CTL, the branching-time temporal logic

Cătălin Dima

Université Paris-Est Créteil

Temporal properties

- Safety, termination, mutual exclusion LTL.
- Liveness, reactiveness, responsiveness, infinitely repeated behaviors LTL.
- Available choices, strategies, adversial situations?

CNIL

Tout utilisateur peut demander le retrait de ses données...

- How do we interpret peut?
 - p = demander le retrait...
 - ► Then formula = □ p??
 - ► NO!

Strategy to win a game

Black has a strategy to put the game in a situation from which White king will never get close to Black pawn.

Not specifiable in LTL either!

・ロト ・ 四ト ・ ヨト ・ ヨト

Computational Tree Logic (CTL)

Syntax:

 $\Phi ::= p \mid \Phi \land \Phi \mid \neg \Phi \mid \forall \bigcirc \Phi \mid \forall \square \Phi \mid \forall (\Phi \mathcal{U} \Phi) \mid \exists \bigcirc \Phi \mid \exists \square \Phi \mid \exists (\Phi \mathcal{U} \Phi)$

- Grammar for the logic: the set of formulas is the set of "words" obtained by this (context-free!) grammar, with Φ viewed as nonterminal.
- Syntactic tree for each formula.
 - ▶ \forall , \exists : path quantifier (will see why!).
 - $\mathcal{U}, \Box, \Diamond$: temporal quantifiers.
 - ► Alternative notations (for the temporal operators): $\Box \phi = G\phi$, $\Diamond \phi = F\phi$, $\bigcirc \phi = X\phi$.
 - Each path quantifier must be followed by a temporal quantifier in the syntactic tree of each formula.
- Sample formula: $p \land \exists \Box (\neg \forall \bigcirc p \lor \forall (p \mathcal{U} (\neg q \land \exists \bigcirc q))).$
 - Draw its syntactic tree!
- Strict alternation:
 - ► A non-CTL formula $p \land \exists \Box (\neg \forall \bigcirc p \lor (p \mathcal{U}(\neg q \land \exists \bigcirc q))).$
 - ► ... because the U is not preceded by a path quantifier.

CTL presented

Intuitive meanings:

• $\forall \bigcirc p$: in any next state p holds.

Regardless of the actions of the "environment", at the next clock tick p holds.

▶ $\forall \Box p$: p will perpetually hold in any continuation from the current state.

Whatever the environment does, p will hold forever.

∀*pU q*: in any continuation from the current state *q* eventually holds, and until then p must hold.

CTL formulas

Derived operators:

$$\exists \bigcirc \phi = \neg \forall \bigcirc \phi$$

$$\forall \Diamond \phi = \forall (true \mathcal{U} \phi)$$

$$\exists \Box \phi = \neg \forall \Diamond \neg \phi$$

$$\exists \Diamond \phi = \neg \forall \Box \phi$$

$$\exists (\phi \mathcal{U} \psi) = \neg \forall (\neg \phi \mathcal{U} (\neg \phi \land \neg \psi)) \land \neg \forall \Box \psi$$

- Some intuitive meanings:
 - ▶ $\exists \bigcirc p$: there exists a next state in which *p* holds.

The environment could make it possible for p to hold at the next clock tick.

- ▶ $\exists \Box p$: there exists a continuation on which p holds perpetually.
- $\forall \Diamond p$: in all continuations *p* eventually holds.

There is a guarantee that p must eventually hold, whatever the environment does.

Branching time

The root in the following tree satisfies $\forall \bigcirc p$: p, q p, r p

The root in the following tree satisfies $\exists \bigcirc p$:

æ

Branching time, contd.

æ

<ロ> <問> <問> < 回> < 回> < □> < □> <

Transition systems

- $\mathcal{T} = (\mathbf{Q}, \Pi, \delta, \pi, q_0)$ with
 - Q finite set of states.
 - In finite set of atomic propositions.
 - $q_0 \in Q$ initial state.
 - $\delta \subseteq \mathbf{Q} \times \mathbf{Q}$ transition relation.
 - $\pi : \mathbf{Q} \to \mathbf{2}^{\Pi}$ state labeling.

Example: the hunter/wolf/goat/cabbage puzzle.

- Nondeterminism: given $q \in Q$, there may exist several $r_1, r_2, \ldots \in Q$ with $(q, r_1) \in \delta, (q, r_2) \in \delta \ldots$
- Who chooses wich successor in each state?
 - CTL answer: the environment does!

