

H2020 TAILOR -Foundations of Trustworthy AI -Integrating Reasoning, Learning and Optimization

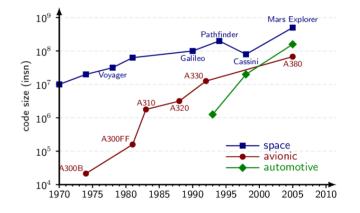
Black-box Precondition Inference through Constraint Acquisition

Grégoire Menguy, CEA LIST, France Sébastien Bardin, CEA LIST, France Nadjib Lazaar, LIRMM, France Arnaud Gotlieb, Simula, Norway

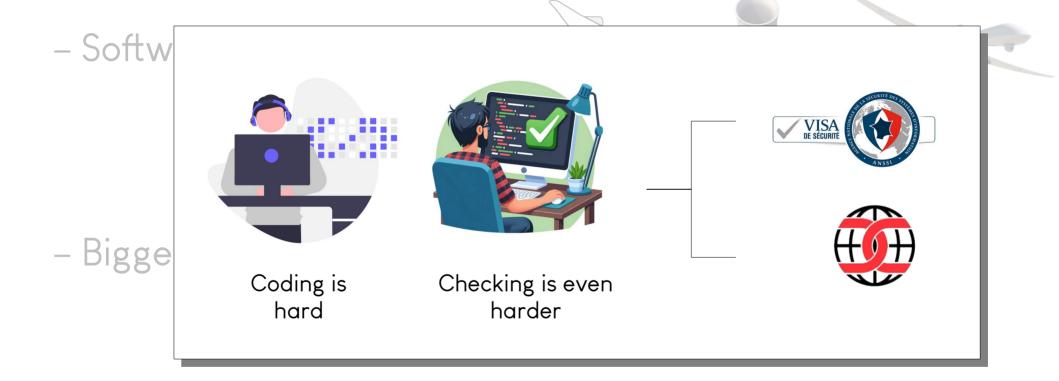
More Complex Software Everywhere

– Software in all domains

- Bigger and more complex



More Complex Software Everywhere



Secure Code by Automated Analysis

