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Abstract. We present a variant of ATL with distributed knowledge operators based on a synchronous
and perfect recall semantics. The coalition modalities in this logic are based on partial observation
of the full history, and incorporate a form of cooperation between members of the coalition in which
agents issue their actions based on the distributed knowledge, for that coalition, of the system history.
We show that model-checking is decidable for this logic. Thetechnique utilizes two variants of games
with imperfect information and partially observable objectives, as well as a subset construction for
identifying states whose histories are indistinguishableto the considered coalition.

1 Introduction

Alternating-time Temporal Logic (ATL) [AHK98, AHK02] is a generalization of the Computational Tree
Logic (CTL) in which path quantifiers “∃” and “∀” are replaced bycooperation modalities⟪A⟫ in which
A denotes a set ofagentswho act as acoalition. A formula ⟪A⟫φ expresses the fact that the agents in
coalition Acan cooperate to ensure thatφ holds in an appropriate type of multiplayer game.

The precise semantics of the cooperation modalities variesdepending on whether the knowledge that
each agent has of the current state of the game is complete or not, and whether agents can use knowledge
of the past game states when deciding on their next move or not. These alternatives are known as
complete, resp. incomplete information, andperfect, resp. imperfect recall. In the case of imperfect
recall further subdivisions depend on how much memory an agent is allowed for storing information on
the past in addition to its possibly incomplete view of the current state. In the extreme case agents and,
consequently, the strategies they can carry out, arememoryless.

It is known that the model-checking problem for the case of complete information is decidable in
polynomial time [AHK98]. In the case of incomplete information and perfect recall model-checking is
believed to be undecidable, a statement attributed to M. Yannakakis in [AHK98] for which there is no
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self-contained proof that we know about. Variants of ATL with memoryless agents have been shown
to have decidable model checking in [Sch04,ÅGJ07, vdHLW06]. Our earlier work [GD08] is about a
special case of agents with perfect recall in which model checking is still decidable.

Incomplete information is modelled in ATL in a way which conforms with the possible worlds se-
mantics of modal epistemic logics (cf. [FHMV04].) Therefore, it is of no surprise that the epistemic
logic community contributed extensions of ATL by knowledgemodalities such asAlternating Tempo-
ral Epistemic Logic[vdHW03]. Results on model-checking ATEL with memoryless strategies can be
found in [Sch04,̊AGJ07, KP05, vdHLW06]. Results on ATL with complete information can be found in
[GJ04, BJ09].

In this paper we continue our investigation of ATL with knowledge operators from [GD08], where
we introduced conditions on the meaning of the cooperation modalities which make model-checking
decidable. As in the previous paper, we do not restrict agents’ strategies to memoryless ones, but we
assume that coalition members have a communication mechanism which enables the coalitions to carry
out strategies that are based on theirdistributed knowledge. (Recall that a coalition hasdistributed
knowledgeof factφ iff φ is a logical consequence of the combined knowledge of the coalition members.)
We assume that a coalition has a strategy to achieve a goalφ only if the same strategy can be used in all
the cases which are indistinguishable from the actual one with respect to the distributed knowledge of the
coalition. This choice is known asde restrategies [JA07], and rules out the possibility for a coalition to be
able to achieveφ by taking chances, or to be able to achieveφ in some of the cases which are consistent
with its knowledge and not in others. Therefore in our system⟪A⟫φ is equivalent toKA⟪A⟫φ where
KA stands for thedistributed knowledgeoperator (also writtenDA). We call the variant of ATL which
is obtained by adopting these conventionsAlternating Time Logic with Knowledge and Communicating
Coalitionsand use the acronym ATLD

iR for it to indicate distributed knowledge, incomplete information
and perfect recall.

Implementing strategies which rely on distributed knowledge requires some care. For instance, sim-
ply supplying coalition members with a mechanism to share their observations with each other would
have the side effect of enhancing the knowledge at each agent’s disposal upon considering the reacha-
bility of subsequent goals as part of possibly different coalitions, whereas we assume that each agent’s
knowledge is just what follows from its personal experienceat all times. Therefore we assume that
coalition activities are carried out through the guidance of correspondingvirtual supervisorswho receive
the coalition members’ observations and previously accumulated knowledge and in return direct their
actions for as long as the coalition exists without making any additional information available.

In our previous work models are based oninterpreted systemsas known from [FHMV04]. In that
setting global system states are tuples which consist of thelocal views of the individual agents and the
satisfaction of atomic propositions at a global state need not be related to the local views in it. Unlike that,
in this paper we assume that the view of each agent is described as a set of atomic propositions which the
agent can observe. States which satisfy the same observableatomic propositions are indistinguishable
to the agent. Observability as in interpreted systems can besimulated in this concrete observability
semantics. However, the converse does not hold, see [Dim10]for details.

We prove our model-checking result by induction on the construction the formula to be checked,
like in model-checking algorithms for ATL or CTL, with two significant differences. Firstly, the im-
plicit distributed knowledge operator hidden in the coalition operator is handled by means of a “subset
construction” for identifying states with indistinguishable histories, a technique used for CTLK model-
checking in [Dim08]. Secondly, checking whether in a given set of indistinguishable states the coalition
has a strategy to achieve goalφ involves building a tree automaton, which can be seen as a game between
the coalition (supervisor) and the rest of the agents. This game resembles the two-player games with one
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player having imperfect information from [CDHR06], but also has a notable difference: the goal of the
player with imperfect information isnot fully observable. Such a goal can be achievedat different times
along different yet indistinguishable runs. Therefore, wehave a bookkeeping mechanism for the time of
achieving the goal along each run.

The tree automata we use employ only “occurrence” acceptingconditions: the set of states occurring
along each run of the tree is required to belong to some given set of sets of states. No Muller conditions,
i.e., no restrictions on the set of states occurringinfinitely often, are involved.

The model-checking algorithm proceeds by constructingrefinementsof the given game arenaΓ,
unlike in CTL and ATL model-checking where the only modifications of the given arena are the insertion
of new propositional variables (corresponding to subformulas of the formula to model-check). This
refinement enables telling apart classes of histories whichare indistinguishable to coalition members. It
involves splitting states by means of a subset construction. The technique is known from model-checking
epistemic extensions of CTL or LTL with perfect recall.

