Temporal Logic of Knowledge and its applications in security

Cătălin Dima

LACL, Université Paris 12

8/12/2006

Cătălin Dima TLK & Security

イロト イポト イヨト イヨト 三日

Preliminaries

- The muddy children puzzle
- Logics of knowledge and security

2 The bases

- Syntax and semantics
- Knowledge and time
- Types of temporal knowledge
- Axiomatics and decidability issues

Showledge and information flow

Classical information flow properties

Preliminaries

- The muddy children puzzle
- Logics of knowledge and security

2 The bases

- Syntax and semantics
- Knowledge and time
- Types of temporal knowledge
- Axiomatics and decidability issues
- 3 Knowledge and information flow
 - Classical information flow properties

- *n* children play together outside,
- None wants to get dirty (Dad punishes!), but would like to see the others dirty! (kids...)
- It happens that, at some moment, *k* of them get mud on their foreheads
 - ... so each of them cannot see if he's dirty or not!
 - ... and none signals anything to anybody who's dirty!
- Mum comes into the room and says At least one of you has mud on his forehead
- Then she asks everybody: Does anyone of you know whether you're dirty?
- Assuming that all children are intelligent, perceptive and truthful (!), what happens?

- *n* children play together outside,
- None wants to get dirty (Dad punishes!), but would like to see the others dirty! (kids...)
- It happens that, at some moment, k of them get mud on their foreheads
 - ... so each of them cannot see if he's dirty or not!
 - ... and none signals anything to anybody who's dirty!
- Mum comes into the room and says At least one of you has mud on his forehead
- Then she asks everybody: Does anyone of you know whether you're dirty?
- Assuming that all children are intelligent, perceptive and truthful (!), what happens?

- *n* children play together outside,
- None wants to get dirty (Dad punishes!), but would like to see the others dirty! (kids...)
- It happens that, at some moment, k of them get mud on their foreheads
 - ... so each of them cannot see if he's dirty or not!
 - ... and none signals anything to anybody who's dirty!
- Mum comes into the room and says At least one of you has mud on his forehead
- Then she asks everybody: Does anyone of you know whether you're dirty?
- Assuming that all children are intelligent, perceptive and truthful (!), what happens?

- *n* children play together outside,
- None wants to get dirty (Dad punishes!), but would like to see the others dirty! (kids...)
- It happens that, at some moment, k of them get mud on their foreheads
 - ... so each of them cannot see if he's dirty or not!
 - ... and none signals anything to anybody who's dirty!
- Mum comes into the room and says At least one of you has mud on his forehead
- Then she asks everybody: Does anyone of you know whether you're dirty?
- Assuming that all children are intelligent, perceptive and truthful (!), what happens?

- There is a "formal" proof that
 - the first k 1 times Mum asks her question, all will say No, but
 - the *k*th time she asks her question, exactly those children with muddy foreheads will say Yes, I am dirty!
- Proof: by induction on *k*:
 - For k = 1 it's obvious (ain't it?).
 - For k = 2, the first time everybody says No.
 - ... but then everybody will notice that the two muddy children do not know they are dirty.
 - Hence muddy *a* concludes that, since muddy *b* does not deduce that he's the only one to be dirty, he must have seen mud on someone else's forehead.
 - So it must be his (*a*'s) own forehead that was muddy!
 - Generalize the reasoning!

- There is a "formal" proof that
 - the first k 1 times Mum asks her question, all will say No, but
 - the *k*th time she asks her question, exactly those children with muddy foreheads will say Yes, I am dirty!
- Proof: by induction on *k*:
 - For k = 1 it's obvious (ain't it?).
 - For k = 2, the first time everybody says No.
 - ... but then everybody will notice that the two muddy children do not know they are dirty.
 - Hence muddy a concludes that, since muddy b does not deduce that he's the only one to be dirty, he must have seen mud on someone else's forehead.
 - So it must be his (*a*'s) own forehead that was muddy!
 - Generalize the reasoning!

- There is a "formal" proof that
 - the first k 1 times Mum asks her question, all will say No, but
 - the *k*th time she asks her question, exactly those children with muddy foreheads will say Yes, I am dirty!
- Proof: by induction on *k*:
 - For k = 1 it's obvious (ain't it?).
 - For k = 2, the first time everybody says No.
 - ... but then everybody will notice that the two muddy children do not know they are dirty.
 - Hence muddy a concludes that, since muddy b does not deduce that he's the only one to be dirty, he must have seen mud on someone else's forehead.
 - So it must be his (*a*'s) own forehead that was muddy!
 - Generalize the reasoning!