Help Analysis and Improve Confidence in Software

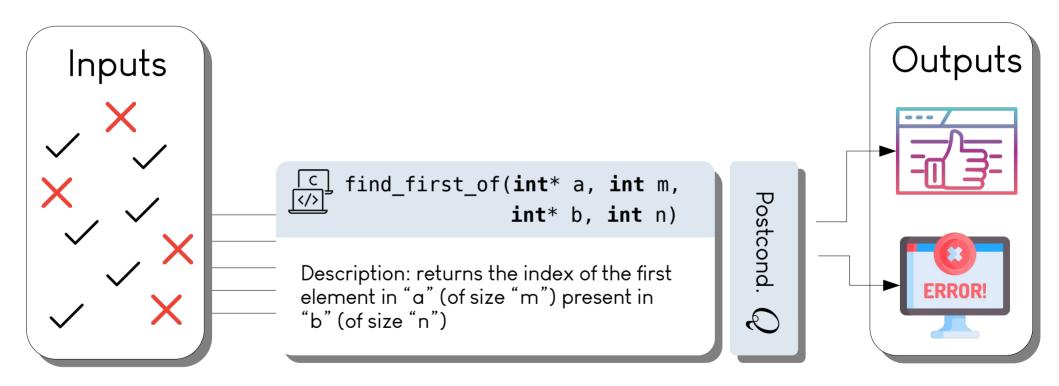
✓ Testing

- Sormal Verification
 - E.g., Precondition / postconditon

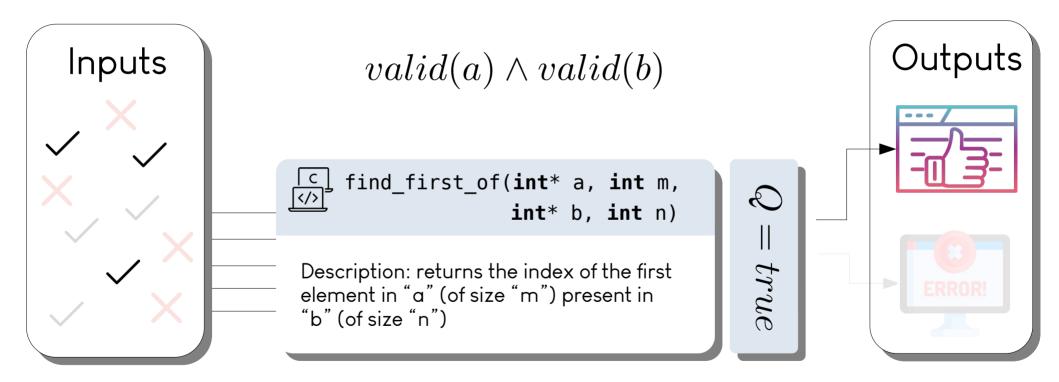
Enable to scale to big code

Almost never given in practice

Dream: Infer Preconditions

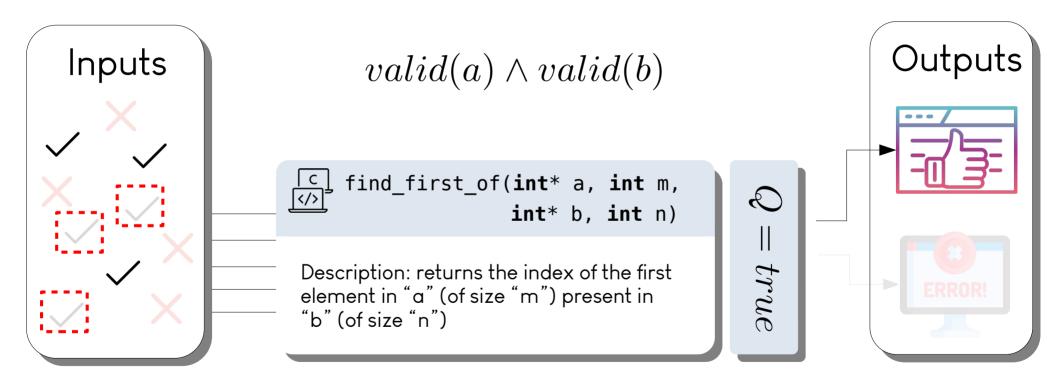


Dream: Infer Preconditions



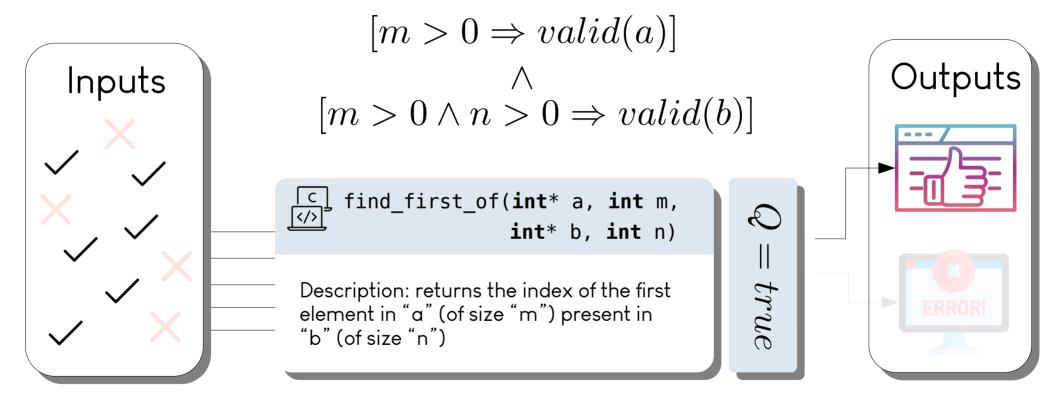
Undecidable problem: Rice theorem (1953)

Dream: Infer Preconditions



Undecidable problem: Rice theorem (1953)

Dream: Infer The Weakest Precond.