The setting and techniques presented here are different from those in our previous work [GD08]. In
[GD08], the knowledge modalities are required to have only argument formulas from the past subset
of LTL. ATLD

iR has only future operators. PastLTL operators can be added to ATLD
iR in the usual way.

Also, the model-checking algorithm for ATLD
iR is based on tree-automata and not on the syntactical

transformation of past formulas as in [GD08].
Let us also note the difference between our work and the work on ATEL: the approach proposed in

ATEL is to consider that strategies are defined onsequences of states, which is aperfect observability
approach. Hence, a formula of the form⟪Alice⟫φ , saying thatAlicehas a strategy to ensureφ in a given
state, refers to the situation in whichAlice would be able to ensureφ if she had complete information
about the system state. As in general agents do not have complete information, ATEL proposes then to
use knowledge operators as a means to model imperfect information. The idea is to use formulas of the
form KAlice⟪Alice⟫φ to specify the fact thatAliceknows that she can enforceφ in the current state.

Unfortunately, this does not solve theunfeasible strategiesproblem, studied in [GJ04]. Namely, the
knowledge operator in formulaKAlice⟪Alice⟫φ does not giveAlice the ability to know what action she
has to apply in the current state. This is because the knowledge operator only gives evidence about the
fact thatstrategies exist, in all identically observable states, toensureφ , but different strategies may
exist in identically observable states, and henceAlice might not be able to know what strategy she is to
apply after some sequence of observations.

Another argument against the possibility to encode the setting from e.g. [Sch04] into the ATEL
setting from [vdHW03] refers to the difficulty of giving a fixpoint definition to the operators involving
⟪Alice⟫. The reason is that, for formulas of the form⟪A⟫◇φ , it is possible thatφ becomes satisfied
at different times along different yet indistinguishable runs. Hence, despite thatAlice can enforceφ by
means of a fixed strategy, she might be unable to tell whenφ happens. At best, in case every global
state has only finitely many successors,Alice would eventually be able to tell thatφ must have been
achieved. This observation is related with the bookkeeping mechanism used in Subsection 4.2 here, in
the association of a tree automaton with each subformula of the form⟪A⟫φ1U φ2.

In conclusion, we believe that there is little hope to encodethe imperfect information setting studied
here within the ATEL framework from [vdHW03, GJ04].
Structure of the paperThe next section recalls some basic notions and notations used throughout the
paper, including the tree automata that are used in the model-checking algorithm. Section 3 presents the
syntax and semantics of ATLD

iR. Section 4 gives the constructions involved in the model-checking algo-
rithm: the subset construction for identifying indistinguishable histories, and then the tree automata for
handling formulas of the forms⟪A⟫p1W p2 and⟪A⟫p1U p2, respectively. We conclude by a summary
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of our result, discussion and topics of further work.

2 Preliminaries

Given a setA, A∗ stands for the set of finite sequences overA. The empty sequence is denoted byε .
The prefix order between sequences is denoted by⪯ and the concatenation of sequences by⋅. Thedirect
productof a family of sets(Xa)a∈A is denoted by∏a∈AXa. An elementx of ∏a∈AXa will be written in the
form x= (xa)a∈A, wherexa ∈ Xa for all a ∈ A. If B⊆ A, thenx

B
= (xb)b∈B stands for therestrictionof x to

B. If the index setA is a set of natural numbers andn ∈A, thenx
n

stands forx
{n}

. Thesupportsupp( f )
of a partial functionf ∶A⇀B is the subset of elements ofA on which the function is defined.

Given a set of symbols∆, a∆-labeled treeis a partial functiont ∶N∗⇀∆ such that

1. ε ∈ supp(t).

2. The support oft is prefix-closed: ifx ∈ supp(t) andy⪯ x, theny ∈ supp(t).

3. Trees are “full”: ifxi ∈ supp(t), thenx j ∈ supp(t) for all j ≤ i too.

4. All tree branches are infinite: Ifx ∈ supp(t) thenx0 ∈ supp(t) too.

Elements ofsupp(t) are callednodesof t. A path in t is an infinite sequence of nodesπ = (xk)k≥0 such
that for allk, xk+1 is animmediatesuccessor ofxk, i.e. xk+1 = xkl for somel ∈N. Path(xk)k≥0 is initialized
if x0 is the tree rootε . We denote the set of labels on the pathπ, that is,{t(xk) ∣ k≥ 0}, by t(π).

Below we use tree automataA = (Q,Σ,δ ,Q0,F) in which Q is the set ofstates, Σ is thealphabet,
Q0 ⊆Q is the set of theinitial states,δ ⊆Q×Σ×(2Q∖∅) is the transition relationand the acceptance
conditionF is a subset of 2Q.

Tree automata acceptQ×Σ-labelled trees. A treet ∶N∗⇀Q×Σ represents anaccepting runin A iff:

1. t(ε) ∈Q0×Σ.

2. If x∈ supp(t), thent(xi)
Q
/= t(x j)

Q
wheneveri /= j, and(t(x)

Q
,t(x) Σ,{t(xi)

Q
∣ xi ∈ supp(t)}) ∈ δ .

3. t(π)
Q
∈F for all initialized pathsπ ⊆ supp(t).

Note that we only consider automata with “occurrence” accepting conditions: an initialized path is ac-
cepting if the set of statesoccurring on the path is a member ofF , even if some of these states occur
only finitely many times.

Theorem 1 ([Tho97]) The emptiness problem for tree automata with “occurrence” accepting condi-
tions, i.e., the problem of checking whether, given a tree automatonA, there exists an accepting run in
A, is decidable.

3 Syntax and semantics of ATLDiR

Throughout this paper we fix a non-empty finite setAg of agentsand, for eacha ∈ Ag, a set ofatomic
propositions Propa, which are assumed to be observable toa. Given A ⊆ Ag, we write PropA for
⋃a∈APropa. We abbreviatePropAg to Prop.
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3.1 Game arenas

Definition 2 A game arenais a tupleΓ = (Ag,Q,(Ca)a∈Ag,δ ,Q0,(Propa)a∈Ag,λ), where

• Ag and Propa, a∈Ag, are as above.

• Q is a set ofstates,

• Ca is a finite sets ofactionsavailable to agent a. We write CA for ∏a∈ACa and C for CAg.

