
jacc: just another compiler compiler for Java
A Reference Manual and User Guide

Mark P. Jones
Department of Computer Science & Engineering
OGI School of Science & Engineering at OHSU

20000 NW Walker Road, Beaverton, OR 97006, USA

February 16, 2004

1 Introduction

jacc is a parser generator for Java [3] that is closely modeled on Johnson’s
classic yacc parser generator for C [7]. It is easy to find other parser gen-
erators for Java including CUP [4], Antlr [11], JavaCC [9], SableCC [13],
Coco/R [10], BYACC/Java [5], and the Jikes Parser Generator [12]. So why
would you want to use jacc instead of one of these other fine tools?

In short, what makes jacc different from other tools is its combination of
the following features:

• Close syntactic compatibility with Johnson’s classic yacc parser gen-
erator for C (in so far as is possible given that the two tools target
different languages);

• Semantic compatibility with yacc—jacc generates bottom-up/shift-
reduce parsers for LALR(1) grammars with disambiguating rules;

• A pure Java implementation that is portable and runs on many Java
development platforms;

1

• Modest additions to help users understand and debug generated parsers,
including: a feature for tracing parser behavior on sample inputs,
HTML output, and tests for LR(0) and SLR(1) conflicts;

• Primitive support for distributing grammar descriptions across multiple
files to support modular construction or extension of parsers;

• A mechanism for generating syntax error messages from examples based
on ideas described by Jeffery [6];

• Generated parsers that use the technique described by Bhamidipaty
and Proebsting [1] for creating very fast yacc-compatible parsers by
generating code instead of encoding the specifics of a particular parser
in a set of tables as the classic yacc implementations normally do.

If you are looking for a yacc-compatible parser generator for Java, then I
hope that jacc will meet your needs, and that these notes will help you to
use it! In particular, these notes describe basic operation of jacc, including
its command line options and the syntax of input files. They do not attempt
to describe the use of shift-reduce parsing in generated parsers or to provide
guidance in the art of writing yacc-compatible grammars or the process of
understanding and debugging any problems that are reported as conflicts.
For that kind of information and insight, you should refer to other sources,
such as: the original yacc documentation [7], several versions of which are
easily found on the web; the documentation for Bison [2], which is the GNU
project’s own yacc-compatible parser generator; or the book on Lex & Yacc
by Levine, Mason, and Brown [8].

jacc was written at the end of 1999 for use in a class on compiler construction
at the beginning of 2000. It has been used in several different classes and
projects since then, but has not yet been widely distributed. This is an
early version of the documentation for jacc; I welcome any comments or
suggestions that might help to improve either the tool or this documentation.

2 Command Line Syntax

The current version of jacc is used as a command line utility, using simple
text files for input and output. The input to jacc—a context-free gram-

2

mar, annotated with semantic actions, jacc directives, and auxiliary code
fragments—should be placed in a file called X.jacc, for some prefix X. The
parser generator is invoked with a simple command of the form:

jacc X.jacc

By default, jacc will generate two output files, one called XParser.java

containing the implementation of a parser as a Java class XParser, and the
other a file XTokens.java that defines an interface called XTokens that spec-
ifies integer codes for each of the token types in the input grammar. Note
that jacc writes all output files in the same directory as the input file, auto-
matically replacing any existing file of the same name. jacc will also display
a warning message if the input grammar results in any conflicts. Such con-
flicts can be investigated further by running jacc with either the -v or -h

options described below.

The jacc command accepts several command line options that can be used
to modify its basic behavior.

-p Do not attempt to write the XParser.java file. This option is typically
used together with -t to test that a given input file is well-formed, and
to detect and report on the presence of conflicts, without generating
the corresponding parser and token interface.

-t Do not attempt to write the XTokens.java file.

-v Write a plain text description of the generated machine in the file
X.output. The output file provides a description of each state, and
concludes with brief statistics for the input grammar and generated
machine. The following example shows the output that is generated
for a state containing a shift/reduce conflict (the classic “dangling else”
problem). The description: begins with a description of the conflict;
lists the corresponding set of items (parenthesized numbers on the right
correspond to rule numbers in the input grammar); and concludes with
a table that associates each input symbol with an appropriate shift, re-
duce, or goto action (the period, ‘.’, identifies a default action).

49: shift/reduce conflict (shift 53 and red’n 31) on ELSE

state 49 (entry on stmt)

3

stmt : IF ’(’ expr ’)’ stmt_ (31)

stmt : IF ’(’ expr ’)’ stmt_ELSE stmt (32)

ELSE shift 53

. reduce 31

-h Generate a description of the generated machine in HTML in the file
XMachine.html. The generated file uses the same basic output format
as X.output, but includes hyperlinks that can be used to link between
generated states. You can also use a browser’s back button to simulate
the effect of reduce actions: if the right hand side of the rule has n
symbols, then click the back button n times. As a result, the generated
XMachine.html file can be used to step through the behavior of the
generated machine on a particular sequence of input tokens.

-f Includes results of first set, follow set, and nullable calculations for each
nonterminal in the input grammar as part of the output produced using
the -v or -h options. A typical output might look something like the
following:

First sets:

First(Prog): {INTEGER, ’(’}

First(Expr): {INTEGER, ’(’}

Follow sets:

Follow(Prog): {’;’, $end}

Follow(Expr): {’)’, ’*’, ’+’, ’-’, ’/’, ’;’, $end}

Nullable = {}

The “first set” of a nonterminal N is the set of all terminal symbols that
can appear at the beginning of an input that matches N. In the example
above, both the Prog and Expr nonterminals must begin with either
a INTEGER or an open parenthesis. The “follow set” of a nonterminal
N is the set of all terminals that could appear immediately after an
occurrence of N has been matched. In the example above, the follow
set of Prog is a strict subset of that for Expr. A nonterminal N is
“nullable” if the empty (or null) string can be derived from N. Neither

4

of the nonterminals in the example above are nullable, so the set is
empty, written {}. jacc uses information about first sets, follow sets,
and nullability internally to compute lookahead information and to
resolve conflicts. The information produced by this option may be
most useful if you are trying to learn how parser generator tools like
jacc work.

-a Uses the LALR(1) strategy to resolve conflicts. This is the default
behavior for jacc, and the most powerful strategy that it provides
for using lookahead information to resolve any conflicts detected in the
input grammar. If jacc does not report any conflicts when this strategy
is used, then the input grammar is said to be LALR(1).

-s Uses the SLR(1) strategy to resolve conflicts; If jacc does not report
any conflicts when this strategy is used, then the input grammar is
said to be SLR(1). For practical purposes, and noting that SLR(1) is
weaker than LALR(1), this option is only useful only for understanding
the formal properties of an input grammar.

-0 Uses the LR(0) strategy to resolve conflicts; If jacc does not report
any conflicts when this strategy is used, then the input grammar is
said to be LR(0). For practical purposes, and noting that LR(0) is
weaker than both SLR(1) and LALR(1), this option is only useful only
for understanding the formal properties of an input grammar.

-r file

Reads a sequence of grammar symbols from the given file and gen-
erates a trace to show the sequence of shift and reduce steps that the
generated parser would follow on that input. This feature is described
in more detail in Section 5.2.

-n Includes state numbers in the traces that are produced when the -r

option is used. This is also described more fully in Section 5.2.

