
BSP-WHY: an Intermediate Language for
Deductive Verification of BSP Programs

Jean Fortin
LACL, University of Paris-East,

61 avenue du Ǵeńeral de Gaulle, 94010 Créteil, France
jean.fortin@ens-lyon.org

Fréd́eric Gava
LACL, University of Paris-East,

61 avenue du Ǵeńeral de Gaulle, 94010 Créteil, France
frederic.gava@univ-paris-est.fr

Abstract
We presentBSP-Why, a tool for verifying BSP programs. It is in-
tended to be used as an intermediate core-language for verification
tools (mainly condition generators) of BSP extensions of realistic
programming languages such as C, JAVA , etc.BSP-Why is based
on a sequential simulation of the BSP programs which allows to
generate pure sequential codes for the back-end condition genera-
tor Why and thus benefit of its large range of existing provers —
proof assistants or automatic decision procedures. In this manner,
BSP-Why is able to generate proof obligations for BSP programs.

Categories and Subject Descriptors F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning about Pro-
grams; F.1.2 [Computation by Abstract Devices]: Modes of Com-
putation, Parallelism and concurrency

General Terms Languages, Verification

Keywords Hoare Logic, Parallel Programs, BSP

1. Introduction
1.1 Generalities

The correctness of parallel programs is of paramount importance,
especially considering the growing number of parallel architecture
(GPUs, multi-cores,etc.) and the cost of conducting large-scale
simulations — the losses due to fault program, unreliable results or
crashing simulations. Formal verification tools that display parallel
concepts are thus useful for program understanding and incisive
debugging. With the multi-cores, GPUs and peta-scale revolutions
looming, such tools are long overdue.

Given the strong heterogeneity of these massively parallel ar-
chitectures and their complexity, a frontal attack of the problem of
verification of parallel programs is a daunting task that is unlikely
to materialize. Some works on the standard MPI exist [Siegel 2007,
Vo et al. 2009] but are limited to a predefined number of processors:
by model-checking the MPI/C source code and by using an abstrac-
tion of the MPI calls (the schemes of communications), an engi-
neer, by push-button, can mainly verify that the program does not
contain any possible deadlocks. But it is impossible to verify this
property for any number of processors, which is a scaling problem.

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

HLPP’10, September 25, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-4503-0254-8/10/09. . . $10.00

Another approach would be to consider well-defined subsets
that include interesting structural properties. In fact, many paral-
lel programs are not as unstructured as they appear: it is the skele-
tons [Cole 2004] and BSP [Bisseling 2004] main idea.

Also, avoiding deadlocks is not sufficient to ensure that the
programs will not crash. Mainly, we need to check buffer and
integer overflows (safety) and liveness. For critical systems and
libraries, one can also want a better trust in the code: are results as
intended? Verification Condition Generator (VCG) tools is one of
the solutions. They take an annotated program as input and produce
verification conditions (proof obligations to provers) as output to
ensure correctness of the properties given in the annotation1. An
advantage of this approach is to allow the mixing of the manual
proof of properties using proof assistants and automatised checks
of simple properties using automatic decision procedures.

The goal of this article is to provide a tool for the verification
of properties of a special class of parallel programs by providing
annotations and generation of proof obligations using a VCG.

1.2 Which parallel model?

In this article, we restrict our study to the BSP framework2. In fact,
many parallel programs fit the BSP model even if many authors
do not know it. For example, all MPI sub-programs that only use
collective routines (or using the API of [Ghuloum et al. 2007]) can
be considered as BSP programs.

A BSP program is executed as a sequence ofsuper-steps[Skil-
licorn et al. 1997]. This structural property of the parallel computa-
tion is well known by the parallel algorithmic community for doing
static [Bisseling 2004] and runtime [Bamha and Exbrayat 2003]
optimisations. It also looks like a good candidate for formal ver-
ification [Jifeng et al. 1996]: its model of execution is simpler to
understand than any concurrent model.

The structural nature of the BSP programs will allow us to
decompose the programs into sequences of blocks of code, each
block corresponding to a super-step, and help in the generation of
the proof obligations.

1.3 Which condition generator?

Writing proof assistants and VCGs requires a tremendous amount
of work which should be left to the field experts. The main idea of

1 Even if many engineers do not want to write anything else than the
programs and thus want push-button tools (such as model-checking) to
provide at least safety and liveness, there exists some tools[Kovács and
Voronkov 2009] that automatically provide annotations for some properties.
But defining the exact meaning of a computation is clearly a humanwork.
Adapting these kind of tools is not the subject of this paper.
2 We refer to [Bisseling 2004, Skillicorn et al. 1997] for a gentle introduc-
tion to BSP and its C libraries.

this work is to simulate the parallelism by using a transformation
of the parallel code into a pure sequential one. Therefore, the goal
is using the now “well defined” verification tools of sequential
programs as back-ends for parallel verification tools.

For this work, we choose the VCGWhy. First, it takes as in-
put a small core-language close to ML avoiding us to handle all
the constructs of a full language. Instead, realistic programming
languages can be compiled into theWhy input language.Why cur-
rently interprets C and JAVA programs with the help of two com-
panion tools [Fillîatre and March́e 2004, 2007].BSP-Why would
serve as intermediary for C [Bisseling 2004] or JAVA [Bonorden
et al. 2006] BSP extensions similarly to the wayWhy is for se-
quential programming. Second,Why is currently interfaced with
the main proof assistants (Coq, PVS, HOL) and automatic deci-
sion procedures (Simplify,Alt-Ergo, etc.) as back-end for the proof
obligations. This allows us to use these provers for the proof obli-
gations obtained from the parallel programs.

1.4 Contribution of this paper and Outline

In this paper, we design a core-language (Section 3), as an exten-
sion ofWhy for BSP programming. A special syntax for BSP an-
notations is also provided which is simple to use and seems suffi-
cient to express conditions in most practical programs —e.g. the
ones of [Bisseling 2004, Dehne 1999]. Our core-language is also
close to standard BSP programming: primitives offer both message
passing and remote memory access. We give the operational se-
mantics ofBSP-Why in Section 3. We used theWhy core language
as a back-end of our ownBSP-Why3 core language.

We give the axiomatisation of the BSP primitives inWhy in
Section 4. In Section 5, we transformBSP-Why programs into
Why, then we prove that the generatedWhy programs (with an-
notations) are as intended: the parallel program and its sequential
simulation run in the “same manner”. We present some simple ex-
amples of BSP algorithms in Section 6 to demonstrate the useful-
ness of this method and its limits.

2. Why verifying programs: examples of crashes
Even if the BSP model is theoretically deadlock and livelock free
and simplifies the writing of parallel codes, many errors, even
deadlocks, can appear in BSP programs in addition of classical
sequential programming errors (buffer and integer overflows, non
terminating loops,etc.). Take for example the following C code:

if (bsp pid()==0) bsp sync();
else asynchronous computation();

here, a deadlock can occur and the parallel machine would crash on
some architectures. Communications can also generate errors:

int x=bsp pid();
(∗ All processors except 0 send a message to 0 ∗)
if (bsp pid()!=0) bsp send(0,(void∗)x,sizeof(int));
bsp sync();
(∗ processor 0 reads these messages ∗)
if (bsp pid()==0)
for(int i=0;i<=bsp nprocs()−1;i++)

x+=(int)bspmsg data(bsp findmsg(i,0));

processor 0 will read a message from itself too. Another example:

int x[bsp nprocs()];
bsp push reg((void ∗)x,bsp nprocs()∗sizeof(int));
bsp sync();
(∗ All processors except 0 write to the x of processor 0 ∗)
if (bsp pid()!=0)
bsp put(0,(void ∗)x,(void ∗)x,bsp pid()+1,1∗sizeof(int));
bsp sync();

3 The prototypeBSP-Why tool is available athttp://lacl.fr/fortin/BSP-why/

the last processor would write over the limits of x of processor 0
and a segfault might occur.