• Q0 ⊆Q is the set ofinitial states.

• λ ∶Q→ 2Prop is thestate-labeling function.

• δ ∶Q×C→ (2Q∖∅) is thetransition relation.

An elementc ∈C will be called anaction tuple. We writeq
c
Ð→ r for transitions(q,c,r) ∈ δ . We define

λA ∶ Q→ 2PropA, A ⊆ Ag, by puttingλA(q) = λ(q)∩PropA. We assume thatλ and λA are defined on
subsetsSof Q by puttingλ(S) = ⋃

q∈S
λ(q) for λ , and similarly forλA.

Given an arenaΓ, a run ρ is a sequence of transitionsq′i
ci
Ð→ q′′i such thatq′i+1 = q′′i for all i. We write

ρ = (qi−1
ci
Ð→ qi)1≤i≤n, resp.ρ = (qi−1

ci
Ð→ qi)i≥1 for finite, resp. infinite runs. Thelengthof ρ , denoted∣ρ ∣,

is the number of its transitions. This is∞ for infinite runs. A runρ = q0
c1
Ð→ q1

c2
Ð→ . . . is initialized if

q0 ∈Q0. Runsf(Γ) denotes the set of initialized finite runs andRunsω(Γ) denotes the set of initialized
infinite runs ofΓ.

Given a runρ = q0
c1
Ð→q1

c2
Ð→ . . ., we denoteqi by ρ[i], i = 0, . . . , ∣ρ ∣, andci+1 by act(ρ , i), i = 0, . . . , ∣ρ ∣−

1. We writeρ[0..i] for theprefix q0
c1
Ð→ q1

c1
Ð→ . . .

ci
Ð→ qi of ρ of lengthi.

A coalition is a subset ofAg. Given a coalitionA, S⊆Q, cA ∈CA, andZ ⊆ PropA, the following set
denotes theoutcome of cA from S, labeled with Z:

out(S,cA,Z) = {s′ ∈Q ∣ (∃s∈S,∃c′ ∈C)c′
A
= cA,s

c′
Ð→ s′ ∈ δ andλA(s′) = Z}

whereas those fromPropA∖Z are false.
Runsρ andρ ′ areindistinguishable (observationally equivalent)to coalitionA, denotedρ ∼A ρ ′, if

∣ρ ∣ = ∣ρ ′∣, act(ρ , i)
A
= act(ρ ′, i)

A
for all i < ∣ρ ∣, andλA(ρ[i]) = λA(ρ ′[i]) for all i ≤ ∣ρ ∣.

Definition 3 A strategyfor a coalition A is any mappingσ ∶ (2PropA)∗→CA.

We writeΣ(A,Γ) for the set of all strategies of coalitionA in game arenaΓ.
Note that, instead of describing strategies for coalitionsas tuples of strategies for their individual

members with every member choosing its actions using just its own view of the past, we assume ajoint
strategy in which the actions of every coalition member depend on the combined view of the past of all
the members. We may therefore assume that the coalition is guided by a supervisor who receives the
members’ view of the current state, and, in return, advices every coalition member of its next action. The
supervisor sends no other information. We refer the reader to a short discussion in the last section, on
this supervisor interpretation of joint strategies.

Finite sequences of subsets ofPropA will be calledA-histories.
Strategyσ for coalitionA is compatiblewith a runρ = q0

c1
Ð→ q1

c2
Ð→ . . . if

σ(λA(ρ[0])⋯λA(ρ[i])) = ci+1 A

for all i ≤ ∣ρ ∣. Obviously ifσ is compatible with runρ then it is compatible with any run that is indistin-
guishable fromρ to A.
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3.2 ATLD
iR defined

The syntax of ATLDiR formulasφ can be defined by the grammar

φ ∶∶= p ∣ φ ∧φ ∣ ¬φ ∣ ⟪A⟫#φ ∣ ⟪A⟫φ U φ ∣ ⟪A⟫φ1W φ2 ∣ KAφ

wherep ranges over the setPropof atomic propositions, andA ranges over the set of subsets ofAg.
Below it becomes clear that admittingW as a basic temporal connective allows us to introduce all

the remaining combinations of⟪A⟫ and its dual⟦A⟧ and the temporal connectives as syntactic sugar (see
[BJ09, LMO08] for more details). Satisfaction of ATLD

iR formulas is defined with respect to a given
arenaΓ, a runρ ∈ Runsω(Γ) and a positioni in ρ by the clauses:

• (Γ,ρ , i) ⊧ p if p ∈ λ(ρ[i]).

• (Γ,ρ , i) ⊧ φ1∧φ2, if (Γ,ρ , i) ⊧ φ1 and(Γ,ρ , i) ⊧ φ2.

• (Γ,ρ , i) ⊧ ¬φ if (Γ,ρ , i) /⊧ φ .

• (Γ,ρ , i) ⊧ ⟪A⟫#φ if there exists a strategyσ ∈ Σ(A,Γ) such that(Γ,ρ ′, i + 1) ⊧ φ for all runs
ρ ′ ∈ Runsω(Γ) which are compatible withσ and satisfyρ ′[0..i] ∼A ρ[0..i].

• (Γ,ρ , i) ⊧ ⟪A⟫φ1U φ2 iff there exists a strategyσ ∈ Σ(A,Γ) such that for every runρ ′ ∈ Runsω(Γ)
which is compatible withσ and satisfiesρ ′[0..i]∼A ρ[0..i] there existsj ≥ i such that(Γ,ρ ′, j)⊧ φ2

and(Γ,ρ ′,k) ⊧ φ1 for all k= i, . . . , j −1.

• (Γ,ρ , i)⊧ ⟪A⟫φ1W φ2 iff there exists a strategyσ ∈ Σ(A,Γ) such that for every runρ ′ ∈Runsω(Γ)
which is compatible withσ and satisfiesρ ′[0..i] ∼A ρ[0..i] one of the two situations occur:

1. Either there existsj ≥ i such that(Γ,ρ ′, j) ⊧ φ2 and(Γ,ρ ′,k) ⊧ φ1 for all k= i, . . . , j −1.

2. Or(Γ,ρ ′,k) ⊧ φ1 for all k≥ i.

• (Γ,ρ , i) ⊧ KAφ iff (Γ,ρ ′, i) ⊧ φ , for all runsρ ′ ∈ Runsω(Γ) which satisfyρ ′[0..i] ∼A ρ[0..i].