-e file

Reads a series of sample input streams, each with an associated error
diagnostic, from the specified input file. These examples are used
to attach more precise descriptions to error transitions within the gen-
erated machine, which can then be used to provide more informative

5

error diagnostics at runtime. This feature, which is based on ideas
presented by Jeffery [6], is described in more detail in Section 5.3.

Multiple command line options can be combined into a single option. For
example jacc -pt X.jacc has the same effect as jacc -p -t X.jacc. If
no arguments are specified, then jacc displays the following brief summary
of command line syntax:

No input file(s) specified

usage: jacc [options] file.jacc ...

options (individually, or in combination):

-p do not generate parser

-t do not generate token specification

-v output text description of machine

-h output HTML description of machine

-f show first/follow sets (with -h or -v)

-a treat as LALR(1) grammar (default)

-s treat as SLR(1) grammar

-0 treat as LR(0) grammar

-r file run parser on input in file

-n show state numbers in parser output

-e file read error cases from file

3 Input File Syntax

The basic structure of a jacc input file is as follows:

. . . directives section . . .
%%

. . . rules section . . .
%%

. . . additional code section . . .

The second %% and the additional code section that follows it can be omitted
if it is not required. Comments may be included in any part of a .jacc

file using the standard conventions of C++ and Java: the two characters //

6

introduce a comment that spans to the end of the line in which it appears;
the two characters /* introduce a C-style comment that spans all characters,
possibly over multiple lines, up until the next occurrence of a closing comment
marker */.

3.1 The Directives Section

The opening section of a .jacc file is a sequence of directives that can be used
to customize certain aspects of the generated Java source file (Section 3.1.1),
to specify the interface between lexical analysis and parsing (Section 3.1.2),
and to describe properties of the terminal and nonterminal symbols in the
input grammar (Section 3.1.3).

3.1.1 Customizing the Generated Parsers

In this section we describe the directives that are used to specify and cus-
tomize Java-specific aspects of jacc-generated parsers:

• The %package directive, which should be followed by a single qualified
name, is used to specify the package for the parser class and token
interface that are generated by jacc. For example, if an input file
Lang.jacc contains the directive

%package com.compilersRus.compiler.parser

then each of the jacc-generated Java source files will begin with the
declaration:

package com.compilersRus.compiler.parser;

• A code block is introduced by the sequence %{ and terminated by a
later %}. All of the code in between these two markers is included at
the beginning of the XParser.java file, immediately after any initial
package declaration. This is typically used to specify any import state-
ments that are needed by the code that appears in semantic actions or
at the end of the .jacc source file. The following example shows a
typical use:

7

%{

import java.io.File;

import mycompiler.Lexer;

import java.net.*;

%}

This declaration could also be used to provide definitions for auxiliary
classes that are needed by the main parser, but this is not recommended
for anything other than very simple and short class declarations. In-
cluding longer definitions in the .jacc source could distract a reader
from more important aspects of the parser’s specification. Auxiliary
class can always be defined in separate .java file.

Code blocks like this should not be used to introduce a Java package
declaration into the generated code. The %package directive provides a
better way to specify the package because it will generate an appropri-
ate declaration in both the parser source file and the tokens interface.

Note that jacc does not attempt to determine if the text in a code
block is valid; errors will not be detected until you attempt to compile
the generated source files.

• A %class directive, followed by a single identifier, is used to change the
name of the class that is used for the generated parser. For example, if
the source file X.jacc specifies %class Y, then the generated parser will
be called Y and will be written to the file Y.java (instead of the default
behavior, which is to create a class XParser in the file XParser.java).
Of course you should ensure that the parser class and the token interface
have distinct names.

• An %interface directive, followed by a single identifier, is used to
change the name of the interface that records numeric codes for input
tokens. For example, if the source file X.jacc specifies %interface Y,
then the generated interface will be called Y and will be written to
the file Y.java (instead of the default behavior, which is to create an
interface XTokens in the file XTokens.java).

• An %extends declaration is used to specify the super class for the
parser. For example, if Lang.jacc specifies %extends Phase, then the
generated parser in LangParser.java will begin with the line:

8

class LangParser extends Phase implements LangTokens

If no %extends directive is included in a jacc source file, then there
will be no extends clause in the generated Java file either (i.e., the
parser will be a direct subclass of java.lang.Object).

• The %implements directive, which should be followed immediately by
the name of a class, is used to specify which interfaces are imple-
mented by the generated parser. For example, if Lang.jacc specifies
%implements IX, then the generated parser in LangParser.java will
begin with the line:

class LangParser implements IX, LangTokens

Note that the tokens interface, in this case LangTokens, is automati-
cally included in the list of implemented interfaces to ensure that the
generated parser has access to the symbolic codes that are used to rep-
resent token types. Multiple %implements declarations can be included
in a .jacc input file to specify multiple implemented interfaces.

3.1.2 Customizing the Lexer/Parser Interface

In this section, we describe the directives that are used to specify and cus-
tomize the interface between lexical analysis and jacc-generated parsers.

• A %next directive is used to specify the code sequence (a single Java
expression) that should be used to invoke the lexer and return the inte-
ger code for the next token. By default, jacc uses lexer.nextToken()
for this purpose, with the assumption that the lexer will be defined
as an instance variable of the parser class, and that it will provide a
method int nextToken(). Different mechanisms for retrieving input
tokens can be set using a suitable %next directive. For example, in
classic yacc parsers, the code for the lexer is invoked using a call to
yylex(). To use the same method with jacc, we must include the
following directive:

%next yylex()

9

and then add a suitable implementation for yylex() as a method in
the parser class. A %next directive extends to the end of the line on
which it appears. The generated parser will either fail to compile, or
else give incorrect results if the expression specified by %next is not
well-formed. In generated code, the expression used to read the next
token will always be enclosed in parentheses (to avoid the possibility of
a precedence-related misparse) and will always be the last thing on the
line (to avoid any problems that might occur if the %next string were
to end with a single line comment).

• A %get directive is used to specify the code sequence (a single Java ex-
pression) that should be used to obtain the integer code for the current
token without advancing the lexer to a new token. By default, jacc
uses lexer.getToken() for this purpose, with the assumption again
that the lexer will be defined as an instance variable of the parser
class, and that it will provide a suitable method int getToken(). Dif-
ferent mechanisms can be implemented using a suitable %get directive.
For example, if the integer code for the current token is recorded in a
instance variable token of the parser class, then the following directive
should be used:

%get token

The %get directive uses the same syntactic conventions as %next; see
above for further details.

• A %semantic directive is used to specify the type of the semantic values
that are passed as token attributes from the lexer or constructed during
parsing when reduce actions are executed. By default, jacc uses the
java.lang.Object type for semantic values, but a different type can be
specified using an appropriate %semantic directive, as in the following
example:

%semantic int

In yacc, the same effect is most commonly achieved by means of a
#define YYSTYPE int preprocessor directive or by using a %union di-
rective. Neither Java or jacc support unions, but the same effect can

10

be achieved by defining a base class Semantic with a subtype for each
different types of semantic value that is needed.

An additional colon followed by a code string can be used to specify
an expression for reading the semantic value of the current token. By
default, jacc uses lexer.getSemantic() for this purpose. The follow-
ing example shows how a different method can be used, in this case
assuming, as in classic yacc, that the lexer stores the semantic value of
each token as it is read in a variable called yylval:

%semantic int: yylval

Once again, jacc uses the same syntactic conventions for the code
sequence specified here as as used for the %next and %get directives.