A (10) A (10)

CTL semantics in transition systems

Recursively interpret each CTL formula in each state of the system

Given $\mathcal{T} = (Q, \Pi, \delta, \pi, q_0)$ and $q \in Q$:

- $q \models p$ if $p \in \pi(q)$.
- $q \models \phi_1 \land \phi_2$ if....
- $q \models \neg \phi$ if...
- $q \models \forall \bigcirc \phi$ if for all $r \in Q$ with $(q, r) \in \delta$, $r \models \phi$. Example:

CTL semantics in transition systems

Recursively interpret each CTL formula in each state of the system

Given $\mathcal{T} = (Q, \Pi, \delta, \pi, q_0)$ and $q \in Q$:

- $q \models p$ if $p \in \pi(q)$.
- $q \models \phi_1 \land \phi_2$ if....
- $q \models \neg \phi$ if...

• $q \models \forall \bigcirc \phi$ if for all $r \in Q$ with $(q, r) \in \delta$, $r \models \phi$. Example:

• • • • • • • • • • • •

CTL semantics in transition systems (contd.) Given $\mathcal{T} = (Q, \Pi, \delta, \pi, q_0)$ and $q \in Q$:

- $q \models \forall \Box \phi$ if for each run ρ in \mathcal{T} starting in q with
 - $\rho = q = q_0 \rightarrow q_1 \rightarrow \ldots \rightarrow q_n \rightarrow \ldots$ (infinite!) we have that $q_n \models \phi$ for all n.
 - In other words, $\rho \models \Box \phi$!
- $q \models \forall (\phi_1 \mathcal{U} \phi_2)$ if for each run ρ in \mathcal{T} starting in q with $\rho = q = q_0 \rightarrow q_1 \rightarrow \ldots \rightarrow q_n \rightarrow \ldots$ there exists $n \ge 0$ with $q_n \models \phi_2$ and for all $0 \le m < n, q_m \models \phi_1$.
 - In other words, $\rho \models \phi_1 \mathcal{U} \phi_2!$

3

イロン イ理 とく ヨン イヨン

Property specification

CNIL

Tout utilisateur peut demander le retrait de ses données...

- How do we interpret peut?
 - $p = \text{demander le retrait...} : \forall \Box \exists \Diamond p$.

Strategy to win a game

Black has a strategy to put the game in a situation from which White king will never get close to Black pawn.

• q = White king never gets close to Black pawn : $\exists \Diamond \forall \Box q$.

Other properties related with choices, like noninterference.

CTL properties on transition systems

Hunter/wolf/goat/cabbage puzzle.

- Does the initial state satisfy $\forall \Diamond (h = 1 \land w = 1 \land g = 1 \land c = 1)$?
- What is the right property that says that the puzzle has a solution?

Deadlock freedom:

- Suppose the states of each process are p_1, p_2, p_3 , resp. q_1, q_2, q_3 .
- Deadlock freedom, i.e. all computations may progress:

$$\forall \Box \bigvee_{1 \leq i \leq 3} (PC_1 = p_i \land \exists \bigcirc PC_1 \neq p_i) \lor \bigvee_{1 \leq i \leq 3} (PC_2 = q_i \land \exists \bigcirc PC_2 \neq q_i)$$

CTL properties on transition systems

Hunter/wolf/goat/cabbage puzzle.

- Does the initial state satisfy $\forall \Diamond (h = 1 \land w = 1 \land g = 1 \land c = 1)$?
- ▶ What is the right property that says that the puzzle has a solution? $\exists \Diamond (h = 1 \land w = 1 \land g = 1 \land c = 1)$
- Deadlock freedom:
 - Suppose the states of each process are p_1, p_2, p_3 , resp. q_1, q_2, q_3 .
 - Deadlock freedom, i.e. all computations may progress:

 $\forall \Box \bigvee_{1 \leq i \leq 3} (PC_1 = p_i \land \exists \bigcirc PC_1 \neq p_i) \lor \bigvee_{1 \leq i \leq 3} (PC_2 = q_i \land \exists \bigcirc PC_2 \neq q_i)$

(日)

CTL properties on transition systems

Hunter/wolf/goat/cabbage puzzle.

- Does the initial state satisfy $\forall \Diamond (h = 1 \land w = 1 \land g = 1 \land c = 1)$?
- ▶ What is the right property that says that the puzzle has a solution? $\exists \Diamond (h = 1 \land w = 1 \land g = 1 \land c = 1)$
- Deadlock freedom:
 - ► Suppose the states of each process are p₁, p₂, p₃, resp. q₁, q₂, q₃.
 - Deadlock freedom, i.e. all computations may progress:

$$\forall \Box \bigvee_{1 \leq i \leq 3} (PC_1 = p_i \land \exists \bigcirc PC_1 \neq p_i) \lor \bigvee_{1 \leq i \leq 3} (PC_2 = q_i \land \exists \bigcirc PC_2 \neq q_i)$$

12/29

Sample tautologies

- Tautology : formula that is true regardless of the truth values given to the atomic propositions.
- Examples:

Formulas which are not tautologies:

$$\forall \Diamond (p \lor q) \leftrightarrow \forall \Diamond p \lor \forall \Diamond q$$

To prove they are not tautologies, give a counter-model!