The rest of the combinations between the temporal connectives and the cooperation modalities⟪A⟫
and⟦A⟧ are defined as follows:

PAφ = ¬KA¬φ ⟦A⟧#φ = ¬⟪A⟫#¬φ
⟦A⟧φ Uψ = ¬⟪A⟫(¬ψW¬ψ ∧¬ϕ) ⟦A⟧φWψ = ¬⟪A⟫(¬ψU ¬ψ ∧¬ϕ)
⟪A⟫◇φ = ⟪A⟫trueU φ ⟪A⟫◻φ = ⟪A⟫φ W false

⟦A⟧◇φ = ⟦A⟧trueU φ ⟦A⟧◻φ = ⟦A⟧φ W false

A formula φ is valid in a game arenaΓ, written Γ ⊧ φ , if (Γ,ρ ,0) ⊧ φ for all ρ ∈ Runsω(Γ). The
model-checking problemfor ATLD

iR is to decide whetherΓ ⊧ φ for a given formulaφ and arenaΓ.

Example 4 Alice and Bob, married, work in the same company. When they arrive at work, they are
assigned (by some non-modeled agent) one of the tasks x or y. These tasks need different periods of
time to be executed: tx time units for x and ty time units for y,where tx< ty. The assignment is always
such that task y cannot be assigned to both Alice and Bob. After they finished executing their task, Alice
and Bob have two objectives: (1) to pick their child from the nursery, and (2) to do the shopping. The
supermarket closes early, so the one who does the longest task cannot do the shopping. So Alice and
Bob need to exchange information about their assigned task in order to fix who’s to do the shopping and
who’s to pick the child from the nursery.
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Figure 1 pictures the game arena representing this system. The actions Alice and Bob can do are: g
for going at work, e for working on their task, tc for taking the child, ds for doing the shopping, and i
for idling. The atomic proposition xx denotes the assignment of task x to both Alice and Bob, xy denotes
assignment of task x to Alice and task y to Bob, and yx denotes assignment of task y to Alice and task x
to Bob. All these atomic propositions are not observable by the two agents. The atomic propositions xa

and ya are observed only by Alice, and the atomic propositions xb and yb are observed only by Bob. All
these four atoms denote the fact that the respective person has to execute task x or y. Furthermore, the
atomic propositions txa and tya which are observed only by Alice, and txb and tyb, which are observed
only by Bob, denote the fact that the respective person has been working for tx or ty time units. The
atomic propositions c, s, can be observed by both Alice and Bob and denote the fact that the child was
picked from the nursery, and, respectively, that the fridgeis full with food from the supermarket. An arc
labeled by two vectors of actions, e.g.(tc,ds) (ds,tc), denotes two arcs with the same origin and the
same destination, each one of them labeled by one of the vectors.

We suppose that the game arena contains asink statewhich is the output of all the transitions not
pictured in Figure 1 (for instance, both agents idling in state q6 brings the sistem to the sink state). Also,
we suppose that all the states except for the sink state are labeled by some atomic proposition valid
visible to Alice.

An interesting property for this system is that Alice and Bobcan form a coalition in order to pick
their child and do their shopping (if we ignore the sink state)– that is, the following formula is true:

φ = ⟪{Alice,Bob}⟫(valid U c∧s)

Note that Alice and Bob need a strategy which must include some communication during its execu-
tion, which would help each of them to know who is assigned which task during the day, and hence who
cannot do the shopping. Note also that the model incorporates some timing information, such that the
two agents need a strategy with perfect recall in order to reach their goal: after working tx time units
both Alice and Bob must use their observable past to rememberif they have finished working. Finally,
note that, if we consider that strategies for coalitions aretuples of strategies for individual members, as
in [AHK98, Sch04] then the formulaφ is false: whatever decision Alice and Bob take together, in the
morning, about who is to pick the child, who is to do shopping,and in what observable circumstances
(but without exchanging any information), can be counteredby the task assignment, which would bring
Alice and Bob at the end of the day either with an empty fridge or the child spending his night at the
nursery.

4 Model-checking ATLD
iR

The model-checking procedure for ATLD
iR builds on model checking techniques for CTL with knowledge

modalities and ATL with complete information. It works by recursion on the construction of formulas.
Given a formulaφ with a cooperation modality as the main connective, the procedure involves refining
the given arenaΓ to an arenâΓ in which the state space can be partitioned into states whichsatisfyφ and
states which do not.

The idea is to have, after the splitting, an equivalence relation ≡A on the states of the resulting game
arenâΓ, such that̂q1 ≡A q̂2 iff q̂1 andq̂2 are reachable through the same histories, as seen byA.

The construction of the refined state space is inspired by theusual construction of a game with perfect
information for solving two-player games with one player having imperfect information, see [CDHR06].
However the construction is more involved, because, contrary to [CDHR06] the objectives here may not
be observable by the coalition.
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Figure 1: A game arena for Example 4

4.1 The state-splitting construction.

Given a game arenaΓ = (Ag,Q,(Ca)a∈Ag,δ ,Q0,(Propa)a∈Ag,λ) and a coalitionA, we construct a new
game arenâΓA = (Ag,Q̂,(Ca)a∈Ag, δ̂ ,Q̂0,(Propa)a∈Ag, λ̂), as follows:

• Q̂= {(q,S) ∣S⊆Q,q ∈Sand for alls∈S,λA(s) = λA(q)};

• Q̂0 = {(q0,S0) ∣ q0 ∈Q0 andS0 = {s∈Q0 ∣ λA(s) = λA(q0)}};

• λ̂(q,S) = λ(q) for all (q,S) ∈ Q̂.

• (q,S)
c
Ð→ (q′,S′) ∈ δ̂ if and only if the following properties hold:

– (q,S),(q′,S′) ∈ Q̂ andc ∈C;

– q
c
Ð→ q′ ∈ δ ;

– S′ = out(S,c
A
,λA(q′)).

The intended equivalence on states is then the following:q̂≡A q̂′ if and only if there existsS⊆Q with
q̂= (q,S) andq̂′ = (q′,S).