Undecidable problem: Rice theorem (1953)

IAIE 2024 – G. Menguy

State-of-the-art

Execution Based (Daikon, PIE, Gehr et al.):

- Does not need the source code
- No clear guarantees

Code Based:

□

Need the source code

- scalability issues • code not available

Data-Driven Precondition Inference with Learned Features

Saswat Padhi Univ. of California, Los Angeles, USA padhi@cs.ucla.edu Rahul Sharma Stanford University, USA sharmar@cs.stanford.edu

Todd Millstein Univ. of California, Los Angeles, USA todd@cs.ucla.edu

Counterexample-Guided Precondition Inference $\!\!\!^\star$

Mohamed Nassim Seghir and Daniel Kroening

Computer Science Department, University of Oxford

and the contract of Decourt disting Informer

Goal

Execution Based (Daikon, PIE, Gehr et al.):

- Clear guarantees

Code Based:

Need the source code

- scalability issues • code not available

Does not need the source code

Clear guarantees

Constraint Acquisition Based Precond. Inference

Data-Driven Precondition Inference with Learned Features

Saswat Padhi Univ. of California, Los Angeles, USA padhi@cs.ucla.edu Rahul Sharma Stanford University, USA sharmar@cs.stanford.edu Todd Millstein Univ. of California, Los Angeles, USA todd@cs.ucla.edu

Counterexample-Guided Precondition Inference^{*}

Mohamed Nassim Seghir and Daniel Kroening

Computer Science Department, University of Oxford

Constraint Acquisition

Constraint Programming

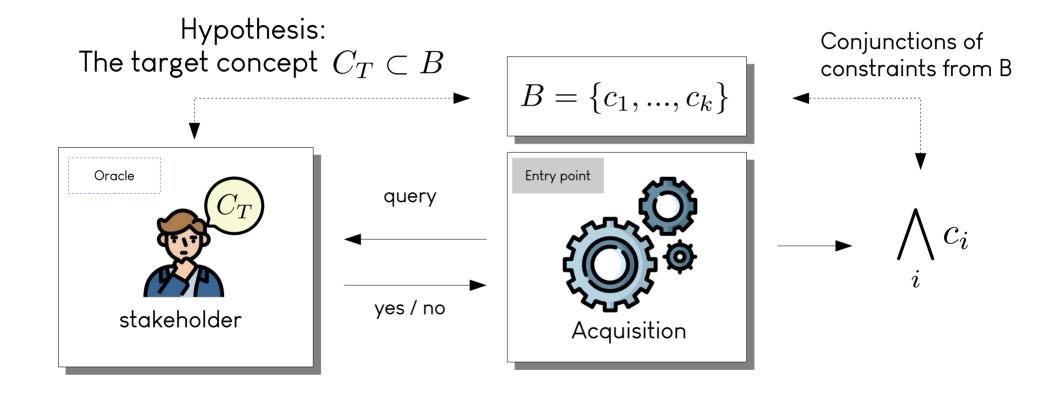
→ Hard to design models

Constraint Acquisition

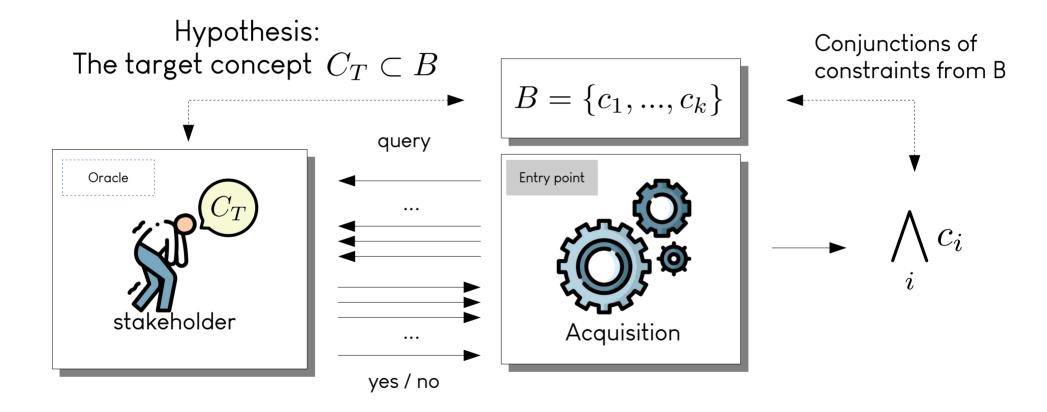
Version Space Learning (Mitchell, 82)

Bessiere, C., Koriche, F., Lazaar, N., & O'Sullivan, B. (2017). Constraint Acquisition. Artificial Intelligence, 244, 315–342.