(日)

- There is a "formal" proof that
 - the first k 1 times Mum asks her question, all will say No, but
 - the *k*th time she asks her question, exactly those children with muddy foreheads will say Yes, I am dirty!
- Proof: by induction on *k*:
 - For k = 1 it's obvious (ain't it?).
 - For k = 2, the first time everybody says No.
 - ... but then everybody will notice that the two muddy children do not know they are dirty.
 - Hence muddy a concludes that, since muddy b does not deduce that he's the only one to be dirty, he must have seen mud on someone else's forehead.
 - So it must be his (*a*'s) own forehead that was muddy!
 - Generalize the reasoning!

(日)

- There is a "formal" proof that
 - the first k 1 times Mum asks her question, all will say No, but
 - the *k*th time she asks her question, exactly those children with muddy foreheads will say Yes, I am dirty!
- Proof: by induction on *k*:
 - For k = 1 it's obvious (ain't it?).
 - For k = 2, the first time everybody says No.
 - ... but then everybody will notice that the two muddy children do not know they are dirty.
 - Hence muddy *a* concludes that, since muddy *b* does not deduce that he's the only one to be dirty, he must have seen mud on someone else's forehead.
 - So it must be his (*a*'s) own forehead that was muddy!
 - Generalize the reasoning!

- There is a "formal" proof that
 - the first k 1 times Mum asks her question, all will say No, but
 - the *k*th time she asks her question, exactly those children with muddy foreheads will say Yes, I am dirty!
- Proof: by induction on *k*:
 - For k = 1 it's obvious (ain't it?).
 - For k = 2, the first time everybody says No.
 - ... but then everybody will notice that the two muddy children do not know they are dirty.
 - Hence muddy *a* concludes that, since muddy *b* does not deduce that he's the only one to be dirty, he must have seen mud on someone else's forehead.
 - So it must be his (a's) own forehead that was muddy!
 - Generalize the reasoning!

・ロト ・聞 ト ・ 国 ト ・ 国 ト

- There is a "formal" proof that
 - the first k 1 times Mum asks her question, all will say No, but
 - the *k*th time she asks her question, exactly those children with muddy foreheads will say Yes, I am dirty!
- Proof: by induction on *k*:
 - For k = 1 it's obvious (ain't it?).
 - For k = 2, the first time everybody says No.
 - ... but then everybody will notice that the two muddy children do not know they are dirty.
 - Hence muddy *a* concludes that, since muddy *b* does not deduce that he's the only one to be dirty, he must have seen mud on someone else's forehead.
 - So it must be his (a's) own forehead that was muddy!
 - Generalize the reasoning!

・ロト・(部・・モト・モ・・モ

Muddy children and knowledge

- All children do their reasoning provided they know some properties...
- ... and deduce (know) later that the others do not know some other properties.
- Mum's questions serve as synchronization steps.
- Without these, there could be no way for children to achieve their deductions!
- Step k + 1 also represents the convergence of the system to common knowledge.
 - That is, everybody knows that everybody knows that everybody knows that that *a*₁ ... *a*_k are dirty

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Why studying logics of knowledge?

- Epistemic logics are important in multi-agent systems.
 - Originally developed for AI.
- Security analysis involves at least two agents: the legitimate user(s) and the intruder(s).
- In security protocol analysis, we speak about intruder knowledge!
- Information flow analysis also is concerned with the information an agent gains about security levels to which he is not authorized to access.
 - Information is closely related to knowledge.

The muddy children puzzle Logics of knowledge and security

< ロ > < 同 > < 回 > < 回 > .

3

What characterizes a logic?

- Its syntax.
- Its semantics.
- Its axiomatic system.
- The possibility to "mechanicise" the deduction = decidability of various decision problems.
- Various interesting extensions.
- Applications in the study of information flow.

< □ > < 同 >

Preliminaries

- The muddy children puzzle
- Logics of knowledge and security

The bases

- Syntax and semantics
- Knowledge and time
- Types of temporal knowledge
- Axiomatics and decidability issues
- Knowledge and information flow
 - Classical information flow properties

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

< ロ > < 同 > < 回 > < 回 > .