Every runρ ∈ Runsω(Γ), ρ = (qi−1
ci
Ð→ qi)i≥1, has a unique corresponding run̂ρ ∈ Runsω(Γ̂A), ρ̂ =

((qi−1,Si−1)
ci
Ð→ (qi ,Si))i≥1. This is becauseq0 unambiguously determinesS0 and, recursively,Si−1

uniquely determinesSi , for any i ≥ 1. The converse holds too, that is, to each runρ = ((qi−1,Si−1)
ci
Ð→

(qi ,Si))i≥1 in Runsω(Γ̂A), corresponds a unique runρ = (qi−1
ci
Ð→ qi)i≥1 such that̂ρ = ρ. Furthemore,

every strategy forA in Γ is also a strategy forA in Γ̂A.

Proposition 5 1. If ρ andρ ′ are runs inΓ of the same length, thenρ ∼A ρ ′ iff ρ̂ ∼A ρ̂ ′.
2. If B⊆Ag,σ ∈ Σ(B,Γ) = Σ(B, Γ̂A), andρ ∈ Runsω(Γ), thenσ is compatible withρ iff σ is compat-

ible with ρ̂.

3. If ρ ∈ Runsω(Γ), p∈Prop and i≥ 0, then(Γ,ρ , i) ⊧ KAp is equivalent to both(Γ̂, ρ̂, i) ⊧ KAp, and
to p∈ λ(s) for all s in the second component ofρ̂[i].
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4. If ρ ∈ Runsω(Γ), φ is an arbitrary ATLDiR formula and i≥ 0, then

(Γ,ρ , i) ⊧ φ iff (Γ̂A, ρ̂ , i) ⊧ φ

Proof: (1), (2) and (3) follow directly from definition. (4) is proved by structural induction onφ . For
example,

• if φ = KBψ , for someB ⊆ Ag, then(Γ̂A, ρ̂ ,0) ⊧ φ iff (Γ̂A, ρ̂ ′,0) ⊧ ψ for all ρ̂ ′ ∈ Runsω(Γ̂A) such
thatλB(ρ̂ ′[0]) = λB(ρ̂[0]). By the induction hypothesis, this is equivalent to(Γ,ρ ′,0) ⊧ψ for all
ρ ′ ∈ Runsω(Γ) such thatλB(ρ ′[0]) = λB(ρ[0]). The latter is equivalent to(Γ,ρ ,0) ⊧ φ .

• if φ = ⟪B⟫ψ1Uψ2, for someB⊆ Ag, then(Γ̂A, ρ̂, i) ⊧ φ iff there exists a strategyσ ∈ Σ(B, Γ̂) such
that for every run̂ρ ′ ∈ Runsω(Γ̂) which is compatible withσ and satisfieŝρ ′[0..i] ∼A ρ̂[0..i] there
exists j ≥ i such that(Γ̂, ρ̂ ′, j)⊧ψ2 and(Γ̂, ρ̂ ′,k)⊧ψ1 for all k= i, . . . , j −1. Letρ ′′ ∈Runsω(Γ) be
a run compatible withσ such thatρ ′′[0..i] ∼A ρ[0..i]. We have that̂ρ ′′[0..i] ∼A ρ[0..i] ∼A ρ̂[0..i]
and by (2),̂ρ ′′ is compatible withσ . Consequently, there existsj ≥ i such that(Γ̂, ρ̂ ′′, j) ⊧ψ2 and
(Γ̂, ρ̂ ′′,k) ⊧ ψ1 for all k = i, . . . , j −1. By the induction hypothesis, we obtain that(Γ,ρ ′′, j) ⊧ ψ2

and(Γ,ρ ′′,k) ⊧ψ1 for all k= i, . . . , j −1 which implies(Γ,ρ , i) ⊧ φ . For the other implication we
can proceed in a similar manner.

⊣

Remark 6 Item (3) from Proposition 5 gives the state partitioning procedure for knowledge operators:
we may partition the state space of̂ΓA asQ̂= Q̂KAp∪ Q̂¬KAp, where

Q̂KAp = {(q,S) ∈ Q̂ ∣ (∀s∈S)(p ∈ λ(s) = λ(q))} (1)

Q̂¬KAp =Q∖ Q̂KAp (2)

Example 7 The arena ̂Γ{Alice,Bob} corresponding toΓ from Figure 1 is obtained by replacing each state
q with:

• (q,{q}), if q /∈ {q1,q2,q3},

• (q,{q1,q2,q3}), otherwise.

The states(q,{q1,q2,q3}) with q∈ {q1,q2,q3} denote the fact that, from the point of view of Alice
and Bob, q is reachable through the same history as the statesq1, q2, and q3.

4.2 The state labeling constructions

Our next step is to describe how, given an arenaΓ and a coalitionA, the states(q,S) ∈ Q̂ of Γ̂A can be
labelled with the ATLDiR formulas which they satisfy in case the considered formulashave one of the
forms⟪A⟫#p, ⟪A⟫p1U p2 and⟪A⟫p1W p2.

The three cases are different. Formulas of the form⟪A⟫#p are the simplest to handle. To do formulas
of the forms⟪A⟫p1U p2 and⟪A⟫p1W p2, we build appropriate tree automata.

Case⟪A⟫#p: We partition the state space of̂ΓA in Q̂⟪A⟫#p andQ̂¬⟪A⟫#p, where

Q̂⟪A⟫#p = {(q,S) ∈ Q̂ ∣ ∃c ∈CA s.t.∀S′ ⊆Q, ∀r ∈S, ∀r ′ ∈S′, ∀c′ ∈C,

if (r,S)
c′
Ð→ (r ′,S′) andc′

A
= c thenp ∈ λ̂(r ′)} (3)

Q̂¬⟪A⟫#p = Q̂∖ Q̂⟪A⟫#p (4)



106 Model-checking ATLDiR

Case⟪A⟫p1U p2: We build a tree automaton whose states represent histories which are indistinguish-
able toA in a finitary way. A special mechanism is needed for checking whether the objectivep1U p2 is
satisfied on all paths of an accepted tree. The main difficultylies in the fact that the objective need not
be observable by coalitionA because neitherp1 nor p2 are required to belong toPropA. Hence there can
be behavioursρ andρ ′ such thatρ ′[0..i] ∼A ρ[0..i] and(ρ , i) satisfiesp1U p2 but (ρ ′, i) does not.