Our last example is not really an error since it does not crash the
machine but gives undeterministic results and thus can disturb the
meaning of a program. What happens when there are two distant
writings (using the put primitive) of two different processors over
the same area of memory ? For example:

int x[bsp nprocs()];
bsp push reg((void ∗)x,bsp nprocs()∗sizeof(int));
bsp sync();
bsp put(0,(void ∗)x,(void ∗)x,0,1∗sizeof(int));
bsp sync();

Two solutions are possible. First, forbid this case by adding logical
conditions for distant writings. Second, suppose an order of writ-
ing of the processors. We have currently chosen the second case
since we assume a deterministic semantics of BSP programs but
changing to the first case is trivial to do.

Many other errors can be cited: forgetting to register a variable,
forgetting a barrier and all errors with pointers of the messages that
one can imagine. Proving that programs do not have these incorrect
uses of the routines would increase confidence in the codes. This
will be even better if you also formally prove the behaviour of your
BSP programs — at least, the more important parts of your code.

3. TheBSP-Why intermediate language
3.1 TheWhy framework

Implementing a verification condition generator (VCG) for a realis-
tic programming language needs a lot of work: too many constructs
require a specific treatment4. Reducing the VCG to a core language
thus seems a good approach.

The input syntax of the VCGWhy is an intermediate and spe-
cific alias-free ML language dedicated to program verification
(http://why.lri.fr/). As a programming language, it is an ML
language which (1) has limited side effects (only mutable variables
that cannot be aliased), (2) provides no built-in data type, (3) pro-
poses basic control statements (assignment, if, while, exceptions
[Filli âtre and March́e 2007]) (4) uses programlabelsto refer to the
values of variables at specific program points.

A Why program is a set of functions, annotated with pre- and
post-conditions. Those are written in a general purpose specifi-
cation language (polymorphic multi-sorted first-order logic). This
logic can be used to introduce abstract data types, by declaring
new sorts, function symbols, predicates and axioms. The verifica-
tion condition generation is based on a Weakest Precondition cal-
culus completed by a functional interpretation of the imperative
features [Fillîatre 2003], incorporating exceptional post-conditions
and computation of effects over mutable variables.

TheWhy language also provide possibility of defined axioms,
pure logical assertions and parameters: primitives that have type
definitions (with possibles side-effects and logical assertions) but
no implementation.

Annotations inWhy are Hoare triple{P}c{R} whereP (pre-
condition) andR (post-condition) denote logical expressions andc
denotes a source-code fragment. Informally, this means “IfP holds
before the execution ofc, thenR will hold after the execution”.
Classically in Hoare logic, loops require to find an appropriate
formula,P , which is true before and after the loop and preserved
by each execution of the loop body.P is called aninvariant. To
find it requires some intuition in many cases. It merely assures
us that, if the loop has terminated, the post-condition holds. To
guarantee that the loop will always terminate, another formula

4 This also happens when modeling MPI [Li et al. 2008]; it forcesto use the
smallest possible number of routines.

parameterg x: int ref
parameterg z: int ref

logic sigma prefix : int fparray,int → int
axiom sigma prefix1 :
forall t:int fparray. sigma prefix(t,−1) = 0

axiom sigma prefix2 : forall i:int. isproc(i) →
forall t:int fparray.
sigma prefix(t,i) = t<i> + sigma prefix(t,i−1)

let prefixes () = {comm empty (<envCsend>)}
(let y = ref (bsp pid void + 1) in

while(!y < nprocs) do
{
invariant (y > (bsp pid)) and
envCsendIs(j,bsp pid + 1,y,lcast int(x))
and modify(envCsend)
variant nprocs − y

}
bsp send !y (cast int !x);
y := !y + 1

done);
{ envCsendIs(j,bsp pid + 1,nprocs,lcast int(x)) }
bsp sync;
(
z:=x;
let y = ref 0 in
while(!y < bsp pid void) do
{
invariant (0 <= y <= bsp pid) and

z=x+sigma prefix(<x>, y−1) and modify(z)
variant bsp pid − y

}
z := !z + uncast int (bsp findmsg !y 0);
y := !y + 1

done)
{ z=sigma prefix(<x>, bsp pid)}

parameter x : int fparray ref

parameter z : int fparray ref

logic sigma prefix : int fparray,int → int
axiom sigma prefix1 :
forall t:int fparray. sigma prefix(t,−1) = 0

axiom sigma prefix2 : forall i:int. isproc(i) →
forall t:int fparray.
sigma prefix(t,i) = paccess(t,i) + sigma prefix(t,i−1)

let prefixes () = { comm empty(envCsend) }
proc i := 0 ;

loop0: while (!proc i < nprocs) do

{
invariant (proc i>=0) and (...)
variant nprocs − proc i

}
let y = ref (bsp pid (void))+1 in

while (!y < nprocs) do

{
invariant (...)
variant nprocs − y

}
bsp send !y (cast int (parray get x !proc i)) ;
y:=!y+1

done ;
proc i:=!proc i + 1

done;
bsp sync (void) ;
proc i := 0 ;

loop1: while (!proc i < nprocs) do

{
invariant (proc i>=0) and (...)
variant nprocs − proc i

}
parray set z !proc i (parray get x !proc i);
let y = ref 0 in

while (!y < bsp pid void) do

{
invariant paccess(z,proc i)=paccess(x,proc i) +sigma prefix(x, y−1)

and (...)
variant proc i − y

}
parray set z (!proc i) ((parray get z !proc i) + (uncast int (bsp findmsg !y 0))) ;
y:=!y+1

done ;
proc i:=!proc i + 1

done

{ forall proc i:int. isproc(proc i) →
paccess(z,proc i)=sigma prefix(x, proc i)}

Figure 1. BSP-Why code of the direct prefix computation (left) and itsWhy transform (right)

calledvariant is needed: it defines a measure that strictly decrease.
All the annotations are used to generated the output: the proof
obligations.

Why also provides a multi-prover output for the main proof as-
sistants and automatic decision procedures.Why currently inter-
prets C programs and JAVA programs with the help of the compan-
ion tools [Filliâtre and March́e 2007]. These tools transform anno-
tated programs from these real languages toWhy programs. Syntax
and semantics ofWhy can be found in [Fillîatre 2003].

In the case of alias-free programs, simpler proof obligations
is the main goal ofWhy: for communications, we will see that
BSP-Why generates obligations that can be “hard” to read; the
simpler the obligations for the sequential parts of a program, the
less complex they are for the parallel parts.

3.2 Syntax ofBSP-Why

The syntax ofBSP-Why is the one ofWhy [Filli âtre and March́e
2007, Filliâtre 2003] with an additional syntax for parallel instruc-
tions. For more details see [Fortin and Gava 2010] or theWhy syn-
tax available athttp://why.lri.fr/.