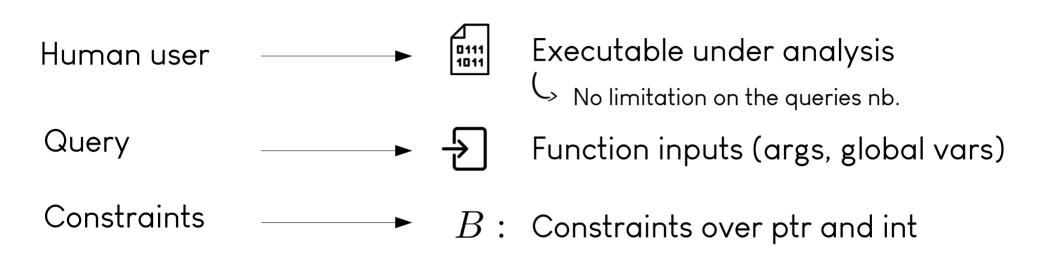
Conacq: Active Constraint Acquisition



Careful: too many queries



Adapting Constraint Acquisition



Preprocess (passive mode)

C→ Generates likely to be interesting queries

The Constraint Language

strlen(str) > 0

 $valid(p) \equiv p \neq NULL$ $alias(p,q) \equiv p = q$ $deref(p,g) \equiv p = \&g$

- $p,q\,$: pointer variables
- $i,j\,$: integer (signed and unsigned) variables

The Bias

Constraint	s for me	emory-related precond.:	Method not limited to
C	:=	$C \vee C \mid A \mid \neg A$	memory-related precond.
A	:=	$valid(p) \mid alias(p,q) \mid d$	eref(p,g)
		$i = 0 \mid i < 0 \mid i \le 0 \mid i =$	= $j \mid i < j \mid i \leq j$

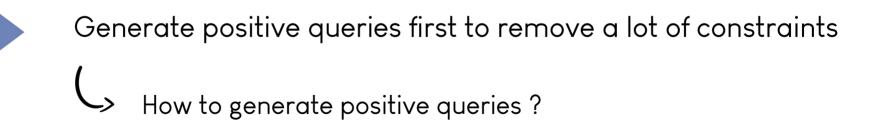
From language to bias B:

- \checkmark The bias is a finite set \rightarrow Which disjunctions to include ?
- Proposal: max. size of disjunctions depending on the function prototype – especially number of integer inputs

Preprocess

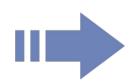
Positive (e⁺) vs Negative Queries (e⁻)

- All constraints incoherent with e⁺ are not in the solution
- → At least one constraint incoherent with e⁻ is in the solution



Preprocess

- Goal of developers : software should work
 - Usually they handle well usual cases
- Generate queries where code likely behave correctly



Generate first queries with ≤ 1 one non valid, aliasing or deref pointers

PreCA

Call the preprocess

while true do

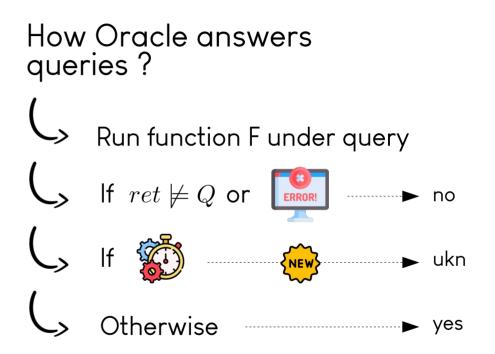
Generate an informative query

if no-query then «we converged»

```
Submit query to the oracle(F, Q)
```

```
if answer is yes then
    Bottom-up-inference()
```

```
else
   Top-down-inference()
```



Back To Our Example

.

