
Bulk Synchronous Parallel ML: Modular
Implementation and Performance Prediction

Frédéric Loulergue, Frédéric Gava, and David Billiet

Laboratory of Algorithms, Complexity and Logic – University Paris XII
61, avenue du Général de Gaulle – 94010 Créteil cedex – France

http://bsmllib.free.fr

Abstract. BSML is a library for parallel programming with the func-
tional language Objective Caml. It is based on an extension of the λ-
calculus by parallel operations on a parallel data structure named parallel
vector. The execution time can be estimated, dead-locks and indetermin-
ism are avoided. Programs are written as usual functional programs (in
Objective Caml) but using a small set of additional functions. Provided
functions are used to access the parameters of the parallel machine and to
create and operate on parallel vectors. It follows the execution and cost
model of the Bulk Synchronous Parallel model. The paper presents the
lastest implementation of this library and experiments of performance
prediction.

1 Introduction

The design of parallel programs and parallel programming languages is a trade-
off. On one hand the programs should be efficient. But the efficiency should not
come at the price of non portability and unpredictability of performances. The
portability of code is needed to allow code reuse on a wide variety of architectures
and to allow the existence of legacy code. The predictability of performances is
needed to guarantee that the efficiency will always be achieved on any architec-
ture.

Another very important characteristic of parallel programs is the complexity
of their semantics. Deadlocks and indeterminism often hinder the practical use
of parallelism by a large number of users. To avoid these undesirable properties,
a trade-off has to be made between the expressiveness of the language and its
structure which could decrease the expressiveness.

Bulk Synchronous Parallelism [15, 1] (BSP) is a model of computation which
offers a high degree of abstraction like PRAM models but yet a realistic cost
model based on a structured parallelism: deadlocks are avoided and indetermin-
ism is limited to very specific cases in the BSPlib library [8]. BSP programs are
portable across many parallel architectures.

Our research aims at combining the BSP model with functional program-
ming. We obtained the Bulk Synchronous Parallel ML language (BSML) based
on a confluent extension of the λ-calculus. Thus BSML is deadlock free and deter-
ministic. Being a high-level language, programs are easier to write, to reuse and



to compose. It is even possible to certify the correctness of BSML programs [5]
with the help of the Coq proof assistant. The performance prediction of BSML
programs is possible. BSML has been extended in many ways throughout the
years and the papers related to this research are available at http://bsml.free.fr.

In section 2 we present the core of BSML, which is in fact currently a li-
brary, the BSML library, for the Objective Caml language [12]. Section 3 gives
an overview of the new modular implementation of the current BSML library.
Performance prediction is considered in section 4: we first describ how the BSP
parameters of a parallel machine could be benchmarked and then we present a
small experiment. Related work is presented in section 5. We conclude in sec-
tion 6.

2 The BSML Library

There is currently no implementation of a full BSML language but rather a
partial implementation as a library for Objective Caml language [12]. We assume
the reader has basic knowledge about functional programming with Objective
Caml and about the Bulk Synchronous Parallel model [1].

2.1 Primitives

BSML does not rely on SPMD programming. Programs are usual “sequential”
Objective Caml programs but work on a parallel data structure. Some of the
advantages is a simpler semantics and a better readability: the execution order
follows (or at least the results is such as the execution order seems to follow) the
reading order.

The core of the BSML library is based on the following elements:

bsp p: unit→int
mkpar: (int →α ) →α par
apply: (α →β ) par →α par →β par
type α option = None | Some of α
put: (int→α option) par →(int→α option) par
at: α par →int →α

It gives access to the BSP parameters of the underling architecture. In partic-
ular, bsp p() is p, the static number of processes. There is an abstract polymor-
phic type α par which represents the type of p-wide parallel vectors of objects of
type α one per process. The nesting of par types is prohibited. Our type system
enforces this restriction [6].

The BSML parallel constructs operates on parallel vectors. Those parallel
vectors are created by mkpar so that (mkpar f) stores (f i) on process i for
i between 0 and (p − 1). We usually write f as fun pid→e to show that the
expression e may be different on each processor. This expression e is said to be
local. The expression (mkpar f) is a parallel object and it is said to be global.



A BSP algorithm is expressed as a combination of asynchronous local compu-
tations and phases of global communication with global synchronization. Asyn-
chronous phases are programmed with mkpar and apply.