Therefore, given some group of statesR representing some history, we need to keep track of the
subsetR′ of states inR for which the obligationp1U p2 was not yet satisfied on their history. All the
states inR′ must be labeled withp1, and we need to find outgoing transitions in the automaton that ensure
the obligation to havep1U p2 on all paths leavingR′. On the other hand, states inR∖R′ are assumed
to have histories in whichp1U p2 has been “ achieved” in the past, and, therefore, are “free” from the
obligation to fulfill p1U p2.

Let (q,S) ∈ Q̂. Formally, the tree automaton is̆A(q,S) = (Q̆,CA, δ̆ ,Q̆0,F̆) where:

• Q̆ contains�, assumed to signal failure to fulfilp1U p2, and all the sets of pairs(R1,R2) with:

– R1 ⊆R2 ⊆Q,
– ∀r1,r2 ∈R2,λA(r1) = λA(r2), and∀r1 ∈R1, p2 /∈ λ(r1)∧ p1 ∈ λ(r1),

• The initial stateQ̆0 is defined by:

1. if there existss∈S for which λ(s)∩{p1, p2} =∅ thenQ̆0 = �.
2. otherwise, we denoteQ[p2] = {q ∈Q ∣ p2 ∈ λ(q)} and we putQ0 = {(S∖Q[p2],S)}.

• δ̆ ∶ Q̆×CA→ 2Q̆∖∅ is defined as follows: first, for anycA ∈CA, δ((�,cA)) = {�}. Then, for each
(R1,R2) ∈ Q̆∖{�} andcA ∈CA, two situations may occur:

1. If there existr1 ∈R1, (r,R) ∈ Q̂ andc∈C such that(r1,R2)
c
Ð→ (r,R) ∈ δ̂ , c

A
= cA and{p1, p2}∩

λ(r) =∅, thenδ((R1,R2),cA) = {�}.
2. Otherwise,

δ((R1,R2),cA) = {(out(R1,cA,Z)∖Q[p2],out(R2,cA,Z)) ∣ Z ⊆ PropA,out(R2,cA,Z) ≠∅}

That is, each transition from(R1,R2) labeled withcA must embody sets of states representing
all the variants of observations which occur as outcomes of the action tuplecA from R2, paired
with the subset of states in which thep1U p2 obligation is not fulfiled.

• The acceptance condition is

F̆ = {R ∣R ⊆ Q̆ with (∅,R) ∈R, for someR⊆Q}.

That is,Ăq̂ accepts only trees in which each path reaches some node containing the empty set as
first state label.

Note that, in a pair(R1,R2) representing an element in̆Q, the first componentR1 represents the
subset of states ofR2 whose history has not yet accomplishedp1U p2. Hence, a tree node with label
(∅,R) signals that the obligationp1U p2 is accomplished for all histories ending inR.

Note also that, whenever the successors of(R1,R2) labeledcA do not contain a state labeled by�, we
have that, for anyZ ⊆PropA and anys∈ out(R2,cA,Z), p1 ∈ λ(s) or p2 ∈ λ(s).

We may then prove the following result:

Proposition 8 For any runρ̂ ∈ Runsω(Γ̂A) and position i on the run for whichρ[i] = q̂= (q,S),

(Γ̂A,ρ , i) ⊧ ⟪A⟫p1U p2 if and only if L(Ăq̂) ≠∅
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Proof: (⇒) Suppose that(Γ̂A,ρ , i) ⊧ ⟪A⟫p1U p2. Then, there existsσ ∈ Σ(A, Γ̂A) such that for any
ρ ′ ∈ Runsω(Γ̂A) compatible withσ and for whichρ ′[0..i] ∼A ρ[0..i] we have(Γ̂A,ρ ′, i) ⊧ p1U p2.

Let t ∶N∗
⇀ Q̆×CA be a tree constructed recursively as follows:

• The root of the tree ist(ε) = ((S∖Q[p2],S),c) ∈ Q̆0 wherec = σ(λA(ρ[0]) . . .λA(ρ[i])). Note
that, by hypothesis,� /∈ Q̆0.

• Suppose we have build the tree up to levelj ≥ 0. Let t(x) = ((R1,R2),cA) be a node on the
jth level, wherex ∈ supp(t) ∩N

j . Consider some order on the setδ̆(t(x)) = δ̆((R1,R2),cA) =
{(R1

1,R
1
2), . . . ,(R

k
1,R

k
2)} for somek≥ 1. The successors oft(x) will be labeled with the elements of

this set, each one in pair with an action symbol inCA – action symbol which is chosen as follows:

Denote(xp)1≤p≤ j the initialized path int which ends inx. For each 1≤ l ≤ k, put

cl = σ(λA(t(x1) Q̆
) . . .λA(t(xk) Q̆

)λA(Rl
2)).

Then, for all 1≤ l ≤ k we putt(xl) = ((Rl
1,R

l
2),cl ).

Suppose thatL(Ăq̂) =∅. This implies thatt is not an accepting run inA. Consequently, there exists
an infinite pathπ = (xk)k≥0, wherexk ∈Nk, in t which does not satisfy any acceptance condition inF̆ . We
have two cases:

1. π contains states different from(∅,R), for anyR⊆Q, it reaches state� and then loops in this state
forever, or

2. π contains a cycle passing through states which are all different from(∅,R) or �, for anyR⊆Q.

For the first case, letα be the length of the maximal prefix ofπ containing only states different from
�. Let t(xk)= ((Rk

1,R
k
2),c

k
A), for any 0≤ k<α . By the definition oft, we have thatσ(λA(R0

2) . . .λA(Rk
2))=

ck
A, for any 0≤ k< α .

Let ρ ′ = ((qk−1,Rk−1)
ck
Ð→ (qk,Rk))k≥1

be an infinite run in̂ΓA such that:

• ρ ′[0..i] ∼A ρ[0..i] andqi ∈R0
1,

• qi+k ∈Rk
1 andRi+k =Rk

2, for all α > k≥ 1.

• note that, by definition ofπ, δ̆((Rα−1
1 ,Rα−1

2 ),cα−1
A ) = �. We define(qi+α ,Ri+α) ∈ Q̂ such that

(qi+α−1,Rα−1
2 )

c
Ð→ (qi+α ,Ri+α) ∈ δ̂ , for somec ∈C with c

A
= cα−1

A , and{p1, p2}∩λ(qi+α) =∅.