3.1.3 Specifying Token and Nonterminal Properties

In this section, we describe the jacc directives that are used to specify prop-
erties of the terminal and nonterminal symbols in the input grammar. As
much as possible, jacc uses the same syntax as yacc for these directives.

• A %start directive, followed immediately by the name of a nonterminal,
is used to specify the start symbol for the grammar. If there is no
%start directive in an input file, then the first nonterminal that is
mentioned in the rules section of the input is used as the start symbol.

• The %token directive is used to define terminal symbols that are used
in the grammar. By convention, terminals are usually written using
only upper case letters and numeric digits. (Although, in theory, any
Java identifier could be used.) The following example uses a %token

directive to define six tokens that might be used in the parser for a
programming language like C or Java:

%token IF THEN ELSE FOR WHILE DO

The tokens interface that jacc generates will also use these same iden-
tifiers as the names for token codes, assigning arbitrary, but distinct
small integer constants to each one. Any part of a program that needs

11

access to these symbolic constants—most likely in those parts of the
code having to do with lexical analysis—should include this interface
in the implements clause of the corresponding classes. This will allow
the code to use these symbolic constants directly, without the need for
a qualifying class name prefix.

It is also possible to use single character literals as terminal symbols,
which can make grammars a little easier to read. It is not actually nec-
essary to declare such tokens explicitly in a %token definition, but it is
usually considered good practice to do so for the benefit of documenting
the symbols that are used, as in the following example:

%token ’(’ ’[’ ’.’ ’;’ ’,’ ’]’ ’)’

For examples like these, jacc uses the corresponding integer code for
each character as the token code (and automatically avoids using that
same code for symbol token names like IF, THEN, and ELSE in the
example above). For example, a lexer might indicate that it has seen
an open parenthesis token by executing return ’(’;.

It is not uncommon for different token types to be associated with dif-
ferent types of semantic value. For example, the numeric value of an
integer literal token might be captured in an object of type Integer

(i.e., java.lang.Integer), while the text of a string literal or an iden-
tifier might be represented by a String object. Information like this
can be recorded by including the desired type between < and > symbols
immediately after the %token directive, as in the following examples:

%token <Integer> INTEGER

%token <String> STRING_LITERAL IDENTIFIER

%token <java.net.URL> URL_LITERAL

%token <String[]> PATH_STRING

Type annotations like this make sense only if all of the declared types
are subtypes of the %semantic type that has been specified for the
grammar. For the examples above, java.lang.Object is the only
valid choice for the semantic type, because is it the only type that
has Integer, String, java.net.URL, and String[] as subclasses. No
explicit declaration of %semantic is needed in this case however be-
cause java.lang.Object is the default. Note from the examples above

12

that it is possible to use qualified names and array types in these an-
notations. It is also possible to use primitive types, such as int, in
declarations like this, but that is unlikely to be useful in practice: it
would require a %semantic directive with the same type, and then the
same type would automatically be used for all tokens in the grammar.
(This is a consequence of the fact that there are no non-trivial subtyp-
ing relationships between primitive types in Java. It is also the reason
why we used Integer for the INTEGER token, instead of a simple int.)

If a specific type has been declared for a given token, then jacc will
automatically insert an appropriate cast into any generated code that
refers to the semantic value for a token of that type. This can be very
convenient because it saves programmers from having to write these
casts explicitly. But it is also quite risky because the cast might fail
at run-time if the actual semantic value does not have a compatible
type. (This might occur, for example, if the lexer simply returns the
wrong type of value, or if it fails to update the variable that records
‘the semantic value of the current token’ when a new token is read.)
You should therefore be careful to balance the convenience of type
annotations against the risks. It is the programmers responsibility to
ensure that the annotations are correct because there is no way for
jacc to do that!

• The %left, %right, and %nonassoc directives work just like %token

directives, except that they also declare a fixity—a combination of
precedence and associativity/grouping—for each of the tokens that are
mentioned. This is particularly useful for describing the syntax of ex-
pressions using infix operators where fixity information can be used as
an alternative to more verbose grammars that encode precedence and
associativity requirements implicitly in their structure.

As an example, a simple grammar for a arithmetic expressions might
include the following three directives to specify fixities for addition,
subtraction, multiplication, division, and exponentiation:

%left ’+’ ’-’

%right ’*’ ’/’

%nonassoc ’^’

To illustrate the different possibilities, we have declared the first two

13

operators as associating to the left (so an expression like 1-2-3 will
be parsed in the same way as (1-2)-3), the next two operators as
associating to the right (so an expression like 1/2/3 will be parsed in
the same way as 1/(2/3)), and the last operator is non-associative (so
an expression like 1^2^3 will be treated as a syntax error).

Note that there is no explicit way to specify precedence values. Instead,
jacc assigns the lowest precedence to all of the tokens mentioned in the
first fixity declaration, the next highest precedence to the tokens men-
tioned in the next fixity declaration, and so on. In the example above,
+ and - have the lowest precedence, * and / have higher precedence,
and ^ has the highest precedence. There is no way to specify that two
operators should have the same precedence but different associativities.

In fact jacc can use fixity information in a more general way than these
examples might suggest to resolve shift/reduce conflicts that seem to
have little or nothing to do with infix operators. For example, the clas-
sic ‘dangling else’ problem can be resolved by assigning suitable fixities
for the THEN and ELSE tokens. However, the resulting grammars can be
harder to read, so this is not a technique that we would recommend,
and we will not describe it any further here.

• A %type directive works just like a %token directive except that it is
used to define nonterminal symbols that are used in the grammar. It
is not strictly necessary to define nonterminals using %type because
any identifier that is used on the left hand side of a production in the
rules section of the input will be treated as a nonterminal. However,
%type directives are still useful in practice, both to document the set of
nonterminals that are used, and to associate types with nonterminals
using the optional type annotations, as in the following example:

%type <Expr> literal expr unary primary atom

As in the case of %token directives, jacc uses these annotations to
guide the insertion of casts in the translation of semantic actions. In
this case, however, the annotations indicate the type of value that is
produced by the semantic actions that are associated with a particular
nonterminal. Given the directives above, for example, the programmer
should ensure that each production for the expr nonterminal assigns a
value of type Expr (which includes any subclass of Expr) to $$.

14

3.2 The Rules Section

The rules section of the input to jacc, which follows immediately after the
first %% marker, specifies a context free grammar for the language that the
generated parser is intended to recognize. In addition, it associates each
production with a fragment of code called a semantic action that the parser
will execute each time that production is reduced. Semantic actions are able
to access the semantic values corresponding to each of the symbols on the
right hand side of the rule, and are typically used to construct a portion of
a parse tree, or else to perform some other computation as appropriate.

3.2.1 Describing the Grammar

The format of the rules section of a jacc input file can be described by a
set of rules written in that same format—which conveniently doubles as a
simple example (albeit without any semantic actions):

rules : rules rule // a list of zero or more
| /* empty */ // rules
;

rule : NONTERMINAL ’:’ rhses ’;’ // one rule can represent
; // several productions

rhses : rhses ’|’ rhs // one or more rhs’es
| rhs // separated by "|"s
;

rhs : symbols optPrec optAction // the right hand side of
; // a production

symbols : symbols symbol // a list of zero or more
| /* empty */ // symbols
;

symbol : TERMINAL // the union of terminals
| NONTERMINAL // and nonterminals
;

optPrec : PREC TERMINAL // an optional precedence
| /* empty */
;

15

optAction : ACTION // and optional action
| /* empty */
;

The tokens in this grammar are NONTERMINAL (representing nonterminal sym-
bols), TERMINAL (representing terminal symbols, which includes both identi-
fiers and single character literals), PREC (which stands for the token %prec,
and is used to assign a precedence—actually, a fixity—level to a given pro-
duction), and ACTION (representing fragments of Java code that begin with
{ and end with }). Of course the ’:’, ’;’, and ’|’, symbols used in the
grammar above are also simple terminal symbols.