- *n* agent system call them 1, 2, ..., n.
- $K_i \phi$: agent *i* knows formula ϕ .
- Examples:
 - *n* children play their muddy forehead game.
 - p_2 : child *i* has mud on his forehead.
 - K₄p₂ : child 4 knows that child 2 is muddy.
 - $K_1(K_4p_2 \wedge p_1)$:
 - child 1 knows that child 2 knows that 2 is muddy...
 - ... and also knows that he himself is muddy!
- All the other boolean operators: $\land, \lor, \neg, \rightarrow \dots$
- Temporal operators will be added later!

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

< ロ > < 同 > < 回 > < 回 > .

- *n* agent system call them $1, 2, \ldots, n$.
- $K_i \phi$: agent *i* knows formula ϕ .
- Examples:
 - n children play their muddy forehead game.
 - p_2 : child *i* has mud on his forehead.
 - K₄p₂ : child 4 knows that child 2 is muddy.
 - $I K_1(K_4p_2 \wedge p_1)$:
 - child 1 knows that child 2 knows that 2 is muddy...
 - ... and also knows that he himself is muddy!
- All the other boolean operators: $\land, \lor, \neg, \rightarrow \dots$
- Temporal operators will be added later!

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

< 日 > < 同 > < 回 > < 回 > < □ > <

Basic knowledge operators

- *n* agent system call them $1, 2, \ldots, n$.
- $K_i \phi$: agent *i* knows formula ϕ .
- Examples:
 - n children play their muddy forehead game.
 - 2 p_2 : child *i* has mud on his forehead.

 K_4p_2 : child 4 knows that child 2 is muddy.

 $K_1(K_4p_2 \wedge p_1)$

- child 1 knows that child 2 knows that 2 is muddy...
- ... and also knows that he himself is muddy!
- All the other boolean operators: $\land, \lor, \neg, \rightarrow \dots$
- Temporal operators will be added later!

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

< 日 > < 同 > < 回 > < 回 > < □ > <

- *n* agent system call them $1, 2, \ldots, n$.
- $K_i \phi$: agent *i* knows formula ϕ .
- Examples:
 - n children play their muddy forehead game.
 - 2 p_2 : child *i* has mud on his forehead.
 - Solution K_4p_2 : child 4 knows that child 2 is muddy.
 - $K_1(K_4p_2 \wedge p_1)$
 - child 1 knows that child 2 knows that 2 is muddy...
 - ... and also knows that he himself is muddy!
- All the other boolean operators: $\land, \lor, \neg, \rightarrow \dots$
- Temporal operators will be added later!

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

- *n* agent system call them $1, 2, \ldots, n$.
- $K_i \phi$: agent *i* knows formula ϕ .
- Examples:
 - n children play their muddy forehead game.
 - 2 p_2 : child *i* has mud on his forehead.
 - Solution K_4p_2 : child 4 knows that child 2 is muddy.
 - $K_1(K_4p_2 \wedge p_1)$:
 - child 1 knows that child 2 knows that 2 is muddy...
 - ... and also knows that he himself is muddy!
- All the other boolean operators: $\land, \lor, \neg, \rightarrow \dots$
- Temporal operators will be added later!

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

< 日 > < 同 > < 回 > < 回 > < □ > <

- *n* agent system call them $1, 2, \ldots, n$.
- $K_i \phi$: agent *i* knows formula ϕ .
- Examples:
 - n children play their muddy forehead game.
 - 2 p_2 : child *i* has mud on his forehead.
 - Solution K_4p_2 : child 4 knows that child 2 is muddy.
 - $K_1(K_4p_2 \wedge p_1)$:
 - child 1 knows that child 2 knows that 2 is muddy...
 - ... and also knows that he himself is muddy!
- All the other boolean operators: $\land,\lor,\neg,\rightarrow\ldots$
- Temporal operators will be added later!

Possible worlds model: Kripke structure for *n* agents: $M = (S, \Pi, \pi, \mathcal{K}_1, \dots, \mathcal{K}_n).$

- S the set of global states.
 - Sometimes $S = S_1 \times \ldots \times S_n$.
 - $S_i =$ local states for agent *i*.
- Π set of primitive propositions (like p_2 : child *i* is muddy).
- $\pi: S \to 2^{\Pi}$ truth value for each primite proposition in each state.
- *K_i* the indistinguishibility relation (also called the *possibility* relation).
 - *K_i(s, s')* = for agent *i*, states *s* and *s'* cannot be distinguished by prior observation – i.e., according to *i*'s knowledge!
 - Very often K_i are reflexive, symmetric & transitive i.e.
 equivalence relations.

