
CTL, the branching-time temporal logic

Cătălin Dima

Université Paris-Est Créteil

Cătălin Dima (UPEC) CTL 1 / 29

Temporal properties
Safety, termination, mutual exclusion – LTL.

Liveness, reactiveness, responsiveness, infinitely repeated behaviors – LTL.

Available choices, strategies, adversial situations?

CNIL
Tout utilisateur peut demander le retrait de ses données...

How do we interpret peut?

◮ p = demander le retrait...
◮ Then formula = � p??
◮ NO!

Strategy to win a game
Black has a strategy to put the game in a situation from which White king will never get
close to Black pawn.

Not specifiable in LTL either!

Cătălin Dima (UPEC) CTL 2 / 29

Computational Tree Logic (CTL)
Syntax:

Φ ::= p | Φ ∧ Φ | ¬Φ | ∀©Φ | ∀�Φ | ∀(ΦU Φ) | ∃©Φ | ∃�Φ | ∃(ΦU Φ)

Grammar for the logic: the set of formulas is the set of “words” obtained by this
(context-free!) grammar, with Φ viewed as nonterminal.

Syntactic tree for each formula.

◮ ∀, ∃: path quantifier (will see why!).
◮ U ,�,♦: temporal quantifiers.
◮ Alternative notations (for the temporal operators): �φ = Gφ, ♦φ = Fφ,

©φ = Xφ.
◮ Each path quantifier must be followed by a temporal quantifier in the

syntactic tree of each formula.

Sample formula: p ∧ ∃�(¬∀© p ∨ ∀(p U(¬q ∧ ∃© q))).

◮ Draw its syntactic tree!

Strict alternation:

◮ A non-CTL formula p ∧ ∃�(¬∀© p ∨ (p U(¬q ∧ ∃© q))).
◮ ... because the U is not preceded by a path quantifier.

Cătălin Dima (UPEC) CTL 3 / 29

CTL presented

Intuitive meanings:

◮ ∀© p : in any next state p holds.
Regardless of the actions of the “environment”, at the next clock tick p holds.

◮ ∀� p: p will perpetually hold in any continuation from the current state.
Whatever the environment does, p will hold forever.

◮ ∀p U q: in any continuation from the current state q eventually holds, and
until then p must hold.

Cătălin Dima (UPEC) CTL 4 / 29

CTL formulas

Derived operators:

∃©φ = ¬∀©φ

∀♦φ = ∀(trueU φ)

∃�φ = ¬∀♦¬φ

∃♦φ = ¬∀�φ

∃(φU ψ) = ¬∀(¬φU(¬φ ∧ ¬ψ)) ∧ ¬∀�ψ

Some intuitive meanings:

◮ ∃©p: there exists a next state in which p holds.
The environment could make it possible for p to hold at the next clock tick.

◮ ∃� p: there exists a continuation on which p holds perpetually.
◮ ∀♦ p: in all continuations p eventually holds.

There is a guarantee that p must eventually hold, whatever the environment does.

Cătălin Dima (UPEC) CTL 5 / 29

Branching time

The root in the following tree satisfies ∀© p:

p, q pp, r

The root in the following tree satisfies ∃© p:

q pp, r

Cătălin Dima (UPEC) CTL 6 / 29

Branching time, contd.

∀(p U q)

q

q

q

p

p

p q

q

q

p
p

p

∃(p U q)

q

p

p

Cătălin Dima (UPEC) CTL 7 / 29

Transition systems

T = (Q,Π, δ, π, q0) with

Q finite set of states.

Π finite set of atomic propositions.

q0 ∈ Q initial state.

δ ⊆ Q × Q transition relation.

π : Q → 2Π state labeling.

Example: the hunter/wolf/goat/cabbage puzzle.

Nondeterminism: given q ∈ Q, there may exist several r1, r2, . . . ∈ Q with
(q, r1) ∈ δ, (q, r2) ∈ δ

Who chooses wich successor in each state?

◮ CTL answer: the environment does!