イロト イポト イヨト イヨト

Minimal set of operators

All CTL formulas can be expressed using the following set of operators :

- Boolean operators (further reducible, e.g., to \land and \neg).
- ∀⊖.
- ♥ U.
- ∀□.

Examples - express the following:

- ∃(*pU q*).
- ∃□*p*.

The dual set of path-temporal operators can also be used as minimal set of operators!

Other (linear) temporal operators: weak until, release

- Weak until pWq: $pWq \equiv pUq \land \Box p$.
- Release $p\mathcal{R}q$: $p\mathcal{R}q \equiv \neg(\neg p\mathcal{U}\neg q)$.
- Can be extended to CTL operators: $\forall p \mathcal{W} q$, $\exists p \mathcal{R} q$, etc.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Fixpoints

Globally, forward, until, release can be defined "inductively":

$$\exists \Diamond p \equiv p \lor \exists \bigcirc \exists \Diamond p \\ \forall \Diamond p \equiv ...? \\ \exists \Box p \equiv ...? \\ \forall \Box p \equiv ...? \\ \exists p \mathcal{U} q \equiv q \lor (p \land \exists \bigcirc (p\mathcal{U} q)) \\ \forall p \mathcal{U} q \equiv ...? \\ \exists p \mathcal{R} q \equiv q \land (p \lor \bigcirc \exists (p\mathcal{R} q)) \end{cases}$$

æ

<ロ> <問> <問> < 回> < 回> < □> < □> <

Remarks on LTL vs. CTL (to be continued!)

- Both LTL and CTL formulas are interpreted over transition systems.
- An LTL formula speaks about what happens on one run that starts in a state.
 - Time passage is determined by some superior entity, choices do not exist and no dilemma about possible continuations exists.
 - A posteriori analysis of the behavior of a system (but behaviors may be infinite!).
- A CTL formula speaks about what could happen in various runs that starts in a state.
 - Time is nondeterministic and choices must be taken into account, good/bad things may happen due to good/bad decisions and continuations depend on them.
 - A priori analysis of the possible evolution of a system.
- Some LTL formulas (but not all!) can be represented as CTL formulas:
 - Checking \[\] p holds at a state q in a transition system requires checking that all runs starting in q satisfy \[\] p.
 - ► Hence, from this state-centered point of view, checking □ p amounts to checking ∀□ p.
 - No longer holds for more complex formulas!
 - Simply because ∀(◊ p ∧ □ q) is not a CTL formula! (→ (=) (

The model-checking problem

- Given a CTL formula ϕ and a finitely presentable model *M*, does $M \models \phi$ hold?
 - Finitely presentable tree = transition system over AP.
 - The tree = the unfolding of A.
- Note the difference with LTL models :
 - A transition system embodies an uncountable set of models for LTL !
 - A transition system embodies a unique model for CTL !

CTL model-checking instances

- Which state satisfies $\exists \Diamond p$?
 - Search for a reachable state labeled with p.
- Which state satisfies $\exists \Box p$?
 - Search for a reachable strongly connected set labeled with p.
 - Only states in this SCC satisfy $\exists \Box p$.

CTL model-checking [Clarke & Emerson]

- State labeling algorithm:
 - Given formula ϕ , **split** Q into Q_{ϕ} and $Q_{\neg\phi}$
 - Structural induction on the syntactic tree of ϕ .
 - Add a new propositional symbol p_{ϕ} for each analyzed ϕ .
 - Label Q_{ϕ} with p_{ϕ} and do not label $Q_{\neg \phi}$ with p_{ϕ} .

A (B) < A (B) < A (B)</p>

CTL model-checking (2)

• For
$$\phi = \forall \bigcirc p$$

$$\mathbf{Q}_{\forall \bigcirc p} = \left\{ q \in \mathbf{Q} \mid \forall q' \in \delta(q), p \in \pi(q') \right\}$$
$$\mathbf{Q}_{\neg \forall \bigcirc p} = \left\{ q \in \mathbf{Q} \mid \exists q' \in \delta(q), p \notin \pi(q') \right\}$$

Example...

æ

ヘロト 人間 とく ヨ とく ヨ とう

CTL model-checking (3)

- $\phi = \exists \Box p.$
 - Q_{∃□p} contains state q iff q is labeled with p and belongs to a circuit containing only p states.

$$\bullet \ \mathsf{Q}_{\neg \exists \, \Box \, \rho} = \mathsf{Q} \setminus \mathsf{Q}_{\exists \, \Box \, \rho}.$$

Example...