Possible worlds model: Kripke structure for *n* agents:

- $M = (S, \Pi, \pi, \mathcal{K}_1, \ldots, \mathcal{K}_n).$
 - S the set of global states.
 - Sometimes $S = S_1 \times \ldots \times S_n$.
 - $S_i = \text{local states for agent } i$.

• Π – set of primitive propositions (like p_2 : child *i* is muddy).

- $\pi: S \to 2^{\Pi}$ truth value for each primite proposition in each state.
- \mathcal{K}_i the indistinguishibility relation (also called the *possibility* relation).
 - *K_i(s, s')* = for agent *i*, states *s* and *s'* cannot be distinguished by prior observation – i.e., according to *i*'s knowledge!
 - Very often K_i are reflexive, symmetric & transitive i.e.
 equivalence relations.

Possible worlds model: Kripke structure for *n* agents:

$$\boldsymbol{M} = (\boldsymbol{S}, \boldsymbol{\Pi}, \boldsymbol{\pi}, \boldsymbol{\mathcal{K}}_1, \dots, \boldsymbol{\mathcal{K}}_n).$$

- S the set of global states.
 - Sometimes $S = S_1 \times \ldots \times S_n$.
 - $S_i = \text{local states}$ for agent *i*.
- Π set of primitive propositions (like p_2 : child *i* is muddy).
- $\pi: S \to 2^{\Pi}$ truth value for each primite proposition in each state.
- *K_i* the indistinguishibility relation (also called the *possibility* relation).
 - *K_i(s, s')* = for agent *i*, states *s* and *s'* cannot be distinguished by prior observation – i.e., according to *i*'s knowledge!
 - Very often K_i are reflexive, symmetric & transitive i.e.
 equivalence relations.

Possible worlds model: Kripke structure for *n* agents:

$$\boldsymbol{M} = (\boldsymbol{S}, \boldsymbol{\Pi}, \boldsymbol{\pi}, \boldsymbol{\mathcal{K}}_1, \dots, \boldsymbol{\mathcal{K}}_n).$$

- S the set of global states.
 - Sometimes $S = S_1 \times \ldots \times S_n$.
 - $S_i = \text{local states}$ for agent *i*.
- Π set of primitive propositions (like p_2 : child *i* is muddy).
- $\pi: S \to 2^{\Pi}$ truth value for each primite proposition in each state.
- *K_i* the indistinguishibility relation (also called the *possibility* relation).
 - *K_i(s, s')* = for agent *i*, states *s* and *s'* cannot be distinguished by prior observation – i.e., according to *i*'s knowledge!
 - Very often K_i are reflexive, symmetric & transitive i.e.
 equivalence relations.

Possible worlds model: Kripke structure for *n* agents:

- $M = (S, \Pi, \pi, \mathcal{K}_1, \ldots, \mathcal{K}_n).$
 - S the set of global states.
 - Sometimes $S = S_1 \times \ldots \times S_n$.
 - $S_i = \text{local states}$ for agent *i*.
 - Π set of primitive propositions (like p_2 : child *i* is muddy).
 - $\pi: S \to 2^{\Pi}$ truth value for each primite proposition in each state.
 - *K_i* the indistinguishibility relation (also called the *possibility* relation).
 - *K_i(s, s')* = for agent *i*, states *s* and *s'* cannot be distinguished by prior observation – i.e., according to *i*'s knowledge!
 - Very often \mathcal{K}_i are reflexive, symmetric & transitive i.e. equivalence relations.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロン・雪と・雪と、 ヨン・

3

- Semantics of formulas: evaluated at each state s:
 - $(M, s) \models \phi$: formula ϕ holds at state s.
- $(M, s) \models p$ iff $p_2 \in \pi(s)$.
- $(M, s) \models \phi_1 \land \phi_2$ iff
- $(M, s) \models K_i \phi$ iff $(M, s') \models \phi$ for all s' with $\mathcal{K}_i(s, s')$.
 - ϕ is a formula that is acquired by *i*.
 - All observations bring *i* to consider that ϕ must hold.
- Notation: $M \models \phi$ iff $(M, s) \models \phi$ for all $s \in S$.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロト・(部・・モト・モ・・モ

- Semantics of formulas: evaluated at each state s:
 - $(M, s) \models \phi$: formula ϕ holds at state s.
- $(M, s) \models p$ iff $p_2 \in \pi(s)$.
- $(M, s) \models \phi_1 \land \phi_2$ iff
- $(M, s) \models K_i \phi$ iff $(M, s') \models \phi$ for all s' with $\mathcal{K}_i(s, s')$.
 - ϕ is a formula that is acquired by *i*.
 - All observations bring *i* to consider that ϕ must hold.
- Notation: $M \models \phi$ iff $(M, s) \models \phi$ for all $s \in S$.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロト・(部・・モト・モ・・モ