Description: returns the index of the first element in "a" present in "b" Postcondition: Q=true

$$\begin{array}{l} \checkmark \\ \forall \text{Variables : a, m, b, n} \\ & \checkmark \\ \text{Heuristics : max. Horn clause size = 3} \\ & \circlearrowright \\ & [m > 0 \Rightarrow valid(a)] \land [m > 0 \land n > 0 \Rightarrow valid(b)] \end{array}$$

Theoretical Analysis

PreCA guarantees

- If B is expressive enough
 If or Precond.
 If oracle never answers "unk"
 Weakest precond.
- These are good theoretical guarantees
- SOTA executions based methods, from programming language community, have no clear guarantees

Evaluation

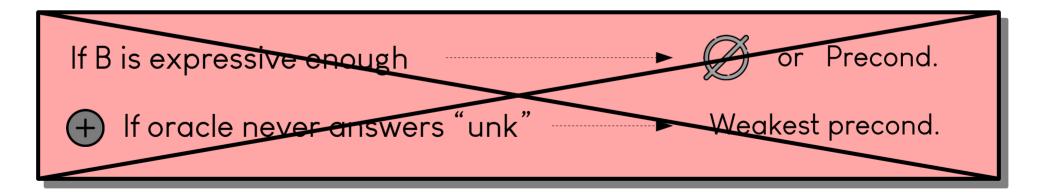
Dataset: 94 learning tasks • compiled C functions (string.h, arrays, arithmetic ...)

PreCA better in 5s than concurrent tools in 1 hour

Problem

What happens if horn clauses heuristics fails?

 $\triangleright B$ is not expressive enough



Better handling of disjunctions

 C_{T} is a conjunctions of constraints from B, i.e.,

 $C_T \subset B$

 C_{T} is a conjunction of disjunctions of B's constraints, i.e., $C_{T} = \{d_i\}_{i \in I}$ $d_i = \bigvee_{j} a_j$ with $a_j \in B$

We say that
$$C_T$$
 is \bigvee -representable by B

Disjunctive Constraint Acquisition

Key points :

- \checkmark MSSes induce a partition
- Check classification of one element per MSS

Deduce the classification of all the domain

- Algorithm 1: DCA
 - In : A nonempty complete bias B
 - **Out** : A conjunction of disjunctions of constraints from B

1 begin

2

3

5

6

return L

Theoretical analysis

Proposition : DCA generates informative queries only

Remark: Informativeness must be extended because of disjunctive behaviors. Some queries which were not informative in CA is informative now.

Theorem : If C_T is \bigvee -representable by B then DCA infers a concept L s.t., $L \equiv C_T$

Terminates, result agrees with all tested queries

Theoretical analysis



DCA for Precondition Inference

	Min bias				Avg bias				Max bias			
	1s	5s	5 mins	1h	1s	5s	5 mins	1h	1s	5s	5 mins	1h
PRECA	34/60	45/60	48/60	48/60	32/60	44/60	46/60	46/60	24/60	36/60	44/60	45/60
→ No disj	21/60	21/60	21/60	21/60	21/60	21/60	21/60	21/60	20/60	21/60	21/60	21/60
$ disj \leq 2$	38/60	43/60	44/60	44/60	35/60	42/60	44/60	44/60	21/60	38/60	44/60	44/60
$ disj \leq 3$	30/60	44/60	48/60	48/60	26/60	43/60	46/60	46/60	18/60	31/60	42/60	44/60
$ disj \leq 4$	30/60	43/60	48/60	48/60	26/60	42/60	45/60	46/60	18/60	29/60	35/60	40/60
$ disj \leq 7$	30/60	43/60	48/60	48/60	27/60	42/60	45/60	45/60	18/60	28/60	35/60	35/60
$ disj \leq 10$	30/60	43/60	48/60	48/60	27/60	42/60	45/60	45/60	17/60	27/60	35/60	35/60
$\downarrow Omniscient$	38/60	45/60	48/60	48/60	34/60	44/60	46/60	46/60	26/60	40/60	43/60	45/60
DCA	40/60	45/60	51/60	54/60	38/60	45/60	49/60	51/60	31/60	42/60	47/60	51/60