By definition of t, this run exists and it is compatible withσ . Also, starting with positioni, ρ ′ contains
a sequence of states labeled byp1 but not byp2 followed by a state which is not labeled byp1 or p2.
Consequently,(Γ̂A,ρ ′, i) /⊧ p1U p2 which contradicts the hypothesis.

Similarly, for the second case above, we can construct a runρ ′ in Γ̂A compatible withσ such that
ρ ′[0..i] ∼A ρ[0..i] and(Γ̂A,ρ ′, i) /⊧◇ p2. Consequently,(Γ̂A,ρ ′, i) /⊧ p1U p2 which contradicts the hy-
pothesis.

(⇐) Assume thatt is a tree accepted by̆Aq̂. We will construct inductively a strategyσ which is

compatible withρ[0..i] and satisfies the required conditions for witnessing that(Γ̂A, ρ̂ , i) ⊧ ⟪A⟫p1U p2.

Suppose that the runρ is ρ = (q̂ j−1
cj
Ð→ q̂ j) j≥1. First, we may defineσ for sequences of elements in

2PropA of length at mosti: for anyA-history of length less than or equal toi, w ∈ (2PropA)∗, ∣w∣ = j with
1≤ j ≤ i, we put

σ(w) =
⎧⎪⎪
⎨
⎪⎪⎩

c j A
if w= λ̂A(q̂0) . . . λ̂A(q̂ j−1)

arbitrary otherwise
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For definingσ on sequences of length greater thani, let’s denote firstwρ̂ = λ̂A(q̂0) . . . λ̂A(q̂i−1). Also,
given a sequence of subsets ofPropA, z= (Z1 ⋅ . . . ⋅Zk) ∈ (2PropA)∗ and a nodex ∈ supp(t), we say thatz
labels a path fromε to x in t if the A-history along the path fromε to x in t is exactlyz, that is,

∀y⪯ x,∀0≤ j ≤ ∣x∣, if ∣y∣ = j thenλ̂A(t(y) 1
) = Z j+1.

Then, for allk≥ 1 we put:

σ(wρ̂ Z1 . . .Zk) =
⎧⎪⎪
⎨
⎪⎪⎩

t(x)
2

if (Z1, . . . ,Zk) labels a path fromε to x in t

arbitrary otherwise

To prove thatσ is a strategy that witnesses for(Γ̂A, ρ̂ , i) ⊧ ⟪A⟫p1U p2, take some runρ ′ compatible

with σ and for whichρ ′[0..i] ∼A ρ[0..i]. We may prove that, if we denote the run asρ ′ = (q̂′j−1

c′j
Ð→ q̂′j) j≥1,

with q̂′j = (r j ,Sj) ∈ Q̂, and we also denoteZ j = λ̂A(q̂′j), then:

• there exists a path(x j−i) j≥i in t with t(x j−i) 1 = (R
j
1,Sj) and t(x0) 1 = (R

0
1,Si), for someRk

1 ⊆ Q,
0≤ k.

• for all j ≥ i+1, c′j A
= σ(Z0 . . .Z j−1) = t(x j−i−1) 2.

This property follows by induction onj, and ends the proof of our theorem.⊣

Case⟪A⟫p1W p2: The construction is almost entirely the same as for the previous case, the only
difference being the accepting condition. For this case, the condition from the until case is relaxed: any
path of an accepting tree may still only have labels of the type (R1,R2) denoting the fact that all the runs
that are simulated by the path and lead to a member ofR1 are only labeled withp1. But we no longer
require that, on each path, a label of the type(∅,R) occurs. This is due to the fact thatp1W p2 does
not incorporate the obligation to reach a point wherep2 holds, runs on whichp1 holds forever are also
acceptable.

So, formally, the construction for⟪A⟫p1W p2 is the following: Ã(q,S) = (Q̆,CA, δ̆ ,Q̆0,F̃) where

Q̆,Q̆0 and δ̆ are the same as in the construction for⟪A⟫p1W p2, while the acceptance condition is the
following:

F̃ = {R ∣R ⊆ Q̆}.

The following result can be proved similarly to Proposition8.

Proposition 9 For any runρ̂ ∈ Runsω(Γ̂A) and position i on the run for whichρ[i] = q̂= (q,S),

(Γ̂A,ρ , i) ⊧ ⟪A⟫p1W p2 if and only if L(Ãq̂) ≠∅

Example 10 For our running example, the tree automaton constructed from the arena ̂ΓAlice,Bob (given
in Example 7), for the state(q0,{q0}) and the formulaφ1 = ⟪{Alice,Bob}⟫◇(c∧s) is pictured in Figure
2. Note that it accepts an infinite tree such that all its pathscontain the state(∅,{q12}) but never reach
�. Moreover, this tree defines a strategy for the coalition{Alice,Bob} to reach the goal c∧s.
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{q0},{q0}
{q1,q2,q3},
{q1,q2,q3}

(g,g)

{q9},{q9}

{q10},{q10}

{q11},{q11}

∅,{q12}

{q13},{q13}

{q14},{q14}

(tc,ds)

(tc,tc)(ds,tc)

(ds,ds)

(tc,tc)

(ds,ds)

(ds,tc)

(tc,tc)(tc,ds)

(ds,ds)

(tc,ds)(ds,tc){q4},{q4}

{q6},{q6}

{q5},{q5}
(i, i)

{q7},{q7}

{q8},{q8}

(e,e)

(e,e)

(e,e)

(e, i)

(i,e)

(i, i)

(i, i)

(i, i)

(i, i)

(i, i)

Figure 2: A tree automaton for the game arena in Figure 1

4.3 The model-checking algorithm

Our algorithm for the model-checking problem for ATLD
iR works by structural induction on the formula

φ to be model-checked. The input of the algorithm is a game arena Γ = (Q,C,δ ,Q0,Prop,λ) and an
enumerationΦ = {φ1, . . . ,φn} of the subformulas ofφ , in whichφ = φn andφi is a subformula ofφ j only
if i < j. The algorithm determines whetherφ holds at all the initial states ofΓ. It works by constructing
a sequence of arenasΓk = (Qk,C,δk,Qk