- Semantics of formulas: evaluated at each state s:
 - $(M, s) \models \phi$: formula ϕ holds at state s.
- $(M, s) \models p \text{ iff } p_2 \in \pi(s).$
- (*M*, *s*) ⊨ φ₁ ∧ φ₂ iff
- $(M, s) \models K_i \phi$ iff $(M, s') \models \phi$ for all s' with $\mathcal{K}_i(s, s')$.
 - ϕ is a formula that is acquired by *i*.
 - All observations bring *i* to consider that ϕ must hold.
- Notation: $M \models \phi$ iff $(M, s) \models \phi$ for all $s \in S$.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロト・(部・・モト・モ・・モ

- Semantics of formulas: evaluated at each state s:
 - $(M, s) \models \phi$: formula ϕ holds at state s.

•
$$(M, s) \models p$$
 iff $p_2 \in \pi(s)$.

- $(M, s) \models \phi_1 \land \phi_2$ iff $(M, s) \models \phi_1$ and $(M, s) \models \phi_2$.
- $(M, s) \models K_i \phi$ iff $(M, s') \models \phi$ for all s' with $\mathcal{K}_i(s, s')$.
 - ϕ is a formula that is acquired by *i*.
 - All observations bring *i* to consider that ϕ must hold.
- Notation: $M \models \phi$ iff $(M, s) \models \phi$ for all $s \in S$.

・ロト・(部・・モト・モ・・モ

- Semantics of formulas: evaluated at each state s:
 - $(M, s) \models \phi$: formula ϕ holds at state s.

•
$$(M, s) \models p$$
 iff $p_2 \in \pi(s)$.

- $(M, s) \models \phi_1 \land \phi_2$ iff $(M, s) \models \phi_1$ and $(M, s) \models \phi_2$.
- $(M, s) \models K_i \phi$ iff $(M, s') \models \phi$ for all s' with $\mathcal{K}_i(s, s')$.
 - ϕ is a formula that is acquired by *i*.
 - All observations bring *i* to consider that ϕ must hold.
- Notation: $M \models \phi$ iff $(M, s) \models \phi$ for all $s \in S$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ・

Muddy children – original situation

- Kripke structure $M_{mud} = (S, \Pi, \pi, \mathcal{K}_i)$ for *n* agents.
- "Local state" for agent *i*: $S_i = \{0, 1\}$ (muddy or not!).
- $S = S_1 \times \ldots S_n$ that is, 2^n initial situations.
 - A "global state" is composed of "local states":
 s = (s₁,..., s_n).
- $\Pi = \{p_1, \ldots, p_n\}.$

• $(M_{mud}, s) \models p_3$ iff $s_3 = 1$.

- $\mathcal{K}_i(s, s')$ iff $s_j = s'_j$ for all $j \neq i$.
 - "Hypercube" representation of *M_{mud}*.
- What are the states where $(M_{mud}, s) \models K_1 p_2$?

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Muddy children – original situation

- Kripke structure $M_{mud} = (S, \Pi, \pi, \mathcal{K}_i)$ for *n* agents.
- "Local state" for agent *i*: $S_i = \{0, 1\}$ (muddy or not!).
- $S = S_1 \times \ldots S_n$ that is, 2^n initial situations.
 - A "global state" is composed of "local states":
 s = (s₁,..., s_n).

•
$$\Pi = \{p_1, \ldots, p_n\}.$$

•
$$(M_{mud}, s) \models p_3$$
 iff $s_3 = 1$.

- $\mathcal{K}_i(s, s')$ iff $s_j = s'_j$ for all $j \neq i$.
 - "Hypercube" representation of *M_{mud}*.
- What are the states where $(M_{mud}, s) \models K_1 p_2$?
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Muddy children – original situation

- Kripke structure $M_{mud} = (S, \Pi, \pi, \mathcal{K}_i)$ for *n* agents.
- "Local state" for agent *i*: $S_i = \{0, 1\}$ (muddy or not!).
- $S = S_1 \times \ldots S_n$ that is, 2^n initial situations.
 - A "global state" is composed of "local states":
 s = (s₁,..., s_n).
- $\Pi = \{p_1, \ldots, p_n\}.$
 - $(M_{mud}, s) \models p_3$ iff $s_3 = 1$.
- $\mathcal{K}_i(s, s')$ iff $s_j = s'_j$ for all $j \neq i$.
 - "Hypercube" representation of *M_{mud}*.
- What are the states where $(M_{mud}, s) \models K_1 p_2$?

