisfy :

(Trm(Sq, ) A Trm(Up, ) A J(a1 U by, a2 U by) A Prd(T,,) A Prd(V,)
PTd(Sal) A PTd(Ubl) A JST(a{, agl) A JUv(bi, b2,))
— J(al’ U b1l, agl U b2,)

then the tuple (af, b]) can be reused to prove: (So, || Us, ) Es(a,ubr,a00b2) (Tasll Va,)
for the same values of a} and bj.

4.4 Analysis of the results

1. Conditions (4) and () are the first two necessary conditions of reuse. Indeed,
if we want to adopt a reuse strategy in our proof process, then we must
exhibit the gluing invariants of the refinements we would like to reuse in the
refinement we are proving.

2. Conditions (444, v, v, vi) are related to the refinement of the parallel sub-
stitution. Indeed, if a proof is established in the case where a variable z is
unchanged then it is obvious that this proof can only be reused in the same
conditions (z must remain unchanged). This means that the set of variables
modified by one substitution and the set of variables not changed by the
other one must be disjoint.
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3. Condition (wvi7) is the third necessary condition of reuse. It states that only
the solutions a; and b1, of (S, C Ty,) and (Up, C V3,) respectively, satis-
fying the global invariant can be reused.

4. If the two substitutions S,, and U, are deterministic, then the condition
(vii) always holds. Indeed, there exists only one value of (a;’, b;") that satis-
fies the two basic refinements. This value is defined by (Prd(S,, ), Prd(Us,)).
Each possible solution of the refinement (Sq, || Us,) E s(a,ub1,00082) (Tazll Vb,)
must satisfy the two predicates Prd(S,,) and Prd(Up,) which have only one
solution. So, the unique solutions of the basic refinements are also solutions
for the parallel refinement.

5. If the predicates J(ay, az) and J(by, by) are functional® on a; and by respec-
tively, then the condition (wii) holds. Indeed, each possible solution of the re-
finement (S, || Us,) C(a,ub1,a00bs) (Tay || Vi,) must satisfy J (a1 Ubi, a2Ubs).
According to (v) and (wvi) this solution satisfies J(a1, az) and J(by, b2). But,
these two predicates have one unique solution. So, the unique solutions of
the basic refinements are also solutions for the parallel refinement.

6. One may argue that it would be easier to directly establish the refinement
proof than to check if some reuse conditions are satisfied. We don’t think
so. Indeed checking if a given value satisfies a formula is always easier than
exhibiting the values themselves. Moreover, this verification can be automat-
ically achieved. This implies that the refinement proof can be automatically
discharged. It is an important benefit since provers generally fail to auto-
matically prove existential formulae.

Whatever the B constructor, the reuse conditions are similar. We have also
considered the case of operations whose refinement requires more than two basic
refinement rules [17]. In conclusion, we have demonstrated that to reuse the
proof of the refinement S,, Ej(4, 4,) Tb,, three conditions are required:

a. the gluing invariant of the refinement S,, Cj(q4, 5,) Tb, must be deduced
from the proof environment.

b. the value, satisfying the refinement S, C(4,.5,) Tb,, must satisfy the gluing
invariant of the refinement to be proved.

c. for the parallel constructor, the set of variables modified by one substitution
and the set of variables not changed by the other one must be disjoint.

An interesting consequence of this result is that it is possible to develop an
automatic prover for a domain of applications where the reuse conditions are
always satisfied. This is the subject of the next section.

5 An automatic prover dedicated to the refinement of
data-intensive applications

In this section, we describe our approach for the development of an automatic
prover dedicated to the refinement of data-intensive applications. Recall that

8 A predicate P(a,b), depending on two set of variables a and b, is functional on a iff
for each value of b, there is a unique value of a that satisfies the predicate P(a, b)
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our goal is to provide software engineers with a formal approach, based on the B
refinement process, for the development of reliable data-intensive applications.
Such an approach may be difficult to use if the users have to achieve by hand all
the proofs necessary to establish the correctness of the code generated at the last
step. Moreover, it is recognized that the proof phase requires significant skills.
For this, we have consider the construction of a dedicated prover that makes this
proof phase a push-button activity.