æ

CTL model-checking (4)

- $\phi = \exists (p_1 \mathcal{U} p_2)$
 - ► $Q_{\exists (p_1 U p_2)}$ contains state q iff $\exists q' \in Q$ s.t.:

$$\blacktriangleright \ \mathsf{Q}_{\neg\exists(p_1\,\mathcal{U}\,p_2))} = \mathsf{Q}\setminus\mathsf{Q}_{\exists(p_1\,\mathcal{U}\,p_2)}.$$

Example...

æ

イロト イポト イヨト イヨト

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Properties of the (first variant of the) model-checking algorithm

- It seems that the model-checking algorithm requires graph algorithms
 - Successors for ∃ ○.
 - Reachability analysis for $\exists U$.
 - Circuits for $\exists \Box$.
- But could we take advantage of the fixpoint expansions of the temporal operators?

$$\exists \Box p \equiv p \land \exists \bigcirc \exists \Box p$$
$$\exists p \mathcal{U} q \equiv q \lor (p \land \exists \bigcirc (p \mathcal{U} q))$$

- Given a formula ϕ and a transition system $M = (Q, q_0, \delta)$,
- ... denote $Sat_M(\phi)$ the set of states in Q which satisfy ϕ .
- ... and denote $post(q) = \{r \in Q \mid (q, r) \in \delta\}.$

Theorem

Sat(∃(φU ψ)) is the smallest subset T of Q such that:
Sat(ψ) ⊆ T and
If q ∈ Sat(φ) and post(q) ∩ T ≠ Ø then q ∈ T.
Sat(∀□φ) is the largest subset T of Q such that:
Sat(ψ) ⊇ T and
If q ∈ T then post(q) ∩ T ≠ Ø.

The last line can also be read as:

For any
$$q \in Q$$
, if $post(q) \cap T = \emptyset$ then $q \notin T$.

ヘロト ヘ部ト ヘヨト ヘヨト

How to compute $Sat(\exists (\phi \mathcal{U} \psi))$:

Start with $T = Sat(\psi)$.

2 Append q to T if $q \in Sat(\phi)$ and $post(q) \cap T \neq \emptyset$.

- Image: Image:
- How to compute $Sat(\exists \Box \phi)$:
 - Start with $T = Sat(\phi)$.
 - 2 Eliminate, inductively, from T all states for which $post(q) \cap T = \emptyset$.
 - I... until T no longer diminishes.

Examples....

3

 $\exists (\exists \bigcirc q \mathcal{U} \forall \bigcirc p)$

- Compute $Sat(\exists \bigcirc q)$.
- Compute $Sat(\forall \bigcirc p)$.
- Instantiate $T = Sat(\forall \bigcirc p)$.
- Append st to T if $st \in Sat(\exists \bigcirc q)$ and $post(st) \in T$.

 $\exists (\exists \bigcirc q\mathcal{U} \forall \bigcirc p) \qquad \forall (\exists \Diamond p\mathcal{U} \exists \Box q)$

Cătălin Dima (UPEC)

æ

post and pre

How to compute $Sat(\exists \phi \mathcal{U} \psi)$:

- Start with $T = Sat(\psi)$.
- **2** Append q to T if $q \in Sat(\phi)$ and $post(q) \cap T \neq \emptyset$.
- **3** The same with $T := pre(T) \cap Sat(\phi)$.
- 4 Here $pre(T) = \{q \mid \exists r \in Q, (q, r) \in \delta\}.$

How to compute $Sat(\exists \Box \phi)$

- 1 Start with $T = Sat(\phi)$.
- 2 Eliminate, inductively, from T all states for which $post(q) \cap T = \emptyset$.
- 3 The same with $T := \overline{pre}(T) \cap T$
- I Here $\overline{pre}(T) = Q \setminus pre(Q \setminus T)$.
- In other words, $\overline{pre}(T)$ contains all the states whose successors all belong to T.

3

post and pre

How to compute $Sat(\exists \phi \mathcal{U} \psi)$:

- Start with $T = Sat(\psi)$.
- **2** Append q to T if $q \in Sat(\phi)$ and $post(q) \cap T \neq \emptyset$.
- **3** The same with $T := pre(T) \cap Sat(\phi)$.

4 Here $pre(T) = \{q \mid \exists r \in Q, (q, r) \in \delta\}.$

How to compute $Sat(\exists \Box \phi)$:

) Start with
$$T = Sat(\phi)$$
.

2 Eliminate, inductively, from T all states for which $post(q) \cap T = \emptyset$.

3 The same with $T := \overline{pre}(T) \cap T$

In other words, $\overline{pre}(T)$ contains all the states whose successors all belong to T.

э.

イロト 不得 トイヨト イヨト