0,Propk,λk), k = 0, . . . ,n, with Γ0 = Γ. The formulaφ is assumed
to be written in terms of the agents fromAg and the atomic propositions fromProp=⋃a∈AgPropa of Γ.
The atomic propositions ofΓ1, . . . ,Γn include those ofΓ andn fresh atomic propositionspφk, k= 1, . . . ,n,
which represent the labelling of the states of these arenas by the corresponding formulasφk. For any
1 ≤ k ≤ n, upon stepk the algorithm constructsΓk from Γk−1 and calculates the labelling of its states
with formula φk. Propk = Prop∪Φk whereΦk denotes{pφ1, . . . , pφk}, k = 0, . . . ,n. The state labelling
function λk is defined so that equivalencepφk ⇔ φk is valid in Γk. Therefore, we define the formula
χk = φk[φk−1/pφk−1], . . . ,[φ1/pφ1] which has at most one connective of the form⟪A⟫#, ⟪A⟫U , ⟪A⟫W
or KA. The algorithm computes the states that should be labeled bypφk using the formulaχk which is
equivalent toφk. The fresh propositionspφ1, . . . , pφn are not assumed to be observable by any particular
agent. Therefore the requirementsPropk = ⋃

a∈Ag
Propa,k on arenas are not met byΓ1, . . . ,Γn, but this is of

no consequence.
Let us note the need to switch, at each step, from analyzingΓk to analyzingΓk+1. This is needed

as Γk+1 only has the necessary information about the identically-observable histories, needed in the
semantics of coalition operators.

In caseφk is atomic,Γk = (Qk−1,C,δk−1,Qk−1
0 ,Propk,λk) whereλk(q)∩Propk−1 = λk−1(q) andpφk ∈

λk(q) iff φk ∈ λk−1(q). In caseφk is not atomic, the construction ofΓk depends on the main connective
of χk:

1. Letχk be a boolean combination of atoms fromPropk−1. ThenΓk = (Qk−1,C,δk−1,Qk−1
0 ,Propk,λk)

whereλk(q)∩Propk−1 = λk−1(q) andpφk ∈ λk(q) iff the boolean formula⋀p∈λk−1(q) p impliesχk.
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2. Letχk beKAp for somep∈Propk−1. Consider the arenâ(Γk−1)A defined as in Subsection 4.1. Then
Γk = (Q̂k−1,C, δ̂k−1,Q̂k−1

0 ,Propk,λk) whereλk(q)∩Propk−1 = λ̂k−1(q) andpφk ∈ λk(q) iff q ∈ Q̂KAp
k−1 ,

whereQ̂KAp
k−1 is defined in (1).

3. Letχk be⟪A⟫#p for somep∈Propk−1. Consider̂(Γk−1)A. ThenΓk= (Q̂k−1,C, δ̂k−1,Q̂k−1
0 ,Propk,λk)

whereλk(q)∩Propk−1 = λ̂k−1(q) andpφk ∈ λk(q) iff q ∈ Q̂⟪A⟫#p
k−1 , whereQ̂⟪A⟫#p

k−1 is defined in (3).

4. Let χk be ⟪A⟫p1U p2 for some p1, p2 ∈ Propk−1. Consider ̂(Γk−1)A again and, for each state
q̂ ∈ Q̂k−1, construct the tree automaton̆Aq̂. Then putΓk = (Q̂k−1,C, δ̂k−1,Q̂k−1

0 ,Propk,λk) where
λk(q)∩Propk−1 = λ̂k−1(q) andpφk ∈ λk(q) iff L(Ăq̂) ≠∅.

5. Finally, let χk be⟪A⟫p1W p2 for somep1, p2 ∈ Propk−1. Consider ̂(Γk−1)A again and, for each
stateq̂ ∈ Q̂k−1, construct the tree automatoñAq̂. Then putΓk = (Q̂k−1,C, δ̂k−1,Q̂k−1

0 ,Propk,λk)
whereλk(q)∩Propk−1 = λ̂k−1(q) andpφk ∈ λk(q) iff L(Ãq̂) ≠∅.

The following result is a direct consequence of Propositions 5, 8, and 9.

Theorem 11 Let Γn = (Qn,C,δn,Qn
0,Propn,λn) be the last game arena obtained in the algorithm de-

scribed above. Then,

pφ ∈ λn(q), for all states q∈Qn
0 iff (Γ,ρ ,0) ⊧ φ , for all runs ρ ∈ Runsω(Γ).

5 Concluding remarks

We have presented a model-checking technique for ATLD
iR, a variant of the Alternating Temporal Logic

with Knowledge, in which coalitions may coordinate their actions, based on their distributed knowledge
of the system state. The technique is based on a state labeling algorithm which involves tree automata for
identifying states to be labeled with cooperation modalitysubformulas, and a state splitting construction
which serves for identifying (finite classes of) histories which are indistinguishable to some coalition.

According to our semantics, while distributed knowledge isused for constructing coalition strategies,
it is assumed that the individual agents in the coalition gain no access to that knowledge as a side effect of
their cooperation. That is why the proposed semantics corresponds to coalitions being organised under
virtual supervisorswho guide the implementation of strategies by receiving reports on observations of
the coalitions’ members and, in return, just directing the members’ actions without making any other
knowledge available to them.

The possibility of a subsequent increase of individual knowledge as a side effect of the use of dis-
tributed knowledge for coordinated action, which we avoid by introducing virtual supervisors, becomes
relevant only in settings such as that of ATL with incompleteinformation. This possibility appears to
be an interaction between the understanding of distributedknowledge as established in non-temporal
epistemic logic and temporal settings. This is just one of the numerous subtle interpretation issues which
were created by the straightforward introduction of modalities from non-temporal epistemic logic and
cooperation modalities into temporal logics. For an example of another such issue, a semantics for ATL
in which agents, once having chosen a strategy for achievinga certain main goal, cannot revise it upon
considering the reachability of subgoals, was proposed andstudied in [̊AGJ07].

The state labeling algorithm suggests that tree automata with partial observations and with partially-
observable objectives might be useful to study. We believe that the two state-labeling constructions can
be generalized to such automata, giving us also a decision method for the “starred” version of ATLDiR.
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