Cătălin Dima (UPEC) CTL 8 / 29

CTL semantics in transition systems
Recursively interpret each CTL formula in each state of the system

Given T = (Q,Π, δ, π, q0) and q ∈ Q:

q |= p if p ∈ π(q).

q |= φ1 ∧ φ2 if....

q |= ¬φ if...

q |= ∀©φ if for all r ∈ Q with (q, r) ∈ δ, r |= φ. Example:

Cătălin Dima (UPEC) CTL 9 / 29

CTL semantics in transition systems
Recursively interpret each CTL formula in each state of the system

Given T = (Q,Π, δ, π, q0) and q ∈ Q:

q |= p if p ∈ π(q).

q |= φ1 ∧ φ2 if....

q |= ¬φ if...

q |= ∀©φ if for all r ∈ Q with (q, r) ∈ δ, r |= φ. Example:

p, q pp, r

Cătălin Dima (UPEC) CTL 9 / 29

CTL semantics in transition systems (contd.)
Given T = (Q,Π, δ, π, q0) and q ∈ Q:

q |= ∀�φ if for each run ρ in T starting in q with
ρ = q = q0 → q1 → . . .→ qn → . . . (infinite!) we have that qn |= φ for all n.

◮ In other words, ρ |= �φ!

q |= ∀(φ1Uφ2) if for each run ρ in T starting in q with
ρ = q = q0 → q1 → . . .→ qn → . . . there exists n ≥ 0 with qn |= φ2 and for all
0 ≤ m < n, qm |= φ1.

◮ In other words, ρ |= φ1 U φ2!

∀(p U q)

q

q

q

p

p

p q

q

q

p
p

p

Cătălin Dima (UPEC) CTL 10 / 29

Property specification

CNIL
Tout utilisateur peut demander le retrait de ses données...

How do we interpret peut?

◮ p = demander le retrait... : ∀� ∃♦ p.

Strategy to win a game
Black has a strategy to put the game in a situation from which White king will never get
close to Black pawn.

q = White king never gets close to Black pawn : ∃♦ ∀� q.

Other properties related with choices, like noninterference.

Cătălin Dima (UPEC) CTL 11 / 29

CTL properties on transition systems

Hunter/wolf/goat/cabbage puzzle.

◮ Does the initial state satisfy ∀♦(h = 1 ∧ w = 1 ∧ g = 1 ∧ c = 1)?
◮ What is the right property that says that the puzzle has a solution?

Deadlock freedom:

◮ Suppose the states of each process are p1, p2, p3, resp. q1, q2, q3.
◮ Deadlock freedom, i.e. all computations may progress:

∀�
∨

1≤i≤3

(PC1 = pi ∧ ∃©PC1 6= pi) ∨
∨

1≤i≤3

(PC2 = qi ∧ ∃©PC2 6= qi)

Cătălin Dima (UPEC) CTL 12 / 29

CTL properties on transition systems

Hunter/wolf/goat/cabbage puzzle.

◮ Does the initial state satisfy ∀♦(h = 1 ∧ w = 1 ∧ g = 1 ∧ c = 1)?
◮ What is the right property that says that the puzzle has a solution?

∃♦(h = 1 ∧ w = 1 ∧ g = 1 ∧ c = 1)

Deadlock freedom:

◮ Suppose the states of each process are p1, p2, p3, resp. q1, q2, q3.
◮ Deadlock freedom, i.e. all computations may progress:

∀�
∨

1≤i≤3

(PC1 = pi ∧ ∃©PC1 6= pi) ∨
∨

1≤i≤3

(PC2 = qi ∧ ∃©PC2 6= qi)

Cătălin Dima (UPEC) CTL 12 / 29

CTL properties on transition systems

Hunter/wolf/goat/cabbage puzzle.

◮ Does the initial state satisfy ∀♦(h = 1 ∧ w = 1 ∧ g = 1 ∧ c = 1)?
◮ What is the right property that says that the puzzle has a solution?

∃♦(h = 1 ∧ w = 1 ∧ g = 1 ∧ c = 1)

Deadlock freedom:

◮ Suppose the states of each process are p1, p2, p3, resp. q1, q2, q3.
◮ Deadlock freedom, i.e. all computations may progress:

∀�
∨

1≤i≤3

(PC1 = pi ∧ ∃©PC1 6= pi) ∨
∨

1≤i≤3

(PC2 = qi ∧ ∃©PC2 6= qi)

Cătălin Dima (UPEC) CTL 12 / 29

Sample tautologies

Tautology : formula that is true regardless of the truth values given to the atomic
propositions.

Examples:

¬∀© p ↔ ∃©¬p

∀© p → ∀♦ p

∃♦ ∃♦ p → ∃♦ p

∀�(p ∧ q) ↔ ∀� p ∧ ∀� q

(∃♦ p → ∃♦ q) → ∃♦(p → q)

Formulas which are not tautologies:

∀♦(p ∨ q) ↔ ∀♦ p ∨ ∀♦ q

To prove they are not tautologies, give a counter-model!