The expression (apply (mkpar f) (mkpar e)) stores ((f i)(e i)) on process i.
Let consider the following expression:

let vf = mkpar(fun i→(+) i) and vv = mkpar(fun i→2∗i+1) in
apply vf vv

The two parallel vectors are respectively equivalent to:

fun x→x+0 fun x→x+1 · · · fun x→x+(p−1) and 0 3 · · · 2× (p− 1) + 1

The expression apply vf vv is then evaluated to:

0 4 · · · 2× (p− 1) + 2

Readers familiar with BSPlib [8] will observe that we ignore the distinc-
tion between a communication request and its realization at the barrier. The
communication and synchronization phases are expressed by put. Consider the
expression: put(mkpar(fun i→fsi)) (1)

To send a value v from process j to process i, the function fsj at process j
must be such that (fsj i) evaluates to Some v. To send no value from process
j to process i, (fsj i) must evaluate to None. Expression (1) evaluates to a
parallel vector containing a function fdi of delivered messages on every process.
At process i, (fdi j) evaluates to None if process j sent no message to process i
or evaluates to Some v if process j sent the value v to the process i.

The synchronous projection operation at is such as (at vec n) return the nth

value of the parallel vector vec. at expresses communication and synchronization
phases. The projection should not be evaluated inside the scope of a mkpar. This
is enforced by our type system [6].

For the pure functional subset of Objective Caml, BSML is also purely func-
tional: there are no side-effects. Moreover these four parallel functions are called
primitives because they need lower-level libraries (C libraries wrapped to Ob-
jective Caml code) to be implemented. In the modular version of BSML the
implementation of these functions rely either on MPI [14], PUB [2], PVM [7] or
on the TCP/IP functions provided by the Unix module of Objective Caml.

2.2 Examples

Other functions are very often used when one write BSML programs. Never-
theless these functions can be defined using only the primitives and require no
lower-level libraries. They are part of what is called the standard library of
BSML.

For example the function replicate creates a parallel vector which contains
the same value everywhere.

let replicate x = mkpar(fun pid→x)



It is also very common to apply the same sequential function at each process.
It can be done using the parfun functions: they differ only in the number of
arguments of the function to apply:

let parfun f v = apply (replicate f) v
let parfun2 f v1 v2 = apply (parfun f v1) v2

The semantics of the total exchange function is given by:
totex 〈 v0 , . . . , vp−1 〉 = 〈 f , . . . , f , . . . , f 〉

where f is such as ∀i.(0 ≤ i < p) ⇒ (f i) = vi. The code is as follows where
compose is usual composition of functions:

(∗ totex: α par →(int →α ) par ∗)
let totex vv = parfun(compose noSome)(put(parfun (fun v dst→Some v) vv))

Its parallel cost is (p− 1)× s× g + L, where s denotes the size of the biggest
value v held at some process n in words.

From it we can obtain a version which returns a parallel vector of lists:

(∗ totex list: α par→α list par ∗)
let totex list v = parfun2 List.map (totex v) (replicate(procs()))

where List.map f [v0; . . . ; vn] = [(f v0); . . . ; (f vn)] and procs() = [0; . . . ; p−1].
In section 4 we will use the following parallel reduction function:

let fold direct f vec = let fold h::t=List.fold left f h t in
parfun fold (totex list vec)

where List.fold left is a sequential reduction on lists in the Objective Caml stan-
dard library. Its BSP cost formula is (assuming op has a small and constant
cost): 2× p− 1 + (p− 1)× s× g + L.

3 An Overview of the Implementation

In the implementation of the BSML library version 0.3, the Bsmllib module
which contains the primitives presented in section 2.1, is implemented in SPMD
style using a lower level communication library. This module called Comm is
based on the following main elements:

pid: unit →int nprocs: unit →int send: α option array →α option array

There are several implementations of Comm based on MPI [14], PVM [7],
BSPlib [8], PUB [2], TCP/IP, etc. The implementation of all the other modules
of the BSML library, including the core module, is independent on the actual
implementation of Comm, but only depends on its interface.

The meaning of pid and nprocs is obvious, they give respectively the process
identifier and the number of processes of the parallel machine. send takes on each
process an array of size nprocs(). These arrays contain optional values. The input
values are obtained by applying at each process i, the function fi (argument of
the put primitive) to integers from 0 to (nprocs()−1).



If at process j the value contained at index i is (Some v) then the value v
will be send from process j to process i. If the value is the None value, nothing
will be sent. In the result, which are also arrays, None at index j at process i
means than the process j sent no value ot i and a non (Some v) value means
that process j sent the value v to i. A global synchronization occurs inside this
communication function. put and at are implemented using send.