A program is a list of declarations. A declaration is either a
definition (logic terms, axioms, parameters,etc.) or a program
expression or an exception declaration.

Program expressions mostly follow ML’s ones. Fig 1 gives
an example of aBSP-Why program (left) and aWhy program
(right). One can remark that they are ML programs with logical
annotations inside the brackets. In order to simplify the reading
of the semantics and of the paper, parallel operations (notably

DRMA — Direct Remote Memory Access primitives) take simple
variables as argument, instead of buffers. In practice,BSP-Why
does manipulate buffers, and adds proof obligations to avoid buffer
overflows.

A special constantnprocs (equal top) and a special variable
bsp pid (with range0, . . . ,p − 1) were added toWhy expres-
sions. In pure terms (terms without possible side effects), we also
have introduced the two special function symbolsbsp nmsg(t) and
bsp findmsg t1 t2: the former corresponds the number of mes-
sages received from a processor idt (C functionbsp nmsgs(t)) and
the latter to get thet2-th message from processort1 (C function
bsp findmsg(t1,t2)).

The six parallel operations added in the syntax are: (1)bsp sync,
barrier of synchronisation, which holds a pre-condition to de-
scribe the environments of communications of the processes at
the end of the super-step; (2)bsp push x, registers a variablex
for global access; (3)bsp pop x, deletex from global access;
(4) bsp put e x y, remote writing ofx to y of processore; (5)
bsp get e x y, remote reading fromx to y; (6) bsp send e1 e2,
sending value ofe1 to processore2.

For thebsp sync operation, it is necessary, in order to prove
the correctness of a program, to give a logic assertion just before
thebsp sync instruction. This assertion should describe the com-
putations done during the previous superstep. In the transformation
to theWhy code, this assertion is used in the invariant of the loop
executing sequentially the code of each processor. If the assertion
is void, it will not be possible to prove more than thesafetyof exe-

cution of the program,i.e. the fact that the program will terminate
without failing by an array overflow, an illegal message read,etc.

From theWhy’s simple minimal first-order logic, we add the
constructt<i> which denotes the value of a termt at processor
id i, and<x> denotes theparrayx (a value on each processor),
in contrast with the notationx which means the value ofx on the
current processor.

We also addfparray to logical term which is the abstract type
for purely applicative arrays of sizep (with some obvious axioms)
and list. They are used for the description ofp-values, one per
process and for the environment of communications.

3.3 Operational Semantics ofBSP-Why

The semantics of theWhy language is a big-step operational one
without surprise available athttp://why.lri.fr/. Thus we also
describe the semantics ofBSP-Why using a big-step semantics.
Even if the semantics contains many rules and many environments
(due to the parallel routines), there is no surprise and it has to be
read naturally.

Values to be sent and remote reading/writing are stored in the
environment of communications as simple list of messages. There
are thus six additional components in the environment (R, Csend,
Cput, Cget, Cpop, Cpush), one per primitive that needs communications,
and each of them is a special variable of the assertions. Each is a
simple list of messages. For DRMA primitives, there is also the
registrationT which is described later (push and pop need commu-
nications for keeping the registration of each processor coherent).

The notions of valuesv and states are the same as in theWhy
semantics with the additional possible valueSYNC(e), which de-
scribes the awaiting of a synchronisation withe as program to be
executed after the global synchronisation:v ::= c | (Ec) | rec g x =
e | SYNC(e). A valuev can be a constant (integer, boolean,etc.),
an exceptionE carrying a constantc, a closurerec g x = e rep-
resenting a possibly recursive functiong binding x to e, or the
synchronisation state. It is convenient to add the notion of closure
to the set of expressions:e ::= . . . | rec g x = e. We also use a
natural set of contextsR to deal with exceptions.

We notes for the environment of a processor. It is a 8-tuple
E , T ,R, Csend, Cput, Cget, Cpop, Cpush. We notes.X to access to the
componentX of the environments, ⊕ the update of a component
of an environment without modifying other components and∈ to
test the presence of a data in the component.

As the BSPlib, DRMA variables are registered using a regis-
tration mechanism that is each processor contains a registrationT
which is a list of registered variables: the first one in the list of a
processori corresponds to first one of the processorj.

We first have semantics rules for the local execution of a pro-
gram, on a processori. We notes, e ⇓i s′, v for these local re-
ductions rules (e.g.one at each processori): e is the program to be
executed,v is the value after execution,s is the environment before
the execution,s′ the environment after the execution.

Rules for the local control flows are fully defined in [Fortin
and Gava 2010]. For each control instruction, it is necessary to
give several rules, depending on the result of the execution of
the different sub-instructions: one when an execution leads to a
synchronisation (when processors finish a super-step), and one if
it returns directly a value. We have thus to memorise as a value
the next instructions of each processor. These intermediate local
configurations are notedSYNC(e) — rules for the put primitive in
Fig. 2 gives a good examples of this fact.

To avoid confusion between a new reference and those that
have been registered before, one could not declare a reference that
has been created before. This is not a problem sinceWhy always
forbids this case.

Rules of the BSP operations are given in Fig. 2 (executed on a
single processori). Basically, a primitives adds the corresponding
message to the environment. We notenth(s′.T , y) = n to learn
for a variabley how nth is it in the registrationT . We also note
Size(s.R, to) to know how many messages from processorto has
been received during the last super-step.

BSP programs are SPMD ones so an expressione is startedp
times. We model this as ap-vector ofe with its environments. A
final configuration is a value on all processors. We note⇓ for this
evaluation and the two needed rules are given in Fig. 3.

First rule gives the base case, when each processori executes a
local (sequential) evaluation⇓i to a final value.

The second rule describes the synchronisation process when all
processors execute to aSYNC(c) state: the communication are effec-
tively done during the synchronisation phase and the current super-
step is finished. TheAllComm function models the exchanges of
messages and thus specifies the order of the messages. It modifies
the environment of each processori. For the sake of brevity, we do
not present this function which is a little painful to read and is just
a reordering of thep environments.

Note that if at least one processor finishes its execution while
others are waiting for a synchronisation, a deadlock will occur.
Finally we have the following results.

LEMMA 1. ∀i ⇓i is deterministic.

LEMMA 2. ⇓ is deterministic.

The two lemmas are trivially proved by induction on the evalua-
tion.

4. Parallel memory model
The main idea of our approach is to simulate the execution of a BSP
program on a parallel machine by a sequential execution which will
simulate the entire parallel machine. This way we are able to use
theWhy tools.

But in doing so, we need to simulate the memory (environment)
of all the computers in a single computer. We also need to simulate
the functioning of the communication operations.

The result is that each program written inBSP-Why, and then
sequentialized into aWhy program share the same structures: they
use the same kind of environments to keep track of the parallel
operations, the same data types (p-arrays, lists of messages,etc.),
the same primitives to manipulate these environments. It is thus
convenient to regroup all of these declarations in a separate file.

In the same way thatWhy uses prelude files to define basic oper-
ations common to allWhy programs, we use a bspwhyprelude.mlw
file, which contains the common data types, the basic operations on
these data types, the axiomatization of the BSP operations, and of
the memory model used.

4.1 Data types

Several data types are used in the transformation, and are defined
in the prelude file. Thefparray type, a functional array of length
p, is used every time we need to have data on each processor. The
parray type corresponds to the mutable array, which is a reference
to thefparray. Lists are used in several ways for the communi-
cation environments, and are defined in this file too. Various other
data types are defined, such as thevalue datatype used to transmit
any kind of data, and thervaluet type used to represent the values
received withsend messages.