Cătălin Dima (UPEC) CTL 13 / 29

Minimal set of operators

All CTL formulas can be expressed using the following set of operators :

Boolean operators (further reducible, e.g., to ∧ and ¬).

∀©.

∀U .

∀�.

Examples – express the following:

∃(p U q).

∃� p.

The dual set of path-temporal operators can also be used as minimal set of operators!

Cătălin Dima (UPEC) CTL 14 / 29

Other (linear) temporal operators: weak until, release

Weak until p W q: p W q ≡ p U q ∧� p.

Release pRq: p R q ≡ ¬(¬p U ¬q).

Can be extended to CTL operators: ∀p W q, ∃p R q, etc.

Cătălin Dima (UPEC) CTL 15 / 29

Fixpoints

Globally, forward, until, release can be defined “inductively”:

∃♦ p ≡ p ∨ ∃©∃♦ p

∀♦ p ≡ ...?

∃� p ≡ ...?

∀� p ≡ ...?

∃p U q ≡ q ∨
(

p ∧ ∃©(p U q)
)

∀p U q ≡ ...?

∃p R q ≡ q ∧
(

p ∨©∃(p R q)
)

Cătălin Dima (UPEC) CTL 16 / 29

Remarks on LTL vs. CTL (to be continued!)
Both LTL and CTL formulas are interpreted over transition systems.

An LTL formula speaks about what happens on one run that starts in a state.
◮ Time passage is determined by some superior entity, choices do

not exist and no dilemma about possible continuations exists.
◮ A posteriori analysis of the behavior of a system (but behaviors may

be infinite!).
A CTL formula speaks about what could happen in various runs that starts in a
state.

◮ Time is nondeterministic and choices must be taken into account,
good/bad things may happen due to good/bad decisions and continuations
depend on them.

◮ A priori analysis of the possible evolution of a system.
Some LTL formulas (but not all!) can be represented as CTL formulas:

◮ Checking � p holds at a state q in a transition system requires checking
that all runs starting in q satisfy � p.

◮ Hence, from this state-centered point of view, checking � p amounts to
checking ∀� p.

◮ No longer holds for more complex formulas!
◮ Simply because ∀(♦ p ∧� q) is not a CTL formula!
◮ Each path quantifier must be followed by a temporal quantifier in the

syntactic tree of the formula!
Cătălin Dima (UPEC) CTL 17 / 29

The model-checking problem

Given a CTL formula φ and a finitely presentable model M, does M |= φ hold?

◮ Finitely presentable tree = transition system over AP.
◮ The tree = the unfolding of A.

Note the difference with LTL models :

◮ A transition system embodies an uncountable set of models for LTL !
◮ A transition system embodies a unique model for CTL !

Cătălin Dima (UPEC) CTL 18 / 29

CTL model-checking instances

p

Which state satisfies ∃♦ p?

◮ Search for a reachable state labeled with p.

Which state satisfies ∃� p?

◮ Search for a reachable strongly connected set labeled with p.
◮ Only states in this SCC satisfy ∃� p.

Cătălin Dima (UPEC) CTL 19 / 29

CTL model-checking [Clarke & Emerson]

State labeling algorithm:

◮ Given formula φ, split Q into Qφ and Q¬φ

◮ Structural induction on the syntactic tree of φ.
◮ Add a new propositional symbol pφ for each analyzed φ.
◮ Label Qφ with pφ and do not label Q¬φ with pφ.

Cătălin Dima (UPEC) CTL 20 / 29

CTL model-checking (2)

For φ = ∀© p

Q∀© p =
{

q ∈ Q | ∀q′ ∈ δ(q), p ∈ π(q′)
}

Q¬∀© p =
{

q ∈ Q | ∃q′ ∈ δ(q), p 6∈ π(q′)
}

Example...

Cătălin Dima (UPEC) CTL 21 / 29

CTL model-checking (3)

φ = ∃� p.

◮ Q∃� p contains state q iff q is labeled with p and belongs to a circuit
containing only p states.

◮ Q¬∃� p = Q \ Q∃� p.

Example...