This example also illustrates several common idioms that are used in jacc

grammars to describe lists of zero or more items (e.g., rules and symbols de-
scribe lists of zero or more rule and symbol phrases, respectively); optional
items (e.g., optPrec and optAction describe optional precedence annota-
tions and actions, respectively); and lists of one or more elements with an
explicit separator (e.g., rhses describes a list of rhs phrases, each of which
is separated from the next by a ’|’ token). There is nothing special about
the uses of /* empty */ in this example; they are just standard comments
but serve to emphasize when the right hand side of a production is empty.

Unlike jacc, the classic yacc allows semantic actions to appear between the
symbols on the right hand side of a production. However, this can sometimes
result in strange behavior and lead to confusing error messages. Moreover,
any example that is described using this feature of a yacc grammar can
easily be translated into a corresponding grammar that does not (see the
yacc documentation for details).

3.2.2 Adding Semantic Actions

As mentioned previously, semantic actions take the form of a fragment of
Java code, enclosed between a matching pair of braces. In the interests of
readability, it is usually best to keep such code fragments short, moving more
complex code into separate methods of the class so as to avoid obscuring the
grammar. jacc does not make any attempt to ensure that the text between
the braces is well-formed Java code; errors in the code will not be detected
until the generated parser is compiles.

16

In fact the only thing that jacc does as it copies text from the original actions
to the generated parser is to look for special tokens such as $$, $1, $2, and
so on, which it replaces with references to the semantic value of the token on
the left hand side of the production (for $$), the first token on the right (for
$1), the second token on the right (for $2), and so on. The following example
shows how these symbols might work in a parser for arithmetic expressions:

expr : expr ’+’ expr { $$ = new AddExpr($1, $3); }

| expr ’-’ expr { $$ = new SubExpr($1, $3); }

;

The semantic actions shown here do not use the semantic value for the opera-
tor symbols in this grammar; that is, neither one mentions $2. However, both
actions use $1 to refer to the left operand and $3 to refer to the right operand
of the expression that is being parsed. Each of these names is replaced in the
generated code with an expression that extracts the corresponding semantic
value from the parser’s internal stack. (If a type, E, has been declared for
the expr nonterminal, then the generated code will also attempt to cast the
values retrieved from the stack to values of type E.) On the other hand, the
reference to $$ will be replaced with a local variable that the generated parser
uses, temporarily, to record the result of a reduce action. Normally, the code
for a semantic action should only attempt to read the positional parameters
$1, $2, etc..., and should only attempt to write to the result parameter $$,
as in the examples above. In the parlance of attribute grammars, $1 and $2

are inherited attributes, while $$ is a synthesized attribute.

The original yacc allows semantic actions to make use of parameters like $0,
$-1, and $-2 with zero or negative offsets as another form of inherited at-
tribute. In cases like these, the parameter strings are replaced by references
into parts of the parser’s internal stack that access values from the context
of the current production rather than the right hand side of the production
itself. This feature must be used with care and requires a fairly deep under-
standing of shift-reduce parsing internals to ensure correct usage and avoid
subtle bugs. It is not supported in the current version of jacc.

If the action for a given production is omitted, then the generated parser
behaves as if the action { $$ = $1; } had been specified.

17

3.3 The Additional Code Section

The final section of the input to jacc follows the second %% marker, and
provides code that will be copied into the body of the generated parser class.
jacc does not attempt to check that this code is valid, so syntax errors in
this portion of the code will not be detected until you attempt to compile
the generated Java source files.

If you use jacc as a tool for exploring the properties of different grammars
(which is something that you might do in the early stages of prototyping a
new parser or language design), then you will probably not be interested in
executing the parsers that jacc generates. In such cases, there is no need to
include any additional code, and you can even omit the second %% marker.
For example, the following shows the complete text of an input file that you
could use with jacc to explore the ‘dangling else’ problem (this same text
could be used without any changes as input to yacc):

%token IF THEN ELSE expr other

%%

stmt : IF expr THEN stmt ELSE stmt

| IF expr THEN stmt

| other

;

In practice, however, if you want to run the parsers that you obtain from
jacc, then you will need to add at least the definition of a method:

void yyerror(String msg) {

... your code goes here ...

}

Every jacc-generated parser includes a reference to yyerror(), and will
potentially invoke this method as a last resort if the parser encounters a
serious error in the input from which it cannot recover. As such, a yacc-
generated parser that does not include this method will not compile. The
additional code section of a jacc input file is often a good place to provide
a definition for yyerror() (although it could also be obtained by inheriting
a definition from a superclass if you have also used the %extends directive).

18

It is also common practice to use the additional code section of an input
file to provide: constructors for the parser class; local state variables (and
accessor functions/getters) that record the results of parsing; definitions for
helper functions that are used in the semantic actions; and a local variable,
lexer, that provides a link to the lexical analyzer. In fact for simple cases—
such as the example in Section 4.1—we might even include the full code for
the lexer in the additional code section of the .jacc file.

4 Examples: jacc in practice

This section describes two example programs using jacc. Both are versions
of a simple interactive calculator that reads sequences of expressions from the
standard input (separated by semicolons) and display the results on the stan-
dard output. The first version (Section 4.1) is written as a single jacc source
file, while the second (Section 4.2) shows how more realistic applications can
be constructed from a combination of jacc and Java source files.

4.1 The Single Source File Version

This section describes a simple version of the calculator program in which
all of the source code is placed in a single file called simpleCalc.jacc. The
file begins with the following set of directives that specifies the name of the
generated parser as Calc, defines a simple interface to lexical analysis, and
lists the tokens that will be used:

%class Calc
%interface CalcTokens
%semantic int : yylval
%get token
%next yylex()

%token ’+’ ’-’ ’*’ ’/’ ’(’ ’)’ ’;’ INTEGER
%left ’+’ ’-’
%left ’*’ ’/’
%%

The rules section of simpleCalc.jacc gives the productions for the grammar,

19

each of which is annotated with an appropriate semantic action.

prog : prog ’;’ expr { System.out.println($3); }
| expr { System.out.println($1); }
;

expr : expr ’+’ expr { $$ = $1 + $3; }
| expr ’-’ expr { $$ = $1 - $3; }
| expr ’*’ expr { $$ = $1 * $3; }
| expr ’/’ expr { $$ = $1 / $3; }
| ’(’ expr ’)’ { $$ = $2; }
| INTEGER { $$ = $1; }
;

%%

In this version of the program, we interleave evaluation of the input expres-
sion with parsing by using integers as %semantic values, and by executing
the appropriate arithmetic operation as each different form of expression is
recognized. This example illustrates very clearly how syntax (such as the
symbolic token ’+’ in the production) is translated into semantics (in this
case, the + operator on integer values) by the parsing process.