4.2 Communication Environments

As in the semantics, three separates message queues,send_queue

(Csend), put_queue (Cput), andget_queue (Cget), are used to store

s, {p}bsp sync ⇓i s, SYNC(void)

s′ = s.Cpush⊕ x

s, bsp push x ⇓i s′, void

s′ = s.Cpop⊕ x

s, bsp pop x ⇓i s′, void s, nprocs ⇓i s,p s, pid ⇓i s, i

s, e ⇓i s′, to 0 ≤ to < p {x 7→ c} ∈ s′.E nth(s′.T , y) = n s′′ = s′.Cput ⊕ {to, c, n}

s, bsp put e x y ⇓i s′′, void

s, e ⇓i s′, SYNC(e′)

s, bsp put e x y ⇓i s′, SYNC(bsp put e′ x y)

s, e ⇓i s′, SYNC(e′)

s, bsp get e x y ⇓i s′, SYNC(bsp get e′ x y)

s, e ⇓i s′, SYNC(e′)

s, bsp send x e ⇓i s′, SYNC(bsp send x e′)

s, e ⇓i s′, to 0 ≤ to < p {x 7→ c} ∈ s′.E nth(s′.T , y) = n s′′ = s′.Cget⊕ {to, n, x}

s, bsp get e x y ⇓i s′′, void

s, e ⇓i s′, to 0 ≤ to < p {x 7→ c} ∈ s′.E s′′ = s.Csend⊕ {to, c}

s, bsp send x e ⇓i s′′, void

s, t1 ⇓i s′, to 0 ≤ to < p s′, t2 ⇓i s′′, n {to, n, c} ∈ s′′.R

s, bsp findmsg t1 t2 ⇓i s′′, c

s, t ⇓i s, to 0 ≤ to < p n = Size(s.R, to)

s, bsp nmsg(t) ⇓i s, n

Figure 2. Semantics: Local BSP Operations

∀i si, ei ⇓
i s′i, vi

(s0, c0), . . . (sp−1, cp−1) ⇓ (s′0, v0), . . . (s
′

p−1, vp−1)

∀i si, ei ⇓
i s′i, SYNC(e

′

i) AllComm{(s′0, e
′

0), . . . (s
′

p−1, e
′

p−1)} ⇓ (s′′0 , v0), . . . (s
′′

p−1, vp−1)

(s0, e0), . . . (sp−1, ep−1) ⇓ (s′′0 , v0), . . . (s
′′

p−1, vp−1)

Figure 3. Semantics: Global reductions

the communication requests before synchronisation. Each queue is
defined as a list, with the usual constructorsnil andcons. Similar
queues are used for thepush (Cpush) andpop (Cpop) mechanisms.

To be as close as possible to the semantics, the communication
proceduressend, put, get, and likewise the synchronisationsync
are defined as parameters. As such, we only give the type of the
procedure, and an axiomatisation given by the post-condition, not
the effective sequential code used: an actual sequential code would
make more proofs, the additional verification conditions for this
extra code.

In theEnvR section of the file, we describeR which contains
messages sent during the previous super-step. Since it is possible to
send different types of value with the communication instructions,
a generic typevalue is used, and one function of serialisation and
one of deserialisation are needed for each data type used in the pro-
gram. One axiom for each data type ensures that the composition
of deserialisation and serialisation is the identity.

The most complex part of the file is the definition of the DRMA
mechanism. AsWhy does not allow pointers, we use a global two-
dimensional array, namedglobal, to store all variables that need
DRMA access. A special type is used to describe such variables,
and for each variablex with DRMA in the program, a logical value
x of typevariable is added in the generatedWhy file. This way,
global[x][i] contains the value of variablex, on processori.

To be in accordance with the BSPlib, we define a registration
T . The push instruction can associate different variables on dif-
ferent processors. This is modeled using an additional array, which
stores the association of the variables on different processors. For
instance, if even processors push the variablex while odd proces-
sors push the variabley, with p = 6, the nextsync operation will
add a line[x, y, x, y, x, y] in the association table. The index used
in theglobal array is the variable on the first processor.

As an example, we show the different parts of the prelude file
used to model the behaviour of BSMP communications.

First, we define the type used to store the messages waiting to
be sent, using the usual list definition (nil andcons):

type send_queue
logic add_send : value , send_queue -> send_queue
logic nil_send : send_queue

The logical functionadd_send (⊕ in the semantics) will be
used to effectively add a send message in asend_queue.

Each processor hasp send_queue, containing the messages to
be sent to thep processors of the parallel machine.

Next, we define some useful operations on these lists, us-
ing an abstract logic definition, and an axiomatisation for each
logic function. We give for example the axiomatisation of the
nsend function, used to determine the number of messages waiting
(Size(s.R, to) in the semantics):

logic nsend : send_queue -> int
axiom nsend_nil : nsend(lfnil_send) = 0
axiom nsend_cons : forall q:send_queue.

forall n:int. forall v:value.
nsend(q) = n -> nsend(lfadd_send(v,q)) = n+1

axiom nsend_cons2 : forall q:send_queue. forall v:value.
nsend(lfadd_send(v,q)) = nsend(q) + 1

logic in_send_n : send_queue,int,value -> prop

The in_send_n function is used to test the fact that a mes-
sage is in the list. Lastly, we can define the variable used for the
global environment. For each processor, we have aparray of
send_queues, hence the final type, and the methodbsp_send de-
fined in the semantics.isproc is a useful predicate defined earlier
in the prelude file, stating that an index is a valid processor id (i.e.
0 ≤ i < p).

parameter envCsend : send_queue fparray fparray ref

parameter bsp_send: dest0:int -> v:value ->
{ isproc(proc_i) } unit reads proc_i writes envCsend

{envCsend = pupdate(envCsend@, proc_i,
pupdate(paccess(envCsend@,proc_i),dest0,
lfadd_send(v,(paccess(paccess(envCsend@,proc_i),
dest0)))))}

In the next step, we define the environment used to store the
values received during the previous synchronisation.

type rvaluet
logic rvalue_get : rvaluet, int, int -> value

parameter envR : rvaluet fparray ref

parameter bsp_findmsg: src:int -> n:int -> {} value
reads proc_i,envR
{result=rvalue_get(paccess(envR,proc_i),src,n)}

The logic functionrvalue_get allows to retrieve then-nth
message sent by a processorsrc. envR, as previously, is defined
as aparray. The bsp_findmsg is the corresponding parameter,
and it can be used in theBSP-Why programs.

4.3 Synchronisation

The only remaining part of the BSMP process is the synchronisa-
tion function, which is defined, as in the semantics, by the use of a
Comm predicate. We give here the part of the predicate concerning
the BSMP communications:

predicate comm_send(envCsend:send_queue fparray fparray,
envCsend’:send_queue fparray fparray,
envR’:rvaluet fparray)

= (forall i,j: int. isproc(i) -> isproc(j) ->
(paccess(paccess(envCsend’,i),j) = lfnil_send)) and

(forall i: int. isproc(i) ->
(forall j:int. forall n:int. forall v:value.