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Muddy children – original situation

- Kripke structure $M_{mud} = (S, \Pi, \pi, \mathcal{K}_i)$ for *n* agents.
- "Local state" for agent *i*: $S_i = \{0, 1\}$ (muddy or not!).
- $S = S_1 \times \ldots S_n$ that is, 2^n initial situations.
 - A "global state" is composed of "local states":
 s = (s₁,..., s_n).
- $\Pi = \{p_1, \dots, p_n\}.$ • $(M_{mud}, s) \models p_3 \text{ iff } s_3 = 1.$
- $\mathcal{K}_i(s, s')$ iff $s_j = s'_i$ for all $j \neq i$.
 - "Hypercube" representation of *M_{mud}*.
- What are the states where $(M_{mud}, s) \models K_1 p_2$?

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Other knowledge operators

- *i* considers ϕ possible $P_i \phi$
 - $(M, s) \models P_i \phi$ iff $(M, s') \models \phi$ for some s' with $\mathcal{K}_i(s, s')$.
- Everybody in the group *G* knows $\phi E_G \phi \phi$

• $(M, s) \models E_G \phi$ iff $(M, s) \models K_i \phi$ for all $i \in G$.

• Distributed knowledge of ϕ within a group : $D_G \phi$

- Common knowledge of ϕ within a group $G: C_G \phi$
 - $(M, s) \models C_G \phi$ iff $(M, s) \models E_G^k \phi$ for all k.
 - That is, each agent knows that each other agent knows that knows that ϕ holds.
 - Stronger than *E_G* and distributed knowledge!
- What about *P*₂*p*₂, *E*_{1,2}*p*₂, *E*_{1,2}*p*₃, *D*_{1,2}*p*₃, *C*_{1,2}*p*₃ in *M*_{mud}?

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

(日)

Other knowledge operators

• *i* considers ϕ possible – $P_i\phi$ –

• $(M, s) \models P_i \phi$ iff $(M, s') \models \phi$ for some s' with $\mathcal{K}_i(s, s')$.

• Everybody in the group G knows $\phi - E_G \phi -$

• $(M, s) \models E_G \phi$ iff $(M, s) \models K_i \phi$ for all $i \in G$.

• Distributed knowledge of ϕ within a group : $D_G \phi$

- Common knowledge of ϕ within a group $G: C_G \phi$
 - $(M, s) \models C_G \phi$ iff $(M, s) \models E_G^k \phi$ for all k.
 - That is, each agent knows that each other agent knows that knows that ϕ holds.
 - Stronger than *E_G* and distributed knowledge!
- What about P₂p₂, E_{1,2}p₂, E_{1,2}p₃, D_{1,2}p₃, C_{1,2}p₃ in M_{mud}?

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

(日)

Other knowledge operators

• *i* considers ϕ possible – $P_i\phi$ –

• $(M, s) \models P_i \phi$ iff $(M, s') \models \phi$ for some s' with $\mathcal{K}_i(s, s')$.

• Everybody in the group G knows $\phi - E_G \phi -$

• $(M, s) \models E_G \phi$ iff $(M, s) \models K_i \phi$ for all $i \in G$.

• Distributed knowledge of ϕ within a group : $D_G \phi$

- Common knowledge of ϕ within a group $G: C_G \phi$
 - $(M, s) \models C_G \phi$ iff $(M, s) \models E_G^k \phi$ for all k.
 - That is, each agent knows that each other agent knows that knows that ϕ holds.
 - Stronger than *E_G* and distributed knowledge!
- What about *P*₂*p*₂, *E*_{1,2}*p*₂, *E*_{1,2}*p*₃, *D*_{1,2}*p*₃, *C*_{1,2}*p*₃ in *M*_{mud}?

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

Other knowledge operators

• *i* considers ϕ possible – $P_i\phi$ –

• $(M, s) \models P_i \phi$ iff $(M, s') \models \phi$ for some s' with $\mathcal{K}_i(s, s')$.

• Everybody in the group G knows $\phi - E_G \phi -$

• $(M, s) \models E_G \phi$ iff $(M, s) \models K_i \phi$ for all $i \in G$.

• Distributed knowledge of ϕ within a group : $D_G \phi$

• $(M, s) \models E_G \phi$ iff $(M, s') \models \phi$ for all s' with $\mathcal{K}_i(s, s') \forall i \in G$.