The additional code that is included in the final section of our input file is
needed to turn the jacc-generated parser into a self-contained Java appli-
cation. In a more realistic program, much of this functionality would be
provided by other classes. However, every jacc-generated parser must in-
clude at least the definition of a yyerror() method that the parser will call
to report a syntax error. In this example, we provide a very simple error
handler that displays the error message and then terminates the application:

private void yyerror(String msg) {
System.out.println("ERROR: " + msg);
System.exit(1);

}

Next we describe a simple interface for reading source input, one character at
a time, from the standard input stream. The variable c is used to store the
most recently read character, and the nextChar() method is used to read
the next character in the input stream, provided that the end of file (i.e., a
negative character code in c) has not already been detected:

private int c;

20

/** Read a single input character from standard input.
*/

private void nextChar() {
if (c>=0) {
try {
c = System.in.read();

} catch (Exception e) {
c = (-1);

}
}

}

The biggest section of code in our example program is used to implement
a simple lexical analyzer. The lexer stores the code for the most recently
read token in the token variable, and the corresponding integer value (for
an INTEGER token) in the yylval variable. The lexer is implemented by the
yylex() method. Note that this agrees with the settings specified by the
%get, %semantic, and %next directives at the beginning of this example.

int token;
int yylval;

/** Read the next token and return the
* corresponding integer code.
*/

int yylex() {
for (;;) {
// Skip whitespace
while (c==’ ’ || c==’\n’ || c==’\t’ || c==’\r’) {
nextChar();

}
if (c<0) {
return (token=ENDINPUT);

}
switch (c) {
case ’+’ : nextChar();

return token=’+’;
case ’-’ : nextChar();

return token=’-’;

21

case ’*’ : nextChar();
return token=’*’;

case ’/’ : nextChar();
return token=’/’;

case ’(’ : nextChar();
return token=’(’;

case ’)’ : nextChar();
return token=’)’;

case ’;’ : nextChar();
return token=’;’;

default : if (Character.isDigit((char)c)) {
int n = 0;
do {
n = 10*n + (c - ’0’);
nextChar();

} while (Character.isDigit((char)c));
yylval = n;
return token=INTEGER;

} else {
yyerror("Illegal character "+c);
nextChar();

}
}

}
}

Notice that the lexer returns the symbol ENDINPUT at the end of the input
stream. Every jacc-generated token interface defines this symbol, with in-
teger value 0. As in this example, the lexer should return this code to the
parser when the end of the input stream is detected.

Last, but not least, we include a main() method that uses nextChar() to
read the first character in the input stream, then yylex() to read the first
token, and then calls parse() to do the rest of the work:

public static void main(String[] args) {
Calc calc = new Calc();
calc.nextChar(); // prime the character input stream
calc.yylex(); // prime the token input stream
calc.parse(); // parse the input

}

22

4.2 The Multiple Classes Version

This section presents a second version of our simple calculator program where
the code is distributed across multiple classes, and in which the structure of
the input expressions is captured explicitly in an intermediate data structure
(representing the so-called abstract syntax). The resulting program is more
representative of the way that parser generators like jacc are used in practice
although, in this particular case, the program is still just a toy, and it would
be hard to justify the extra overhead compared with the first version.

4.2.1 Abstract Syntax

Our first task is to define the classes that we need to capture the essential
structure, or abstract syntax, of input expressions as concrete data values. For
this, we choose a standard technique in Java programming with a hierarchy
of classes, each of which represents a particular form of expression, and all of
which are subclasses of an abstract base class Expr. The following diagram
shows the inheritance relationships between the different classes in graphical
form (abstract classes are marked by an asterisk):

Expr∗ BinExpr∗ AddExpr

SubExpr

MulExpr

DivExpr

IntExpr

The code that defines the classes in this small hierarchy is shown below. For
an application as simple as our calculator program, this particular approach
will likely seem unnecessarily complex and verbose—but it does at least scale
to more realistic applications. Note that the only special functionality we
build in to these classes is an ability to evaluate Expr values using the eval()
method:

abstract class Expr {
abstract int eval();

}

23

class IntExpr extends Expr {
private int value;
IntExpr(int value) { this.value = value; }
int eval() { return value; }

}

abstract class BinExpr extends Expr {
protected Expr left, right;
BinExpr(Expr left, Expr right) {
this.left = left; this.right = right;

}
}

class AddExpr extends BinExpr {
AddExpr(Expr left, Expr right) { super(left, right); }
int eval() { return left.eval() + right.eval(); }

}
class SubExpr extends BinExpr {

SubExpr(Expr left, Expr right) { super(left, right); }
int eval() { return left.eval() - right.eval(); }

}
class MulExpr extends BinExpr {

MulExpr(Expr left, Expr right) { super(left, right); }
int eval() { return left.eval() * right.eval(); }

}
class DivExpr extends BinExpr {

DivExpr(Expr left, Expr right) { super(left, right); }
int eval() { return left.eval() / right.eval(); }

}

4.2.2 Lexical Analysis

Our implementation of lexical analysis in this version of the calculator is a
fairly simple modification of the corresponding code in the first version. We
have wrapped the necessary code in a class called CalcLexer; declared that
it should implement the token interface CalcTokens; and added methods
nextToken() to read the next token, getToken() to retrieve the current to-
ken code, and getSemantic() to return the semantic value for the current

24

token. (The latter being valid only if the current token is an integer lit-
eral.) These names have been chosen to coincide with the defaults that jacc
assumes for the %next, %get, and %semantic directives.

class CalcLexer implements CalcTokens {
private int c = ’ ’;

/** Read a single input character from standard input.
*/
private void nextChar() {
if (c>=0) {
try {
c = System.in.read();

} catch (Exception e) {
c = (-1);

}
}

}

private int token;
private IntExpr yylval;

/** Read the next token and return the
* corresponding integer code.
*/
int nextToken() {
for (;;) {
while (c==’ ’ || c==’\n’ || c==’\t’ || c==’\r’) {
nextChar(); // Skip whitespace

}
if (c<0) {
return (token=ENDINPUT);

}
switch (c) {
case ’+’ : nextChar();

return token=’+’;
case ’-’ : nextChar();

return token=’-’;
case ’*’ : nextChar();

return token=’*’;

25

case ’/’ : nextChar();
return token=’/’;

case ’(’ : nextChar();
return token=’(’;

case ’)’ : nextChar();
return token=’)’;

case ’;’ : nextChar();
return token=’;’;

default : if (Character.isDigit((char)c)) {
int n = 0;
do {

n = 10*n + (c - ’0’);
nextChar();

} while (Character.isDigit((char)c));
yylval = new IntExpr(n);
return token=INTEGER;

} else {
Main.error("Illegal character "+c);
nextChar();

}
}

}
}

/** Return the token code for the current lexeme.
*/
int getToken() { return token; }

/** Return the semantic value for the current lexeme.
*/
IntExpr getSemantic() { return yylval; }

}

Careful comparison of this code with the previous version will also reveal
other small differences including the initialization of c—which avoids the need
for a call to the lexer’s nextChar() method, now hidden as a private method
of CalcLexer—and a change in the type of semantic value, for reasons that
will be explained in the next section.

26

4.2.3 Parsing

Because most of the functionality of the calculator has been moved out to
other classes, our input to jacc is much shorter in this version. We assume
that the following parser specification is placed in a file called Calc.jacc
so that the generated parser and tokens interface will be given the (default)
names CalcParser and CalcTokens, respectively.