The implementation of the abstract type, mkpar and apply is as follows:

type α par = α let mkpar f = f (pid()) let apply f v = f v

For the MPI version, the pid function does not call the MPI Comm rank
function each time. The MPI function is called only one time at initialization
and the value is store in a reference. The pid function only obtains the value of
this reference.

Let see how the put primitive works. Consider a parallel machine with 4
processors and functions fi whose types are int→α par such as (fi (i + 1)) =
Some vi for i = 0, 1, 2 and (fi j) = None otherwise.

The expression mkpar(fun i →fi) would be evaluated as follows:
1. First at each process the function is applied to all process identifiers to

produce p values, the messages to be sent by the processes. In the following
figure, on the left side, a column represents the values produced at one process
and the lines are ordered by destination (first line represents the messages to be
sent to process 0, etc.).

2. Then the exchange of messages is actually performed. If we think of the
table as a matrix, the resulting matrix is obtained by transposition (right side):

None None None None

Some v0 None None None

None Some v1 None None

None None Some v2 None

None Some v0 None None

None None Some v1 None

None None None Some v2

None None None None

This operation is performed by the send function of the Comm module.
3. Finally the parallel vector of functions is produced. Each process i holds

an array ai of size p (a column of the previous matrix) and the function is
fun x →ai.(x). In our example at process 3, (f3 0) = None which means that
process 3 received no message from process 0 and (f3 2) = Some v2 which means
that process 2 sent the value v2 to process 3.

4 Performance Prediction

One of the main advantages of the BSP model is its cost model: it is rather
simple but yet accurate. Several papers (for example [10]) have demonstrated
this fact using the BSPlib [8] library or the Paderborn University BSP Library
(PUB) [2]. In his book [1], Bisseling presents in the first chapter the BSP model,
programming using the BSPlib library and examples. Among this examples, the
“probe” program is a benchmark used to determine the parameters of the BSP
machines.



4.1 Benchmarking the BSP parameters

There are four BSP parameters. Of course, the number of processors does not
need to be benchmarked. The g and L parameters are expressed as multiples of
the processors speed r. This parameter is the first to be determined. It is also
the most difficult to determine accurately.

In [1], the target applications belong to the scientific computing area. Thus r
is obtained by timing several computations using floating point operations. The
first version of our bsmlprobe program does almost the same, because we would
like to perform some comparisons with the C version (we use an average of the
measured speeds, called r and the best of the speeds, called r′). But of course,
arrays are not the most commonly used data structure in Caml. For applications
with rich data structures, this value of r may be not very accurate. This way to
obtain r is also more favorable to C as more complex data structures, or even
function calls are more efficient in Objective Caml than in C. Thus in practice,
for a general usage, the way to determine r should not only rely on floating
arithmetics.

Then g and L are determined as follows: several super-steps are timed, with
an increasing h relation. In these super-steps, each process sends to each other
process n/p or (n/p)+1 words. Then the least squares method is used to obtain
g and L.

The average results obtained by running the probe (C+MPI) and bsmlprobe
(BSML 0.3 with MPI implementation of the Comm module) programs 10 times
on a 6 Pentium IV nodes cluster interconnected with a Gigabit Ethernet network
are as follows:

– C+MPI: r = 478 Mflops, g = 25.2 Flops/word, L = 623141 Flops
– BSML(MPI): r = 469 Mflops, g = 28 Flops/word, L = 227512 Flops

4.2 Experiments

We then performed some experiments on the program which compute the inner
product of two vectors. There are two versions, one using arrays to store the
vectors and one using lists to store them:

let inprod array v1 v2 = let s = ref 0. in
for i = 0 to (Array.length v1)−1 do s:=!s+.(v1.(i)∗.v2.(i)); done; !s

let inprod list v1 v2 = List.fold left2 (fun s x y→s+.x∗.y) 0. v1 v2
let inprod seqinprod v1 v2 = let local inprod = parfun2 seqinprod v1 v2 in

Bsmlcomm.fold direct (+.) local inprod

This code uses the fold direct function from the BSML standard library (pre-
sented in section 2.2). Thus the overall BSP cost formula of inprod is: n + 2 ×
p + (p− 1)× g + L.