In the first subsection, we show that, within the database domain we are
considering, all the gluing invariants of our refinement rules have the required
characteristics to satisfy the conditions (a) and (b). Then, the construction of an
automatic prover comprises two phases: the automation of the proof of the basic
substitutions refinement and the automation of the proof of the B constructors
refinement.

5.1 Satisfaction of the reuse conditions

As we can remark, the three conditions stated in the previous section depend
closely on the substitutions and the gluing invariant features. As our refinement
system is closed, only the rules defined in the base can be used. Let us examine
why the conditions (a) and (b) are satisfied by the set of refinement rules we
have defined.

The condition (a) is satisfied by construction of the global gluing invariant.
Indeed this invariant is equal to the conjunction of the gluing invariants of the
different elementary refinement rules which are applied.

The condition (b) is also satisfied. Indeed, each rule of our refinement process
is characterised by a deterministic gluing invariant. In section 4, we have pointed
out that this condition is sufficient to satisfy the second reuse condition.

Of course, the condition (¢) depends on the way the user has specified the
abstract substitution. For instance, the condition is not satisfied if he/she speci-
fies a transaction that simultaneously modifies an attribute and uses its value in
the update of another attribute. In this case, the proof must be achieved without
reuse. Nevertheless, this is not a frequent case.

These results have a double interest. Indeed, the fact that the reuse conditions
are fulfilled ensures that the solutions exhibited for the proof of the correctness
of elementary refinements can be reused to prove the correctness of refinements
built on the elementary refinements. This means that one are discharged from
the search of the values of abstract variables to achieve the proof. In practice,
this task may be rather difficult. Moreover, as the global invariant is the conjunct
of the elementary invariants, establishing the global proof comes down to estab-
lishing the elementary proofs. This means that the proof trees of the elementary
proofs can be reused as is in the proof tree of the global proof.
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5.2 Refinement proof of basic substitutions

We have defined for each refinement rule a proof tactic that enables the automa-
tion of its correctness. The tactics are implemented using the prover of Atelier
B. Recall that the proof of correctness of a refinement consists in exhibiting a
value of a', associated to a given value b’ satisfying Prd(T}), that satisfies the
two predicates Prd(S,) and J(a',b") (see page 4). However, all the abstract and
concrete substitutions of the basic operations we consider are deterministic as-
signments of the form (a := E). So, the searched value a' is given directly by
the term Prd(S,) (¢’ = E). In the same way, the value of b’ is given by the
term Prd(Ty). Then, to prove the correctness of the refinement, we just need to
check that the term J(a’, ') is true for these values of o' and b'. For example,
to prove the goal of Rule_Add, page 7, we have to check that:

(hu{e=v(d)}) = (vo(fufcrm d}))

Using Atelier B, we have defined a tactic that achieves the proof of this last
formula. A tactic is an application of an ordered set of deduction rules. To prove
the Rule_Add rule, we defined the following B tactic®:

tac_Add = o_dist_U; equal_union; (comp_ima; axio)™
where:

— o_dist_U states the distributivity property of the composition operator on
the union one:

ao(bUc)=(aob)U(aoc)
— equal_union is a simplification rule. It gives a sufficient condition to demon-
strate that aUc=0bU d
a=h c=d
alUc=bUd

— comp_ima expresses the property of the composition operator on a function:

binhyp(f€c—d) e€c
(fe{greh)={g—F(e)}

binhyp(H ) specifies a guard (condition) for the application of the considered
rule. It enables the identification of the symbols used in the hypotheses and
that don’t appear in the goal (the symbols ¢ and d in our case).

— axio enables to discharge the goals that are in the hypotheses:

binhyp(H)
H

Using the B tactic tac_Add, the proof tree associated to the correctness of
Rule_Add is constructed as follows:

o (r1; r2) means that the rule r; is applied first, then the rule r» is applied. r* means
that the rule (or an ordered set of rules) is applied as many times as possible.
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) dE—Cawio )
filz(vof)a:mo {cr—>v(d)}:(v0{cr—>d})comp_lma’vec_ﬂje .
(i{e—o(d) })=(vof)U(vo{c—d}) =

(AU{c—v(d)Y)=(vo(fu{c—d})) o_dist_U

In the same way, we have defined another B tactic for the proof of the Rule_Del
refinement rule.