- Common knowledge of ϕ within a group $G: C_G \phi$
 - $(M, s) \models C_G \phi$ iff $(M, s) \models E_G^k \phi$ for all k.
 - That is, each agent knows that each other agent knows that knows that ϕ holds.
 - Stronger than *E_G* and distributed knowledge!

What about P₂p₂, E_{1,2}p₂, E_{1,2}p₃, D_{1,2}p₃, C_{1,2}p₃ in M_{mud}?

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロット (雪) (日) (日) 日

Other knowledge operators

• *i* considers ϕ possible – $P_i\phi$ –

• $(M, s) \models P_i \phi$ iff $(M, s') \models \phi$ for some s' with $\mathcal{K}_i(s, s')$.

• Everybody in the group G knows $\phi - E_G \phi -$

• $(M, s) \models E_G \phi$ iff $(M, s) \models K_i \phi$ for all $i \in G$.

• Distributed knowledge of ϕ within a group : $D_G \phi$

- Common knowledge of ϕ within a group $G: C_G \phi$
 - $(M, s) \models C_G \phi$ iff $(M, s) \models E_G^k \phi$ for all k.
 - That is, each agent knows that each other agent knows that knows that ϕ holds.
 - Stronger than *E_G* and distributed knowledge!
- What about P_2p_2 , $E_{1,2}p_2$, $E_{1,2}p_3$, $D_{1,2}p_3$, $C_{1,2}p_3$ in M_{mud} ?

< □ > < 同 > < 回 > < 回 > < 回 >

- Consider again the muddy children Kripke structure M_{mud} .
- What happens when Mum speaks the first time?
- Answer: state (0,0,...,0) disappears!
 - After Mum's announcement, it is common knowledge that someone has mud on his forehead!
- What happens when Mum speaks the second time?
- All states with only one 1 dissapear!
 - After Mum's announcement, it is common knowledge that at least two children are dirty!
- And so on...
- But this is not exactly captured by our system model!

< □ > < 同 > < 回 > < 回 > < 回 >

- Consider again the muddy children Kripke structure M_{mud} .
- What happens when Mum speaks the first time?
- Answer: state (0,0,...,0) disappears!
 - After Mum's announcement, it is common knowledge that someone has mud on his forehead!
- What happens when Mum speaks the second time?
- All states with only one 1 dissapear!
 - After Mum's announcement, it is common knowledge that at least two children are dirty!
- And so on...
- But this is not exactly captured by our system model!

< □ > < 同 > < 回 > < 回 > < 回 >

- Consider again the muddy children Kripke structure *M_{mud}*.
- What happens when Mum speaks the first time?
- Answer: state (0,0,...,0) disappears!
 - After Mum's announcement, it is common knowledge that someone has mud on his forehead!
- What happens when Mum speaks the second time?
- All states with only one 1 dissapear!
 - After Mum's announcement, it is common knowledge that at least two children are dirty!
- And so on...
- But this is not exactly captured by our system model!

(日)

- Consider again the muddy children Kripke structure M_{mud} .
- What happens when Mum speaks the first time?
- Answer: state (0,0,...,0) disappears!
 - After Mum's announcement, it is common knowledge that someone has mud on his forehead!
- What happens when Mum speaks the second time?
- All states with only one 1 dissapear!
 - After Mum's announcement, it is common knowledge that at least two children are dirty!
- And so on...
- But this is not exactly captured by our system model!

< □ > < 同 > < 回 > < 回 > < 回 >

- Consider again the muddy children Kripke structure M_{mud} .
- What happens when Mum speaks the first time?
- Answer: state (0,0,...,0) disappears!
 - After Mum's announcement, it is common knowledge that someone has mud on his forehead!
- What happens when Mum speaks the second time?
- All states with only one 1 dissapear!
 - After Mum's announcement, it is common knowledge that at least two children are dirty!
- And so on...
- But this is not exactly captured by our system model!

(日)

Incorporating temporal operators

Future temporal operators:

- $\bigcirc \phi$ next time, ϕ holds.
- $\Box \phi \phi$ holds forever, from now on.
- $\phi \mathcal{U}\psi \phi$ holds in every time point until ψ holds.
- $\Diamond \phi$ there exists a point in the future where ϕ will hold.

And past temporal operators:

- • ϕ last time, ϕ held.
- $\blacksquare \phi$ always before, ϕ held.
- $\phi \phi$ held sometime in the past.
- $\phi S \psi \phi$ held in every time point since ψ held.