These programs were run 15 times each for increasing size of vectors (from
5.000 to 100.000) and the average was taken. The following figure summarizes
the timings. The predicted performances using the parameters obtained in the
previous section are also given:



0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0 10 20 30 40 50 60 70 80 90 100
n: Size of the vectors (in Kfloats)

Inner Product in BSML (time in ms)

lists
arrays

prediction

5 Related Work

The first libraries devoted to BSP programming were libraries for C which con-
verged to a standard proposal and the Oxford BSPlib [8]. Being a library for C, it
is of course very different from BSML. First the programming style is SPMD and
the communication function bsp put in Direct Remote Memory Access (DRMA)
style may cause indeterminism if two processors try to write into the same mem-
ory zone of a third processor. The synchronization barrier should be explicitly
called with bsp sync. There are no updates of this library since 1998. The Pader-
born University BSPlib (PUB) [2] library is also dedicated to BSP programming.
It offers additional features not part of the standard. For example it is possible
to have threads and the library takes care of avoiding the mismatch of messages.

There are other libraries for Coarse-Grained Multicomputer (CGM) program-
ming. CGM is a special case of the BSP model and some of these libraries allow
to program BSP algorithms which are not CGM algorithms [3]. NestStep [11] is
an extension of C, C++ and Java for SPMD programming of BSP algorithms.
It is based on a virtual shared memory on top of message passing libraries.

To our knowledge, two algorithmic skeletons languages are based on the BSP
model [16, 4]. They have of course the advantages and drawbacks of skeleton ap-
proaches. Implementations have not been released. VEC-BSP has the advantage
of having a cost algebra associated with the language which allows automatic
performance prediction.

BSP-Haskell [13] and BSP Python [9] are inspired from the BSλ-calculus
and BSML. BSP Python adapts BSML to Python which is an object oriented
language. Thus elements of BSML are present. There are parallel vectors which
are instances of a global class which has a method put for communications, etc..
The constructor of the ParData class takes as argument a function like BSML
mkpar. BSP-Haskell relies on monads and it allows to avoid the evaluation of
nested parallel vectors.



6 Conclusions

The BSML library allows declarative parallel programming in a safe environ-
nement. Being implemented using Objective Caml and using a modular ap-
proach which allows to perform the communications with various communica-
tion libraries, it is portable, and efficient, on a wide range of architectures. The
basic parallel operations of BSML are Bulk Synchronous Parallel operations,
thus allow accurate and portable performance prediction.

Acknowledgements This work is supported by the ACI Grid program from the
French Ministry of Research, under the project Caraml (www.caraml.org).

References

1. R. Bisseling. Parallel Scientific Computation. A structured approach using BSP
and MPI. Oxford University Press, 2004.

2. O. Bonorden, B. Juurlink, I. von Otte, and O. Rieping. The Paderborn University
BSP (PUB) library. Parallel Computing, 29(2):187–207, 2003.

3. A. Chan and F. Dehne. CGMgraph/CGMlib: Implementing and Testing CGM
Graph Algorithms on PC Clusters. In Proceedings of the 10th EuroPVM/MPI
conference. Springer, 2003.

4. M. Cole and Y. Hayashi. Static Performance Prediction of Skeletal Programs.
Parallel Algorithms and Applications, 17(1):59–84, 2002.

5. F. Gava. Formal Proofs of Functional BSP Programs. Parallel Processing Letters,
13(3):365–376, 2003.

6. F. Gava and F. Loulergue. A Static Analysis for Bulk Synchronous Parallel ML to
Avoid Parallel Nesting. Future Generation Computer Systems, 2005. to appear.

7. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM
Parallel Virtual Machine. A User’s Guide and Tutorial for Networked Parallel
Computing. Scientific and Engineering Computation Series. MIT Press, 1994.

8. J.M.D. Hill, W.F. McColl, and al. BSPlib: The BSP Programming Library. Parallel
Computing, 24:1947–1980, 1998.

9. K. Hinsen. High-Level Parallel Software Development with Python and BSP. Par-
allel Processing Letters, 13(3):461–472, 2003.

10. S.A. Jarvis, J.M.D Hill, C.J. Siniolakis, and V.P. Vasilev. Portable and architecture
independent parallel performance tuning using BSP. Parallel Computing, 28:1587–
1609, 2002.

11. Christoph Kessler. Managing distributed shared arrays in a bulk-synchronous
parallel environment. Concurrency and Computation: Practice and Experience,
16:133–153, 2004.

12. X. Leroy, D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon. The Objective Caml
System release 3.08, 2004. web pages at www.ocaml.org.

13. Q. Miller. BSP in a Lazy Functional Context. In Trends in Functional Program-
ming, volume 3. Intellect Books, may 2002.

14. M. Snir and W. Gropp. MPI the Complete Reference. MIT Press, 1998.
15. Leslie G Valiant. A bridging model for parallel computation. Communications of

the ACM, 33(8):103–111, August 1990.
16. A. Zavanella. Skeletons, BSP and performance portability. Parallel Processing

Letters, 11(4):393–405, 2001.