(rvalue_get(paccess(envR’,i),j,n)=v) <->
(in_send_n(paccess(paccess(envCsend,j),i),n,v))))

predicate comm(envCsend:send_queue fparray fparray,
envCsend’:send_queue fparray fparray,
envR’:rvaluet fparray, ...) =

comm_send(envCsend,envCsend’,envR’) and ...

parameter bsp_sync : unit ->
{} unit writes envCsend, envR, ...
{ comm(envCsend@, envCsend, envR, ...) }

Thecomm_send predicate is specific to thesend messages, and
is called from thecomm predicate. Lastly, thebsp_sync parameter
ensures that thecomm predicate is true.

5. Translation from BSP-Why to Why

Now that we have the necessary structures to simulate the environ-
ments and communication functions of the parallel machine (ax-
iomatisation of the BSP routines), we can do the actual transfor-
mation of aBSP-Why program intoWhy that will simulate its
parallel execution.

5.1 Sequential Block Decomposition

The first step of the transformation is a decomposition of the pro-
gram into blocks of sequential instructions. The aim is to be able to
simulate the execution of a sequential block consecutively for each
processor executing it, in a sequential way, instead of the normal
parallel execution on each processor at the “same time”. In order to
obtain the best efficiency, we are trying to isolate the largest blocks
of code that remain sequential.

5.1.1 Block Tree

The decomposition into blocks is a “simple” recursive algorithm
on the syntax tree. Thesync instruction is the only one that can
affect the parallelism of the program, so we build the largest blocks
(subtrees) of the program that do not contain thesync instruction.

In addition to this decomposition, in this phase of the process
we check if a function is composed of a single block. In that case,
it means that the function is purely sequential, and it is tagged
accordingly. It allows to know later if a call to a function can be
included in a sequential block, or if it is necessary to retain the
parallel organisation for that function call, because it will raise a
synchronisation. The block tree is constructed as the abstract syntax
tree (AST), with the addition of a basic constructor for a block of
non synchronising code.

5.1.2 Algorithm

The algorithm is a recursive pattern matching of theBSP-Why
AST, and returns a block tree:

• A variable or a constant is transformed into a block;

• A control instruction is transformed into a block if all its com-
ponents are recursively transformed into a block, or the corre-
sponding control instruction in the block data type in the other
case;

• A sync is translated into the Sync block instruction.

5.2 Program transformation

5.2.1 Tree transformation

After having regrouped the sequential parts of the program into
blocks, the rest of the tree is just the structure of the parallel
mechanisms, and can not be altered. Thus, the transformation on
the block tree is a simple traversal of the tree where we apply
recursively the transformation (noted[[e]]).

The complete transformation is given in [Fortin and Gava 2010].
The base case, the transformation of a sequential block, is actually
the interesting one: we create a “for” loop, to execute the code
sequentially on each processor.[[Bloc(e)]] = forp([[e]]i) For
each inductive case, the transformation simply gives the appropri-
ate structure in theWhy language.

Special care must be taken to generate correct loop invariants
and variant in the “for” loop executing the sequential code. If the
invariant is not strong enough, it will not be possible to prove the
resulting program usingWhy. For this reason, we ask the program-
mer to write explicitly an assertion at the end of each superstep. It
can be the assertion before thesync instruction, or a postcondition
if there is no synchronisation afterwards. This assertion is then used
to generate the invariant of the sequentialisation loop: since the as-
sertion must be true at the end of the superstep of one processor,
the invariant is that afteri iterations, the invariant is true for thei
first processors.

The invariant also keeps track of which variables are modified,
and which are not. Since we are using arrays to represent the
variables on each processors, it is necessary to say that we only
modify a variable on the current processor, and that the remaining
of the array stays unchanged after the iteration of the loop.

When transforming aif or while structure at the block tree
level, there is a risk that absp_sync instruction might be executed
on a processor and not on the other. We generate an assertion to
forbid this case, ensuring that the condition associated with the
instruction will always be true on every processor at the same time.
For instance, if the source code is

while ((pow int 2 !i) < bsp nprocs) do
(...)

bsp sync void;

(...)
i:=!i + 1
done

the assertion generated will be

assert {forall proc i, 0<=proc i<bsp nprocs →
(((pow int(2,paccess(i,proc i))) < bsp nprocs)

↔ (forall proc j, 0<=proc j<bsp nprocs →
(pow int(2,paccess(i,proc j))) < bsp nprocs))};

If the condition is true for a processor (proc_i), then it must be
true for any other processor.

Since we run the program in a special environment that sim-
ulates its natural parallel environment, we need to transform the
sequential code accordingly. For instance, the access to variables
that have different values on different processors must be replaced
by the access to an array,etc. The transformation of a simple se-
quential code into the corresponding code on the processori in our
model is denoted by[[e]]i — rules in [Fortin and Gava 2010].

5.2.2 Local block transformation

The translation of a single block, denoted by[[e]]i, to the code that
can be executed within the “for” loop is perhaps the most difficult
one. A variablex can be translated in different ways depending on
its use.

• If the variable is declared locally, and is only used within the
sequential block, it is simply translated in a similar variablex;

• If the variable is used outside of the block, it can have different
values depending on the processor. If it is not used with apush
instruction, it can simply be translated by an array of variables
of the same type;

• If the variable is used with apush instruction, it is more difficult
to use directly an array, because it is not possible in Why to
transfer pointers to a variable, which would be necessary during
the communications. In that case, we chose to use a bigger
array, containing all the variables used in DRMA accesses. That
way, we can transfer in the communications the index of the
variable in the array, rather than the variable itself.

The transformation of control instruction is straightforward, in
the same way as previously, by walking the tree recursively. The
rules are given in [Fortin and Gava 2010].

When translating the logic expressions, it is necessary to trans-
late the variable in the same way as previously. When it is necessary
to refer to the variablex as an array<x>, or to the variable on a
different processor than the current one,x<i> is transformed in
the access to thei-th component ofx.

The parallel instructions (put, send, etc.) are not directly trans-
lated in an equivalent sequential code. They are replaced by calls
to the parameters axiomatized in the prelude file.

5.3 Proof of equivalence

We now prove that our program transformation is correcti.e.:

• If we prove usingWhy that the generated sequential program is
correct, then the original program is correct;

• If the original program is correct, then the Hoare triplet com-
posed of the precondition, code and postcondition of the se-
quential simulation is correct too.

By lack of place, we don’t give the full proofs here. They are
available in [Fortin and Gava 2010].

5.3.1 Notations

We use a function of translationfs : Ep → Es, from parallel envi-
ronment to sequential environment, andfp, the inverse function.

Another function of translationgs : Pp → Ps, from parallel
predicates to sequential predicates, andgp, the inverse function,
are used on predicates.

Es, c → E′

s denotes that the sequential execution of the
programc in the environmentEs gives the environmentE′

s.
Ep, c → E′

p denotes that the parallel execution of the program
c in the environmentEp gives the environmentE′

p.
{p} c {q} is the usual Hoare triplet.

5.3.2 Correct simulation

We first need to prove that if a code executed with the parallel
semantics give a result, the execution of the sequential translation
will give the same result:

LEMMA 3. If Es = fs(Ep),E′

s = fs(E
′

p), if Es, [[c]] → E′

s then
Ep, c → E′

p, .

LEMMA 4. If Es = fs(Ep), E′

s = fs(E
′

p), if Ep, c → E′

p then
Es, [[c]] → E′

s, .