%semantic Expr
%token ’+’ ’-’ ’*’ ’/’ ’(’ ’)’ ’;’ INTEGER
%left ’+’ ’-’
%left ’*’ ’/’
%%
prog : prog ’;’ expr { System.out.println($3.eval()); }

| expr { System.out.println($1.eval()); }
;

expr : expr ’+’ expr { $$ = new AddExpr($1, $3); }
| expr ’-’ expr { $$ = new SubExpr($1, $3); }
| expr ’*’ expr { $$ = new MulExpr($1, $3); }
| expr ’/’ expr { $$ = new DivExpr($1, $3); }
| ’(’ expr ’)’ { $$ = $2; }
| INTEGER { $$ = $1; }
;

%%
private CalcLexer lexer;
CalcParser(CalcLexer lexer) { this.lexer = lexer; }

private void yyerror(String msg) { Main.error(msg); }

Notice that this version of the parser uses the constructors for the AddExpr,
SubExpr, MulExpr, and DivExpr classes to build a data structure that de-
scribes the structure of the expression that is read. There are no calls to the
constructor for IntExpr here because the lexer takes care of packaging up
the semantic values for integer literals as IntExpr objects. This is important
because it means that they can be used as semantic values in the parser (note
that we have declared Expr as the %semantic type for this parser, and that
IntExpr is a subclass of Expr.)

One alternative would have been to use the default semantic type Object;
to arrange for the lexer to return the value of each integer constant as an

27

Integer object; and to have the parser handle the construction of IntExpr
values by changing the action for the last production in the grammar to:

{ $$ = new IntExpr($1.intValue()); }

Such a change would also require us to declare types for INTEGER and expr
(or else to rewrite the semantic actions to include explicit casts):

%token <Integer> INTEGER
%type <Expr>

4.2.4 Top-level Driver

To complete this second version of the calculator program we need a small
driver that constructs and initializes a lexer object, uses that to build a
suitable parser object, and then invokes the parser’s main parse() method.

class Main {
public static void main(String[] args) {
CalcLexer lexer = new CalcLexer();
lexer.nextToken();
CalcParser parser = new CalcParser(lexer);
parser.parse();

}

static void error(String msg) {
System.out.println("ERROR: " + msg);
System.exit(1);

}
}

Note also that we have had to introduce an error() method that can be
shared between the parser and the lexer. This sharing of services—in this
case, for error handling—is common in any system where the same function-
ality is required in components that are logically distinct.

28

5 Extra Features

This section describes some additional features of jacc: Section 5.1 explains
how grammars can be spread across multiple files; Section 5.2 describes a
feature that traces the behavior of parsers on sample inputs; and Section 5.3
describes a feature that allows generated parsers to produce more precise
error diagnostics that are described by a set of “training” examples.

5.1 Describing Grammars with Multiple Files

Normally, the input grammar for a jacc parser is described in a single text
file using the format described in Section 3. However, it is also permitted to
specify more that one input file on the command line: jacc will read each
file and merge their contents before attempting to generate a parser.

This feature is intended to be used as a simple mechanism to support modu-
lar description or extension of grammars and parsers. Suppose, for example,
that a developer wants to experiment with some proposed extensions to a
programming language Lang by modifying an existing compiler for that lan-
guage. Suppose also that the parser for that compiler has been generated
using jacc with an input file Lang.jacc. Clearly, we could try to build a
parser for the proposed extensions by modifying Lang.jacc. In some situa-
tions, however, it is preferable to leave Lang.jacc untouched and to describe
the syntax for extensions in a separate file, Ext.jacc. A parser for the ex-
tended language can then be generated from these two files by listing both
on the jacc command line:

jacc Lang.jacc Ext.jacc

With this approach, it is still easy to generate a parser for just the origi-
nal language (by omitting Ext.jacc from the command line); to experiment
with a possibly incompatible alternative syntax for the extensions (by replac-
ing Ext.jacc with another file); or to add in further extensions (by adding
additional file names on the command line).

Each of the grammar input files must follow the format described in Section 3,
using %% markers to separate the main sections in each file: directives, rules,
and additional code. jacc builds a description for the required parser by
merging the corresponding sections of each file. The order of the file names

29

on the command line is significant. For example, the directives in the first
file are processed before the directives in a second file, so an earlier %left

directive will receive a lower precedence than a later %left directive, whether
they are in the same file or not. In the absence of a %class or %interface

directive, the name of the first .jacc file on the command line will determine
the name of the generated parser. One potentially important detail is that
the choice of start symbol will always be determined by the first file on the
command line, either by means of an explicit %start directive, or else as the
first nonterminal mentioned in the rules section of the input file.

We will illustrate how this feature by describing a simple extension of the
calculator program in Section 4.2 to support unary minus. Although it may
not be appropriate for more realistic applications, we can include all of the
extra code that is needed in a single file called Unary.jacc:

%{
class UminusExpr extends Expr {
private Expr expr;
UminusExpr(Expr expr) { this.expr = expr; }
int eval() { return -expr.eval(); }

}
%}
%left UMINUS
%%
expr : ’-’ expr %prec UMINUS { $$ = new UminusExpr($2); }

;

The first portion of this input file defines a new class, UminusExpr, to rep-
resent uses of unary minus in the input. The %left annotation defines a
new pseudo-token for unary minus whose precedence will be higher than the
precedence of any of the symbols used in the original calculator program. (We
are fortunate here that unary minus is normally assigned a higher precedence
than other operators: there is no way to insert a new symbol into the existing
list at any lower precedence.) The sole production in the rules section below
the %% marker specifies the syntax for unary minus, together with a corre-
sponding semantic action and a %prec annotation to provide the appropriate
precedence. This rule will be combined with the other productions for expr
in the original Calc.jacc file to define the complete syntax for our extended
version of the calculator program.

30

The following command generates the parser for our extended version of the
quick calculator program:

jacc Calc.jacc Unary.jacc

Now the generated Java code is ready to compile and run!

The extensions needed to support unary minus are short and simple and do
not require any modifications to our original parser. It is not clear whether
things will work as smoothly on larger and more realistic examples; we look
forward to feedback about this feature from jacc users!

5.2 Tracing Generated Parsers on Sample Inputs

It is sometimes useful to trace the behavior of generated parsers on sample
inputs, either for debugging, or to learn more about the way that shift-reduce
parsers work. Of course, given a suitable lexer and test harness, it is possible
to run generated parsers directly on suitable inputs. However, it is still hard
to get access to information about the internal state of the parser or to extract
a trace of the parsing actions that are used in processing an input.

jacc’s -r file command line option provides a simple way to see how gen-
erated parsers work, without the addition of a lexer or a custom test harness.
To use this feature, the file argument should name a text file containing a
sequence of grammar symbols representing an input to the parser. Suppose,
for example, that we want to understand how shift and reduce actions are
used to ensure that multiplication is treated with a higher precedence than
addition in the calculator program from Section 4.2. In this case, we might
create a short text file, example1, containing the following lines:

INTEGER ’+’ INTEGER ’*’ INTEGER ’;’
INTEGER ’*’ INTEGER ’+’ INTEGER

Notice that this file uses the same symbols/terminal names as the Calc.jacc
grammar file; in the concrete syntax of the calculator program, this corre-
sponds to an input like 1+2*3;4*5+6. We can run this example through the
corresponding parser using the following command line:

jacc -pt Calc.jacc -r example1

31

(Note that we have specified the -pt command line options. It is not nec-
essary to include these options, but doing so tells jacc not to generate the
Java files for the parser class or token interface, neither of which is required
for the purposes of running sample inputs.) In response, jacc displays the
following output trace:

Running example from "example1"
start : _ INTEGER ...
shift : INTEGER _ ’+’ ...
reduce : _ expr ’+’ ...
goto : expr _ ’+’ ...
shift : expr ’+’ _ INTEGER ...
shift : expr ’+’ INTEGER _ ’*’ ...
reduce : expr ’+’ _ expr ’*’ ...
goto : expr ’+’ expr _ ’*’ ...
shift : expr ’+’ expr ’*’ _ INTEGER ...
shift : expr ’+’ expr ’*’ INTEGER _ ’;’ ...
reduce : expr ’+’ expr ’*’ _ expr ’;’ ...
goto : expr ’+’ expr ’*’ expr _ ’;’ ...
reduce : expr ’+’ _ expr ’;’ ...
goto : expr ’+’ expr _ ’;’ ...
reduce : _ expr ’;’ ...
goto : expr _ ’;’ ...
reduce : _ prog ’;’ ...
goto : prog _ ’;’ ...
shift : prog ’;’ _ INTEGER ...
shift : prog ’;’ INTEGER _ ’*’ ...
reduce : prog ’;’ _ expr ’*’ ...
goto : prog ’;’ expr _ ’*’ ...
shift : prog ’;’ expr ’*’ _ INTEGER ...
shift : prog ’;’ expr ’*’ INTEGER _ ’+’ ...
reduce : prog ’;’ expr ’*’ _ expr ’+’ ...
goto : prog ’;’ expr ’*’ expr _ ’+’ ...
reduce : prog ’;’ _ expr ’+’ ...
goto : prog ’;’ expr _ ’+’ ...
shift : prog ’;’ expr ’+’ _ INTEGER ...
shift : prog ’;’ expr ’+’ INTEGER _
reduce : prog ’;’ expr ’+’ _ expr $end
goto : prog ’;’ expr ’+’ expr _ $end
reduce : prog ’;’ _ expr $end

32

goto : prog ’;’ expr _ $end
reduce : _ prog $end
goto : prog _ $end
Accept!

Each line begins with a parsing action: start indicates the beginning of a
parse; shift indicates that the parser has just shifted a single terminal/token
from the input; reduce indicates that the parser has just reduced a single
production from the grammar; goto indicates that the parser has executed
the goto step after a reduce; and Accept! indicates that the parser has
successfully recognized all of the input stream. The portion of each line
to the right of the colon describes the parser’s internal workspace. The
underscore separates values on the parser’s stack (to the left) from pending
input symbols (to the right). An ellipsis (...) indicates a portion of the
input that has not yet been read, while $end signals the end of the input
stream. (Note that $end is not written explicitly in the input file.)

Returning to the trace above, we find a line (step 8) where the state is:

expr ’+’ expr _ ’*’ ...

The trace shows that the next action is to shift the ’*’ token; the parser
chooses this action so that the addition operation is deferred until after the
multiplication. Later, after 25 steps, the parser state is:

prog ’;’ expr ’*’ expr _ ’+’ ...

This time, we see a reduce step in the next action, ensuring again that the
multiplication operation is processed before the addition. In both cases, we
see how the parser gives multiplication a higher precedence than addition.

Files specified using -r can include nonterminals as well as terminals. This
will often produce shorter traces and so focus more directly on some partic-
ular aspect of a parser’s behavior. The example1 file above, for example,
included six INTEGER tokens, each of which contributed a shift and then a
reduce action in the trace. But these details are not important if our goal is
just to understand how multiplication and addition are treated. In that case,
we might do better to use the following input from a file called example2:

expr ’+’ expr ’*’ expr ’;’
expr ’*’ expr ’+’ expr

33

Nonterminal symbols do not normally appear directly in the input to a parser;
when they appear in an input file specified using the -r option, jacc simply
executes an immediate goto action on that nonterminal, behaving as if it
had seen and reduced some arbitrary token sequence corresponding to that
nonterminal. The result, in this case, is a shorter trace:

Running example from "example2"
start : _ expr ...
goto : expr _ ’+’ ...
shift : expr ’+’ _ expr ...
goto : expr ’+’ expr _ ’*’ ...
shift : expr ’+’ expr ’*’ _ expr ...
goto : expr ’+’ expr ’*’ expr _ ’;’ ...
reduce : expr ’+’ _ expr ’;’ ...
goto : expr ’+’ expr _ ’;’ ...
reduce : _ expr ’;’ ...
goto : expr _ ’;’ ...
reduce : _ prog ’;’ ...
goto : prog _ ’;’ ...
shift : prog ’;’ _ expr ...
goto : prog ’;’ expr _ ’*’ ...
shift : prog ’;’ expr ’*’ _ expr ...
goto : prog ’;’ expr ’*’ expr _ ’+’ ...
reduce : prog ’;’ _ expr ’+’ ...
goto : prog ’;’ expr _ ’+’ ...
shift : prog ’;’ expr ’+’ _ expr ...
goto : prog ’;’ expr ’+’ expr _
reduce : prog ’;’ _ expr $end
goto : prog ’;’ expr _ $end
reduce : _ prog $end
goto : prog _ $end
Accept!

An additional command line option, -n, can be used to include state numbers
from the underlying LR(0) machine in output traces. For example, we can
run example2 through jacc using the following command:

jacc -pt Calc.jacc -v -n -r example2

Note that we have also used the -v option here, which generates a plain text
description of the generated machine (-h would be a reasonable alternative

34

for HTML output). This is likely to be useful in relating the state numbers
displayed in traces to the appropriate states in the LR(0) machine. The
following trace shows the output from this command:

start : 0 _ expr ...
goto : 0 expr 2 _ ’+’ ...
shift : 0 expr 2 ’+’ 7 _ expr ...
goto : 0 expr 2 ’+’ 7 expr 13 _ ’*’ ...
shift : 0 expr 2 ’+’ 7 expr 13 ’*’ 6 _ expr ...
goto : 0 expr 2 ’+’ 7 expr 13 ’*’ 6 expr 12 _ ’;’ ...
reduce : 0 expr 2 ’+’ 7 _ expr ’;’ ...
goto : 0 expr 2 ’+’ 7 expr 13 _ ’;’ ...
reduce : 0 _ expr ’;’ ...
goto : 0 expr 2 _ ’;’ ...
reduce : 0 _ prog ’;’ ...
goto : 0 prog 1 _ ’;’ ...
shift : 0 prog 1 ’;’ 5 _ expr ...
goto : 0 prog 1 ’;’ 5 expr 11 _ ’*’ ...
shift : 0 prog 1 ’;’ 5 expr 11 ’*’ 6 _ expr ...
goto : 0 prog 1 ’;’ 5 expr 11 ’*’ 6 expr 12 _ ’+’ ...
reduce : 0 prog 1 ’;’ 5 _ expr ’+’ ...
goto : 0 prog 1 ’;’ 5 expr 11 _ ’+’ ...
shift : 0 prog 1 ’;’ 5 expr 11 ’+’ 7 _ expr ...
goto : 0 prog 1 ’;’ 5 expr 11 ’+’ 7 expr 13 _
reduce : 0 prog 1 ’;’ 5 _ expr $end
goto : 0 prog 1 ’;’ 5 expr 11 _ $end
reduce : 0 _ prog $end
goto : 0 prog 1 _ $end
Accept!

Note that the parser’s workspace is now described by an alternating sequence
of state numbers, each separated from the next by a single grammar symbol.
The current state number appears immediately before the underscore.