5.3 Refinement proof of B constructors

As we have already noted, the correctness proof of a transaction refinement
comprises the correctness proof of the basic operations that compose it and
the refinement proof of the B substitutions constructors that relate these basic
operations. In the previous subsection, we have shown, through the running
example, how the correctness of the first category of proofs is automated by
defining B tactics. In this subsection, we illustrate the automation of the second
category.

At the abstract level, a database transaction is constructed on basic sub-
stitutions using a combination of IF constructors, parallel constructors (||) and
non-deterministic constructors (ANY). In the following, we discuss the refine-
ment and the correctness of the IF constructor, the reasoning is similar for the
other constructors.

Using our refinement process, the conditional substitution (IF P THEN S
END) is refined by rewriting the predicate P with respect to concrete variables,
and by refining the substitution S by a substitution T'. So, we obtain a concrete
substitution of the form (IF @ THEN T END). According to the boolean
values of P and @, four proofs are raised by the proof obligations generator
(GOP) of Atelier B:

— the first two proofs correspond to the cases where P and () have opposite
boolean values. These proofs are achieved by exhibiting that @ is a rewriting
of P. In this case, the proof becomes trivially true because we have two
contradictory hypotheses. For example, to achieve the proofs (2) and (3) of
page 9, we have defined the following tactic:

tac_abs = (replace; azio_cont; azio™)

where the rules replace and azio_contradictory are defined by!?:

b= band(binhyp(H),binhyp (—H
%r@place and (binfyp( G), infyp )amio_contmdictory

c=

— the two other proofs concern the cases where the predicates P and ) have
the same boolean value. In these two cases, we have to prove the correctness
of the refinement of the abstract substitution by the corresponding concrete

10 pand(A, B) means that the prover searches for each possible hypothesis that matches
A the corresponding hypothesis that matches B. The search stops when two hypothe-
ses that match A and B respectively are found.
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one. It is here that the reuse of the basic proofs previously elaborated take
effect. Theses cases corresponds to the proofs (1) and (4) of the example of
page 9.

>From a practical point of view, the specialized prover have been implemented
within Atelier B as follows. We have created a PatchProver file in which different
tactics are defined. When a PatchProver file is executed, the tactics are applied,
one after the other, on each unproven proof obligation. As this process may be
very time consuming, we relate each tactic to a particular kind of proof goal.

6 Conclusion and future works

In this paper, we have presented the approach that enables the development of
an automatic prover dedicated to the refinement of database applications. The
approach is based on a proof reuse strategy. In practice, it is frequent that a
prover fails to achieve a proof without user interventions. However, if a proof
reuse strategy is applied, what has been learned from previously computed proofs
may guide the solver to automatically prove a larger amount of proofs. Another
important benefit of reuse is resources (memory for example) and time saving.
In the B refinement, for example, the gluing invariant may be very complex, and
retrieving the value that satisfies it is not an obvious task. It is especially crucial
in case of provers operating with limited resources or time as it is the case of the
prover of the Atelier B [2] witch breaks down automatically after a given time.

We consider proof reuse within the context of refinement reuse. Firstly, nec-
essary and sufficient conditions of proof reuse have been defined for the refine-
ment of each B constructor. We store elementary refinements as quadruplets
of abstract/concrete substitutions, gluing invariant and the refinement solution.
Then, the resolution of a new elaborated refinement consists in retrieving, in
our refinement base, the quadruplets whose abstract and concrete substitutions
appear in the new refinement. It remains to select which basic solutions satisfy
the current gluing invariant, and to check if the proof reuse conditions hold,
which is not difficult to achieve.

As all reuse strategies, the usefulness of such proposition depends on the
properties of the underlying solver but also on the domain which is considered.
In general, a reuse strategy is successful if it is applied to a domain where its
applicability conditions are often verified. In this paper, we have pointed out that,
in data-intensive applications, these conditions most often hold. This result has
allowed us to construct an automatic prover within the Atelier B prover.

The approach is developed in the framework of the B method and Atelier
B. However it may be adapted to either another formal method or a different
application domain, provided the following elements are defined: a systematic
development strategy that provides a set of basic proofs for the considered ap-
plication domain and a set of conditions to satisfy under which proof reuse is
possible.
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From a theoretical perspective, we have now to mechanically check that the

demonstrations we have carried out to exhibit the reuse constraints are correct.
This work requires a significant reflection about the prover to be used.
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