Since we chose to stay as close as possible to the semantics in
the definition of the BSP operations in the sequential definitions,
the proof of these lemmas is rather straightforward. The idea of the
proof is to prove first that the execution following the decomposi-
tion in blocks corresponds to the global synchronisation rule of the
semantics, and then to prove that the parallel synchronisation and
the sequential simulation have the same effects. The definition of
bsp_sync in the prefix file is directly inspired from the communi-
cation predicate in the semantics rule, so there is no real difficulty.

5.3.3 Correct assertions

The first two lemmas were about the correctness of the transforma-
tion with regard to the operational semantics, the next two lemmas
concern the correctness of the transformation in the logical point of
view.

LEMMA 5. If Es = fs(Ep), for all Ps and Pp such asPs =
gs(Pp), if Es ⊢ Ps thenEp ⊢ Pp .

LEMMA 6. If Es = fs(Ep), for all Ps and Pp such asPs =
gs(Pp), if Ep ⊢ Pp thenEs ⊢ Ps .

Once again, the transformation of the logical expressions is
designed so that the predicate on the sequential environment has
the same meaning as the predicates in the parallel environment. So
the proof is a direct induction over the transformation rules.

5.3.4 Correct transformation

With the help of the lemmas given above, we can now prove the
correctness and completeness of the transformation :

THEOREM 1 (Correctness).If Ps = gs(Pp), P ′

s = gs(P
′

p), if
{Ps} [[c]] {P ′

s} then{Pp} c {P ′

p}.

Proof: LetEp such asEp ⊢ Pp. LetEs = fs(Ep). LetE′

s be the
result of the executionEs, [[c]] → E′

s, andE′

p = fp(E
′

s). Then
by the Lemma 3, we haveEp, c → E′

p. By Lemma 6, we have
Es ⊢ Ps. Then, since{Ps} [[c]] {P ′

s}, we can deduceE′

s ⊢ P ′

s.
We can then apply the Lemma 5, which givesE′

p ⊢ P ′

p. Hence
{Pp} c {P ′

p} is a valid Hoare triplet.

THEOREM 2 (Completeness).If Ps = gs(Pp), P ′

s = gs(P
′

p), if
{Pp} c {P ′

p}, then{Ps} [[c]] {P ′

s}.

Proof: Let Es such asEs ⊢ Ps. Let Ep = fp(Es). Let E′

p be
the result of the executionEp, c → E′

p, andE′

s = fs(E
′

p). Then
by the Lemma 4, we haveEs, [[c]] → E′

s. By Lemma 5, we have

Ep ⊢ Pp. Then, since{Pp} c {P ′

p}, we can deduceE′

p ⊢ P ′

p.
We can then apply the Lemma 6, which givesE′

s ⊢ P ′

s. Hence
{Ps} [[c]] {P ′

s} is a valid Hoare triplet.

6. Examples
The code not given in the paper is available at theBSP-Why web
page:http://lacl.fr/fortin/BSP-why/.

6.1 Parallel prefix reduction

Our first example is a simple one-step parallel prefix reduction
that is having⊕i

k=0vi on each processor where each processori
initially hold vi (this is the classicalMPI SCAN) for an operation
⊕. Here, we used integers and addition for⊕ but a polymorphic
program can be considered. Using BSMP routines, we can give the
BSP-Why code of Fig. 1 (left).

The program starts with a distributed parameterx, which con-
tains the initial values, with one value on each processor. The pre-
fixes are computed by the program in thez parameter. We use the
user-defined logic term sigmaprefix(X,n1,n2) to describe the par-
tial sums, that isΣn2

i=n1
X[i].

The programs is mainly composed of twowhile loops. In the
first loop, each processor sends its value in a message to each
processor with a greaterpid than itself. The instructionbsp_sync
then executes the synchronisation barrier. In the second loop, each
processor computes the sum of all the received values.

Note the use of our notations in the program:x designs the value
on the current processor,<x> refers to the global array andx <i>
refers to the value ofx at processori. envCsendIs is a predefined
macro to describe the communication environment, without having
to use the intern list description and its associated functions.

The bsp_send and bsp_findmsg functions can be used to
transfer any type of data. For this reason, we use thecast_int
anduncast_int functions, that encapsulates the date in a generic
value data type.

The generatedWhy code is in Fig. 1 (right). TheBSP-Why
engine has, as expected, separated the program into two sequential
blocks, linked by the synchronisation operation. Around those two
blocks, awhile loop has been constructed, so that the code is
executed sequentially for each processorproc i.

As described in Section 5, the invariant generated for thewhile
loops are quite complex, and for a better readability we omitted
large parts of them.

We can note that the distributed variables, such asx and z,
are translated into arrays of sizep, using the typeparray. Read-
ing or writing such a variable is done with theparray_get and
parray_set functions, or in the logic world their counterparts
paccess andpupdate.

Local variables, with a lifespan within a sequential block do not
need to be translated into an array. For instance, an access toy will
remain the same.

Note that theWhy source code generated byBSP-Why is
actually not supposed to be manipulated by the end-user, and is
in general significantly less readable by a human.

It is now possible to use the generated code, and feed it to the
Why program, in order to generate the proof obligations for any
supported back-end.

6.2 Logarithmic parallel prefix reduction

The above reduction does not make use of parallelism and we may
prefer to reduce in a multi-step manner, the classical logarithmic
way, doing the combinations locally. In our second example, the
algorithm combines the values of processorsi andi+2n at proces-
sor i + 2n for every stepn from 0 to ⌈log2 p⌉. One can write the
main loop as:

while ((pow int 2 !i) < bsp nprocs) do
if (bsp pid >= (pow int 2 !i)) then
begin
bsp get (bsp pid−(pow int 2 !i)) X’ 0 Xin;
bsp sync void;
X’ := cast int((uncast int !Xin) + (uncast int !X’));
end
else
bsp sync;

i:=!i + 1
done

This is a case where our block decomposition fails: not all the
processors run the samebsp sync and our tool will genereted un-
provable assertions. But the program can be rewritten by factoring
the twobsp sync5:

if (pid >= (pow int 2 !i)) then
bsp get (bsp pid−(pow int 2 !i)) X’ 0;

bsp sync;
if (bsp pid >= (pow int 2 !i)) then
X’ := cast int((uncast int !Xin) + (uncast int !X’));

6.3 Horner Method

Suppose we are given a polynomial of degreen, p(x) =
∑n

i=0
ai×

xi, where∀i ai 6= 0 and we would like to evaluatep(x0). Our
third example is a BSP version of the Horner method [Gerbessiotis
1993]. We suppose that for eachpid = 0, · · · ,p− 1, we havet =
⌊n−pid

p
⌋ and polynomialqpid(x) =

∑t

j=0
apid+pj × xpj . Now

we have:p(x) =
p−1∑

pid=0

qpid(x) × xpid. Each of thep processors

computes separately oneqi(x0) by precomputingxp
0 and using a

classical sequential Horner method. Subsequently, all the partial
results are sent to processor 0. Then processor 0 evaluatesp(x0) by
applying Horner’s rule again.

6.4 Parallel sorting algorithm

Our last example is thesampling sort algorithm(PSRS) of Schaef-
fer in its BSP version [Tiskin 1998]. The goal is that the elements
of a distributed array (we assume that each processor’s array length
is ≥ p3) are sorted on each processor and elements of processori
are smaller than the ones of processori+ 1.