5.3 Generating Errors from Examples

One of the biggest practical challenges for parser writers is to produce helpful
and accurate diagnostics when the input contains a syntax error. Unless the
parser writer uses yacc-style error tokens in the input grammar together

35

with corresponding calls to yyerror() in associated semantic actions, the
only way that errors in the input will ever be reported to a jacc-generated
parser is by a rather non-specific call of the form yyerror("syntax error").

If we could find out more about the state of the parser when an error oc-
curs, then we would could produce more descriptive error messages. For
example, if the parser is in a state of the form ... expr ’+’ _ ’)’ ...,
then we might prefer to diagnose a “right operand is missing” instead of
just a plain “syntax error.” In terms of the underlying machinery used in a
jacc-generated parser, we would like to associate pairs, each comprising a
state number and a terminal symbol that triggers an error, to corresponding
diagnostics. In theory, such information could be collected manually and
exploited in a hand-crafted implementation of yyerror() that uses internal
parser variables to calculate an appropriate diagnostic. Such an approach,
however, is not recommended. For starters, it would be difficult to collect
the necessary (state,token) pairs corresponding to different kinds of errors.
Moreover, this process would need to be repeated every time there is a change
in the grammar (and hence, potentially, in the underlying machine).

To address these problems, jacc includes a simple mechanism, inspired by
the ideas of Jeffery [6], that allows parsers to obtain more accurate error
diagnostics without the need to hardwire state and token codes in hand-
written code. The key idea is to allow errors to be described at a high-level
using examples, and to leave the parser generator to map these to lower-level
descriptions in terms of state and token codes. For example, the following
shows ‘error productions’ for several different kinds of error that might occur
in the input to the calculator program in Section 4.2:

"left operand is missing"
: ’+’ expr
| ’-’ expr
| ’*’ expr
| ’/’ expr ;

"unexpected closing parenthesis"
: expr ’)’ ;

"unexpected opening parenthesis"
: expr ’(’ ;

36

"right operand is missing"
: expr ’+’
| expr ’+’ ’)’
| expr ’+’ ’+’
| expr ’-’
| expr ’-’ ’)’
| expr ’*’
| expr ’*’ ’)’
| expr ’/’
| expr ’/’ ’)’ ;

"unnecessary semicolon (or missing expression)"
: prog ’;’ ;

"empty parentheses"
: ’(’ ’)’ ;

"missing expression"
: ’;’ ;

We refer to these rules as error productions because they resemble the pro-
ductions that might be used to describe a grammar. Indeed, the notation is
almost the same as the rules section in a standard jacc grammar except for
the fact that there are no semantic actions, and that the left hand sides are
string literals rather than nonterminal names. Ignoring notation, of course,
the most important difference is that the right hand side of each rule corre-
sponds to an input string that the should cause an error rather than a valid
parse! In each rule, the string on the left hand side is an attempt to give a
more accurate diagnostic of the error. Note that we have only specified as
much of the input as is necessary to trigger an error condition. For most
purposes, errors are easiest to understand if they are described by shorter
rather than longer sequences of grammar symbols.

jacc allows descriptions of error productions, using the notation illustrated
above, to be specified using command line options of the form -e file. For
example, if we save the text above in an file called Calc.errs, then we can
use the following command to generate a new parser for our calculator:

jacc Calc.jacc -e Calc.errs

Without additional steps, the resulting parser will behave just like the pre-

37

vious version, and will respond to any syntax errors in the input with the
same, uninformative “syntax error” message. However, it is now possible for
user code to do better than this by taking advantage of two variables that are
available to code in the generated parser class. The first, yyerrno, is an int
variable that is set to a positive value when one of the user-specified error con-
ditions is detected (or, otherwise, to -1). The second, yyerrmsgs, is an array
of strings containing the strings from the left hand sides of the error produc-
tions. More precisely, if yyerrno is non-negative, then yyerrmsgs[yyerrno]
will return the text of the corresponding error diagnostic. For example, the
following modification of yyerror() in our calculator program is designed to
make use of a more precise error diagnostic whenever possible:

private void yyerror(String msg) {
Main.error(yyerrno<0 ? msg : yyerrmsgs[yyerrno]);

}

The new version of the calculator program will provide more precise diag-
nostics in each of the cases that were documented by an error reduction.
However, experiments with that version of the program could also reveal
that there are still some cases where a generic “syntax error” is produced.
For example, the following error productions describe two cases that were
not covered in the original set of rules:

"Unexpected opening parenthesis"
: ’)’ ;

"Missing operand"
: expr INTEGER ;

Once discovered, these rules can be added to Calc.errs, or else stored in a
file MoreCalc.errs and then included in the generated parser using a second
-e option on the command line:

jacc Calc.jacc -e Calc.errs -e MoreCalc.errs

In this way, as we expand and refine the set of error productions, we can
“train” a parser both to recognize a broader range of errors, and to provide
more precise diagnostics in each case.

Another benefit of decoupling the description of errors from the underlying
grammar is that the error descriptions may still be useful if the grammar

38

is changed. For example, we can use the following command line to build
a version of the calculator program with unary minus from Section 5.1 that
also includes more precise error diagnostics:

jacc Calc.jacc Unary.jacc -e Calc.errs -e MoreCalc.errs

This time, however, jacc displays a diagnostic of its own:

Reading error examples from "Calc.errs"
WARNING: "Calc.errs", line 3
Example for "left operand is missing" does not produce an error

Line 3 in Calc.errs lists ’-’ expr as an error . . . but of course this becomes
valid input when the grammar is extended to include unary minus! jacc will
not replace correct behavior of the generated parser with an error action: in
this case, other than triggering the warning message, that line in Calc.errs

will not have any effect in this case.

In the examples here, we have labeled error productions with short, diagnos-
tic text strings. This is appropriate in simple applications, but is not the
only possibility. For example, these strings could be used instead to provide
references to HTML web pages within a larger help system. Another pos-
sibility would be to use the strings as keys into a locale-specific database,
mapping tags to appropriate diagnostics that have been translated into the
user’s preferred language.

References

[1] Achyutram Bhamidipaty and Todd A. Proebsting. Very fast
yacc-compatible parsers (for very little effort). Software—Practice &
Experience, 28(2):181–190, February 1998.

[2] Free Software Foundation. Bison.
(http://www.gnu.org/manual/bison-1.35/bison.html).

[3] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification, Second Edition. Addison-Wesley, June 2000.

39

[4] Scott E. Hudson. The CUP parser generator for Java.
(http://www.cs.princeton.edu/~appel/modern/java/CUP/).

[5] Bob Jamison. BYACC/Java.
(http://troi.lincom-asg.com/~rjamison/byacc/).

[6] Clinton L. Jeffery. Generating lr syntax error messages from examples.
ACM Trans. Program. Lang. Syst., 25(5):631–640, 2003.

[7] S.C. Johnson. Yacc—yet another compiler compiler. Technical Report
Computer Science Technical Report Number 32, Bell Laboratories,
July 1975.

[8] John Levine, Tony Mason, and Doug Brown. lex & yacc, 2nd Edition.
O’Reilly, 1992.

[9] Sun Microsystems. Java compiler compiler (JavaCC)—the Java parser
generator. (http://www.webgain.com/products/java cc/).

[10] H. Mössenböck. Coco/R for Java.
(http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/Java/).

[11] Terrence Parr. Antlr, another tool for language recognition.
(http://www.antlr.org/).

[12] David Shields and Philippe G. Charles. The Jikes parser generator.
(http://www-124.ibm.com/developerworks/projects/jikes/).

[13] The Sable Research Group. SableCC. (http://www.sablecc.org/).

40