 \bigcirc Over each bias DCA infers in 5mins more preconditions than PreCA in 1h

C> DCA is even more efficient than PreCA_{Omniscier}

Results Bench 2 (precond. inference)

	Min bias			Avg bias				Max bias				
	1s	5s	5 mins	1h	1s	5s	5 mins	1h	1s	5s	5 mins	1h
PRECA	34/60	45/60	48/60	48/60	32/60	44/60	46/60	46/60	24/60	36/60	44/60	45/60
→ No disj	21/60	21/60	21/60	21/60	21/60	21/60	21/60	21/60	20/60	21/60	21/60	21/60
$ disj \leq 2$	38/60	43/60	44/60	44/60	35/60	42/60	44/60	44/60	21/60	38/60	44/60	44/60
$ disj \leq 3$	30/60	44/60	48/60	48/60	26/60	43/60	46/60	46/60	18/60	31/60	42/60	44/60
$ disj \leq 4$	30/60	43/60	48/60	48/60	26/60	42/60	45/60	46/60	18/60	29/60	35/60	40/60
$ disj \leq 7$	30/60	43/60	48/60	48/60	27/60	42/60	45/60	45/60	18/60	28/60	35/60	35/60
$ disj \leq 10$	30/60	43/60	48/60	48/60	27/60	42/60	45/60	45/60	17/60	27/60	35/60	35/60
$\downarrow Omniscient$	38/60	45/60	48/60	48/60	34/60	44/60	46/60	46/60	26/60	40/60	43/60	45/60
DCA	40/60	45/60	51/60	54/60	38/60	45/60	49/60	51/60	31/60	42/60	47/60	51/60

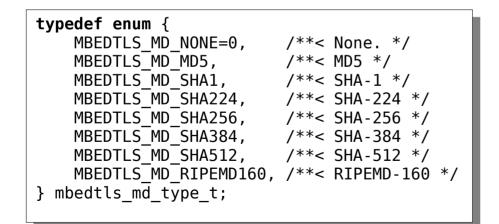
 \checkmark Over each bias DCA infers in 5mins more preconditions than PreCA in 1h

 \checkmark DCA is even more efficient than PreCA_{Omniscient}

An example from MbedTLS

PreCA with Conacq cannot do it in 1h

Description: Delete structures of selected MD Postcondition: Q = "ret = 0"



DCA result:

- #queries: 416

- convergence time: 6 min 41s
- Solution (simplified):

 $\begin{aligned} valid(ctx) \wedge valid(md_info) \wedge \\ \neg alias(ctx, md_info) \wedge valid(md_ctx) \wedge \\ \left(\begin{aligned} type = 1 \lor type = 2 \lor type = 3 \lor \\ type = 4 \lor type = 5 \lor type = 6 \lor type = 7 \end{aligned} \right) \\ \wedge \ valid(output) \end{aligned}$

Conclusion

Al contributions

Ist adaptation of CA for prog. analysis

 new use case for CA
 no user (no limit for queries nb)

 Translate core concepts :

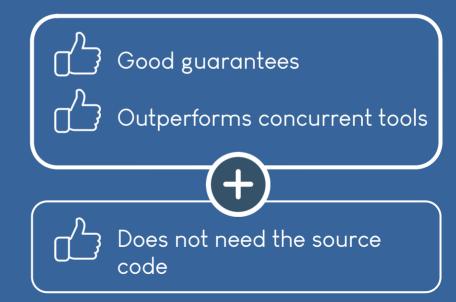
 Set of constraints

 \hookrightarrow Extend CA & new algorithm

Opens new research directions for CA

Prog. analysis contribs

New efficient precond. inference tool



Thank you for your attention

@grmenguy

https://gregoiremenguy.github.io/