The PSRS algorithm proceeds as follows. First, each processor
sorts its own array independently with a sequential sort algorithm.
The problem now consists of merging thep sorted arrays. Each
process selects from its arrayp+1 elements for the primary sample
and there is a total exchange of these values. In the second super-
step, each process reads thep × (p + 1) primary samples, sorts
them and selectsp secondary samples. In the third super-step, each
processor picks a secondary block and gathers elements that do
belong to the assigned secondary block. In order to do this, each
processori sends to processorj all its elements that may intersect
with the assigned secondary blocks of processorj. The complete
code is given in [Fortin and Gava 2010].

6.5 Generalities

It is easy to see that the number of super-steps is always bounded
in the above examples. This is also the case in most BSP programs.
Terminations of them is thus generally simple to show.

In this table, we can show how many verification conditions are
generated for the above examples. We also show this number when
no assertions are given for the correctness of the programs (it is
just to have safe execution of the programs without buffer overflow

5 Note that doing this transformation automatically is perhapspossible in
some specific cases but this is not the subject of this article.

or out-of-bound read of messagesetc.). We also show (noted AP)
the number of obligations that are automatically discharged by
automatic procedures. We used the following automatic provers:
Alt-Ergo (0.9), Simplify (1.5.4), Z3 (2.6), Yices (1.0.27), Gappa
(0.13.0) and CVC3 (2.2).

Table 1. Number of proof obligations generated / discharged
Program Correctness/AP Safety/AP
Direct Prefix 37/37 19/19
Log Prefix 41/37 21/19
Horner 31/30 17/17
BSP Sort 51/45 27/27

For a simple example such as the direct prefix, all the proof
obligations are automatically discharged (proved) by automatic
provers. For more complex examples, a few proof obligations are
not automatically discharged yet. But safety (no deadlock, no buffer
overflow, no out-of-the-bound sending messagesetc.) is automati-
cally ensured for all examples (except the log prefix) which is an
interesting first result.

Not having all the properties automatically is sad since the
generated proof obligations are generally hard to read forWhy and
even more forBSP-Why: this is due to the use of loops overp for
local computations. That also generated harder proof obligations
for the provers. Furthermore, automatic provers are also work in
progress. For example, logarithm’s (and power-of-two) properties
are not currently well interpreted by any automatic provers and thus
they fail to prove check bounds accesses in a logarithmic loop.

The key to evaluating the promise of a translation-based tech-
nique is in studying the effort needed to prove the generated proof
obligations. Currently, many of them are automatically proved and
it is thus an encouraging result regarding that it also happens for
sequential computations and that our work is to our knowledge
the first of its kind. Since these examples are not too difficult, we
also believe that by giving more axioms (e.g.for log, sqrt, sort,etc.
which are currently given to the minimum in theWhy library) all
the proof obligations can be automatically proved. This is a work
in progress.

7. Related Works
7.1 Concurrent programs

There are now some studies of proof obligations for concurrent
programs, for example [O’Hearn 2007] presented a Concurrent
Separation Logic as an extension of Separation Logic for rea-
soning about shared-memory concurrent programs with Dijkstra
semaphores. [Hobor et al. 2008] presents an operational seman-
tics for Concurrent C minor which preserves as much sequential-
ity as possible (coarse-grained spirit), by talking about permissions
within a single thread instead of concurrency. This semantics is
based on ideas from Concurrent Separation Logic: the resource in-
variant of each lock is an explicit part of the operational model.
This model is well suited for correctness proofs done interactively
in a proof assistant, or safety proofs done automatically by a shape
analysis such as [Gotsman et al. 2007]. However, currently no tools
for generated proof obligations are provided and it is not clear how
much harder the obligations would be.

In the same way, [Leino and Muller 2009] presents a sound and
modular verification methodology (implemented for an experimen-
tal language with some not-trivial examples) that can handle ad-
vanced concurrency patterns in multi-threaded, object-based pro-
grams. It prescribes the generation of verification conditions in
first-order logic (well-suited for solvers). The language supports
concepts such as multi-object monitor invariants, thread-local and

shared objects, thread pre- and post-conditions, and deadlock pre-
vention with a dynamically changeable locking order. [Jacobs et al.
2006] extends the Boogie framework for concurrent programs with
a kind of locking strategy.

It is not clear whether locking strategies are very suitable for
high-performance applications [Lee 2006]. BSP is by nature a
coarse-grained and deadlock-free model which is used for high-
performance problems [Bisseling 2004] and now in multi-core
applications [Ghuloum et al. 2007].

Even if proof of concurrent programs is clearly useful (servers,
etc.), parallel programming is not concurrent programming. High-
performance programs are much simpler [Lee 2006] (many time
more coarse-grained) and BSP programs are even simpler. They
can clearly be simulated by shared-memory fork/lock concurrent
programs by explicitly separating the local memories and allowing
communications by copies of the data [Tiskin 1998]. Global syn-
chronisation would be implemented using a sufficient number of
locks. But, that would not use the structural nature of the BSP pro-
grams and the understanding of the program to simplify the obliga-
tions.

7.2 MPI programs

MPI is the most used library for high-performance computing. It
is therefore natural to study safety issues related to MPI programs.
But this is very challenging due to the number of routines (more
than one hundred), the lack of formal specifications — even in
works such as [Li et al. 2008, Vakkalanka et al. 2009]. There are
many works and tools dedicated to MPI. Surveys could be found in
[HPCBugBase, Sharma et al. 2007]. These tools help to find some
classical errors but not all. Note that this kind of tools works well
for many situations in development phases but is not sufficient.

Currently, we are not aware of verification condition generators
tools for MPI programs. We think that a sequential simulation of
any kind of MPI programs is not reasonable. Continuations would
be needed to simulate the interleaving of processes: that would
generate unintelligible assertions. But collective MPI routines can
be seen as BSP programs, and certainly many MPI programs could
be transformed into BSP ones. Automatically translating this class
of programs is a possible way to analyse MPI programs. We leave
the work of substantiating this claim for future work.

7.3 Proof of BSP programs

Different approaches for proofs of BSP programs have thus been
studied as formal proof of BSP functional programming using
Coq [Gava 2003].

There is also the derivation of BSP imperative programs using
Hoare’s axiom semantics ([Chen and Sanders 2004] is the last we
have found) following by the generatation of correct C code [Zhou
and Chen 2005]. The two main drawbacks of this approach is that
it is not real programs that are analysed and they used their own
language of specifications with their own axiomatic: there is no
implementation of a dedicated tool for the logical derivation which
is a lack of safety; users make hand proofs, not machine checked.

8. Conclusion and Future Work
The paper presents a methodology and its associated tool, called
BSP-Why for deductive verification of BSP programs. An exten-
sion of theWhy intermediate language is proposed, adding some
constructs specific to BSP parallelism. An implemented tool trans-
lates a subset of theBSP-Why programs (those that are ”well-
structured” enough) into plain sequential programs. The output
programs rely on a generic library of logical axioms and defini-
tions. Since BSP uses barrier synchronisation, parallelism can be
removed by replacing a portion of code between barriers with a

loop to repeat that portion for every process. The correctness proof
of this translation is sketched — details are available in [Fortin
and Gava 2010]. We think that building upon an existing tool for
program verification (and not do this work from scratch) is quite
appealing since generated proof obligations need many works —
in theory and in practise. Some examples are given and how many
generated proof obligations were automatically discharged. In view
of this first ratio “number to prove / proved automatically”, we be-
lieve this method is far from perfect (notably for correctness) but
nonetheless can rapidly increase the confidence that can be placed
in the code since at least the safety properties are massively proved
automatically.