Cătălin Dima (UPEC) CTL 22 / 29

CTL model-checking (4)

φ = ∃(p1 U p2)

◮ Q∃(p1 U p2) contains state q iff ∃q′ ∈ Q s.t.:

⋆

p1

p2

q′q

◮ Q¬∃(p1 U p2)) = Q \ Q∃(p1 U p2).

Example...

Cătălin Dima (UPEC) CTL 23 / 29

CTL model-checking example

p p, q

p, q p p

p p, q

∃� p ∀� p

∃p U q ∀p U q ∃©∀© p

Cătălin Dima (UPEC) CTL 24 / 29

Properties of the (first variant of the) model-checking
algorithm

It seems that the model-checking algorithm requires graph algorithms

◮ Successors for ∃©.
◮ Reachability analysis for ∃U .
◮ Circuits for ∃�.

But could we take advantage of the fixpoint expansions of the temporal
operators?

∃� p ≡ p ∧ ∃©∃� p

∃p U q ≡ q ∨
(

p ∧ ∃©(p U q)
)

Cătălin Dima (UPEC) CTL 25 / 29

Fixpoint variant of the model-checking algorithm

Given a formula φ and a transition system M = (Q, q0, δ),

... denote SatM(φ) the set of states in Q which satisfy φ.

... and denote post(q) = {r ∈ Q | (q, r) ∈ δ}.

Theorem
Sat(∃(φU ψ)) is the smallest subset T of Q such that:

1 Sat(ψ) ⊆ T and
2 If q ∈ Sat(φ) and post(q) ∩ T 6= ∅ then q ∈ T .

Sat(∀�φ) is the largest subset T of Q such that:

3 Sat(ψ) ⊇ T and
4 If q ∈ T then post(q) ∩ T 6= ∅.

The last line can also be read as:

4 For any q ∈ Q, if post(q) ∩ T = ∅ then q 6∈ T .

Cătălin Dima (UPEC) CTL 26 / 29

Fixpoint variant of the model-checking algorithm

How to compute Sat(∃(φU ψ)):

1 Start with T = Sat(ψ).

2 Append q to T if q ∈ Sat(φ) and post(q) ∩ T 6= ∅.

3 until T no longer grows.

How to compute Sat(∃�φ):

1 Start with T = Sat(φ).

2 Eliminate, inductively, from T all states for which post(q) ∩ T = ∅.

3 ... until T no longer diminishes.

Examples....

Cătălin Dima (UPEC) CTL 27 / 29

Fixpoint variant of the model-checking algorithm

p p, q

p, q p p

p p, q

∃(∃© q U ∀© p)

Compute Sat(∃© q).

Compute Sat(∀© p).

Instantiate T = Sat(∀© p).

Append st to T if st ∈ Sat(∃© q) and post(st) ∈ T .

Cătălin Dima (UPEC) CTL 28 / 29

Fixpoint variant of the model-checking algorithm

p p, q

p, q p p

p p, q

∃(∃© q U ∀© p) ∀(∃♦ p U ∃� q)

Cătălin Dima (UPEC) CTL 28 / 29

post and pre

How to compute Sat(∃φU ψ):

1 Start with T = Sat(ψ).

2 Append q to T if q ∈ Sat(φ) and post(q) ∩ T 6= ∅.

3 The same with T := pre(T) ∩ Sat(φ).

4 Here pre(T) = {q | ∃r ∈ Q, (q, r) ∈ δ}.

How to compute Sat(∃�φ):

1 Start with T = Sat(φ).

2 Eliminate, inductively, from T all states for which post(q) ∩ T = ∅.

3 The same with T := pre(T) ∩ T

4 Here pre(T) = Q \ pre(Q \ T).

5 In other words, pre(T) contains all the states whose successors all belong to T .

Cătălin Dima (UPEC) CTL 29 / 29

post and pre

How to compute Sat(∃φU ψ):

1 Start with T = Sat(ψ).

2 Append q to T if q ∈ Sat(φ) and post(q) ∩ T 6= ∅.

3 The same with T := pre(T) ∩ Sat(φ).

4 Here pre(T) = {q | ∃r ∈ Q, (q, r) ∈ δ}.

How to compute Sat(∃�φ):

1 Start with T = Sat(φ).

2 Eliminate, inductively, from T all states for which post(q) ∩ T = ∅.

3 The same with T := pre(T) ∩ T

4 Here pre(T) = Q \ pre(Q \ T).

5 In other words, pre(T) contains all the states whose successors all belong to T .

Cătălin Dima (UPEC) CTL 29 / 29