The current prototype implementation is still limited. We plan
to extend it in several ways.

First, we intend to add a companion tool for C programs as in
[Filli âtre and March́e 2007]. The tool for sequential programming
is now a plugin called Jessie for the Frama-C tools (http://frama-c.com/)
which generatesWhy programs from C ones. Jessie generates a
memory model for the pointers of the C programs which can be
clearly identify in the extractedWhy codes. We are currently work-
ing to adapt the parser to identify the parameters of the memory
model for managing more easily the DRMA primitives. We also
need to test our method on realistic BSP computations even if the
results of our examples are encouraging. Programs of [Bisseling
2004, Dehne 1999] will be used.

Second, BSP is an interesting model because it features a cost
model for an estimation of the execution time of its programs. For-
mally giving these costs by extended pre-, post-condition and in-
variants is an interesting challenge — one could speak of a cost
certification. In fact, many scientific algorithms (numeric computa-
tions such as matrix ones) do not have too complicated complexi-
ties — it is often a polynomial number of super-steps.

Third, conditions generated byWhy from BSP-Why programs
are not friendly. In automatic theorem provers, you don’t see them
at all but in case of manual proof that could be problematic. This
is mainly due to the massive use of the generatedp-loops: special
tactics are needed to simplify the analysis. In the same manner,
syntactic sugar to manipulate the environment of communications
(list of messages) are needed as an “user library” to facilitate the
writing of logical assertions.

Last, there are many more MPI programs than BSP ones. Our
tool is not intended to manage all MPI programs. It can not be used
to model send/receive ones (with possible deadlocks depending on
the MPI scheduler), only programs which are BSP-like (e.g.MPI’s
collective primitives). Analysing MPI/C programs to find which are
BSP-like and to interpret them inBSP-Why is a great challenge.

References
M. Bamha and M. Exbrayat. Pipelining a Skew-Insensitive Parallel Join

Algorithm. Parallel Processing Letters, 13(3):317–328, 2003.

R. H. Bisseling. Parallel Scientific Computation. A structured approach
using BSP and MPI. Oxford University Press, 2004.

O. Bonorden, J. Gehweiler, and F. Meyer auf der Heide. A Web Computing
Environment for Parallel Algorithms in Java.Scalable Computing:
Practice and Experience, 7(2):1–14, 2006.

Y. Chen and J. W. Sanders. Logic of global synchrony.ACM Transactions
on Programming Languages and Systems, 26(2):221–262, 2004.

M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto
for Skeletal Parallel Programming.Parallel Computing, 30(3):389–406,
2004.

F. Dehne. Special issue on coarse-grained parallel algorithms. Algorith-
mica, 14:173–421, 1999.

J.-C. Filliâtre. Verification of Non-Functional Programs using Interpreta-
tions in Type Theory.Journal of Functional Programming, 13(4):709–
745, 2003.

J.-C. Filliâtre and C. March́e. Multi-Prover Verification of C Programs.
In Sixth International Conference on Formal Engineering Methods
(ICFEM), volume 3308 ofLNCS, pages 15–29. Springer-Verlag, 2004.
http://why.lri.fr/caduceus/.

J.-C. Filliâtre and C. March́e. The Why/Krakatoa/Caduceus platform for
deductive program verification. In W. Damm and H. Hermanns, editors,
19th International Conference on Computer Aided Verification, LNCS.
Springer-Verlag, 2007.

J. Fortin and F. Gava. Bsp-why: an intermediate language for deductive
verification of bsp programs. Technical Report TR-LACL-2010-07,
LACL (Laboratory of Algorithms, Complexity and Logic), University
of Paris-Est (UPEC), 2010.

F. Gava. Formal Proofs of Functional BSP Programs.Parallel Processing
Letters, 13(3):365–376, 2003.

A. V. Gerbessiotis.Topics in Parallel and Distributed Computation. PhD
thesis, Harvard University, 1993.

A. Ghuloum, E. Sprangle, J. Fang, G. Wu, and X. Zhou. Ct: A Flexible
Parallel Programming Model for Tera-scale Architectures. Technical
report, Intel Research, 2007.

A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape
analysis. InACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2007.

A. Hobor, A. W. Appel, and F. Zappa Nardelli. Oracle semanticsfor con-
current separation logic. In7th European Symposium on Programming
(ESOP), LNCS. Springer, 2008.

HPCBugBase. HPCBugBase.http://www.hpcbugbase.org/, 2008.

B. Jacobs, J. Smans, F. Piessens, and W. Schulte. A staticallyverifiable pro-
gramming model for concurrent object-oriented programs. InICFEM,
volume 4260 ofLNCS, pages 420–439. Springer, 2006.

H. Jifeng, Q. Miller, and L. Chen. Algebraic Laws for BSP Programming.
In L. Bouǵe and Y. Robert, editors,Euro-Par’96, volume 1124 ofLNCS,
pages 359–368. Springer, 1996.

L. Kovács and A. Voronkov. Finding loop invariants for programs over
arrays using a theorem prover. In M. Chechik and M. Wirsing, editors,
FASE, volume 5503 ofLNCS, pages 470–485. Springer, 2009.

E. A. Lee. The Problem with Threads. Technical Report UCB/EECS-
2006-1, Electrical Engineering and Computer Sciences University of
California at Berkeley, 2006.

K. Rustan M. Leino and Peter Muller. A basis for verifying multi-threaded
programs. InESOP, LNCS. Springer, 2009.

G. Li, M. DeLisi, G. Gopalakrishnan, and R. M. Kirby. Formal Specifica-
tion of the MPI-2.0 Standard in TLA+. InPrinciples and Practices of
Parallel Programming (PPoPP), pages 283–284, 2008.

P. W. O’Hearn. Resources, concurrency and local reasoning.Theoretical
Computer Science, 375(1):271–307, 2007.

S. V. Sharma, G. Gopalakrishnan, and R. M. Kirby. A survey of MPI
related debuggers and tools. Technical Report UUCS-07-015, University
of Utah, School of Computing, 2007.http://www.cs.utah.edu/
research/techreports.shtml.

S. F. Siegel. Verifying parallel programs with MPI-SPIN. In F. Cappello,
T. Hérault, and J. Dongarra, editors,Euro PVM/MPI, volume 4757 of
LNCS, pages 13–14. Springer, 2007.

D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers
about BSP.Scientific Programming, 6(3):249–274, 1997.

A. Tiskin. The Design and Analysis of Bulk-Synchronous Parallel Algo-
rithms. PhD thesis, Oxford University Computing Laboratory, 1998.

S. Vakkalanka, A. Vo, G. Gopalakrishnan, and R. M. Kirby. Reduced
execution semantics of MPI: From theory to practice. InFM 2009, 2009.

A. Vo, S. Vakkalanka, M. DeLisi, G. Gopalakrishnan, R. M. Kirby, and
R. Thakur. Formal Verification of Practical MPI Programs. InPrinciples
and Practices of Parallel Programming (PPoPP), pages 261–269, 2009.

J. Zhou and Y. Chen. Generating c code from logs specifications. In D. Van
Hung and M. Wirsin, editors,ICTAC, volume 3722 ofLNCS, pages 195–
210. Springer, 2005.