< □ > < 同 > < 回 > < 回 > < 回 >

Incorporating temporal operators

Future temporal operators:

- $\bigcirc \phi$ next time, ϕ holds.
- $\Box \phi \phi$ holds forever, from now on.
- $\phi \mathcal{U}\psi \phi$ holds in every time point until ψ holds.
- $\diamond \phi$ there exists a point in the future where ϕ will hold.

And past temporal operators:

- • ϕ last time, ϕ held.
- $\blacksquare \phi$ always before, ϕ held.
- $\phi \phi$ held sometime in the past.
- $\phi S \psi \phi$ held in every time point since ψ held.

< ロ > < 同 > < 回 > < 回 > .

Incorporating temporal operators

Future temporal operators:

- $\bigcirc \phi$ next time, ϕ holds.
- $\Box \phi \phi$ holds forever, from now on.
- $\phi \mathcal{U} \psi \phi$ holds in every time point until ψ holds.
- $\Diamond \phi$ there exists a point in the future where ϕ will hold.

And past temporal operators:

- • ϕ last time, ϕ held.
- $\blacksquare \phi$ always before, ϕ held.
- $\phi \phi$ held sometime in the past.
- $\phi S \psi \phi$ held in every time point since ψ held.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト ・

Incorporating temporal operators

Future temporal operators:

- $\bigcirc \phi$ next time, ϕ holds.
- $\Box \phi \phi$ holds forever, from now on.
- $\phi \mathcal{U}\psi \phi$ holds in every time point until ψ holds.
- $\Diamond \phi$ there exists a point in the future where ϕ will hold.

And past temporal operators:

- • ϕ last time, ϕ held.
- $\blacksquare \phi$ always before, ϕ held.
- $\phi \phi$ held sometime in the past.
- $\phi S \psi \phi$ held in every time point since ψ held.

・ロン・(部)・・ヨン・ヨン 三連

Incorporating temporal operators

Future temporal operators:

- $\bigcirc \phi$ next time, ϕ holds.
- $\Box \phi \phi$ holds forever, from now on.
- $\phi \mathcal{U}\psi \phi$ holds in every time point until ψ holds.
- $\Diamond \phi$ there exists a point in the future where ϕ will hold.

And past temporal operators:

- • ϕ last time, ϕ held.
- $\blacksquare \phi$ always before, ϕ held.
- $\phi \phi$ held sometime in the past.
- $\phi S \psi \phi$ held in every time point since ψ held.

◆□ > ◆圖 > ◆臣 > ◆臣 > 一臣

Incorporating temporal operators

Future temporal operators:

- $\bigcirc \phi$ next time, ϕ holds.
- $\Box \phi \phi$ holds forever, from now on.
- $\phi \mathcal{U}\psi \phi$ holds in every time point until ψ holds.
- $\diamond \phi$ there exists a point in the future where ϕ will hold.

And past temporal operators:

- • ϕ last time, ϕ held.
- $\blacksquare \phi$ always before, ϕ held.
- $\phi \phi$ held sometime in the past.
- $\phi S \psi \phi$ held in every time point since ψ held.

◆□ > ◆圖 > ◆臣 > ◆臣 > 一臣

Incorporating temporal operators

Future temporal operators:

- $\bigcirc \phi$ next time, ϕ holds.
- $\Box \phi \phi$ holds forever, from now on.
- $\phi \mathcal{U}\psi \phi$ holds in every time point until ψ holds.
- $\diamond \phi$ there exists a point in the future where ϕ will hold.

And past temporal operators:

- • ϕ last time, ϕ held.
- $\blacksquare \phi$ always before, ϕ held.
- $\phi \phi$ held sometime in the past.

• $\phi S \psi - \phi$ held in every time point since ψ held.

・ロット (雪) (日) (日) 日

Incorporating temporal operators

Future temporal operators:

- $\bigcirc \phi$ next time, ϕ holds.
- $\Box \phi \phi$ holds forever, from now on.
- $\phi \mathcal{U}\psi \phi$ holds in every time point until ψ holds.
- $\diamond \phi$ there exists a point in the future where ϕ will hold.

And past temporal operators:

- • ϕ last time, ϕ held.
- $\blacksquare \phi$ always before, ϕ held.
- $\phi \phi$ held sometime in the past.
- $\phi S \psi \phi$ held in every time point since ψ held.

<ロ> (四) (四) (三) (三) (三) (三)

Incorporating temporal operators

Future temporal operators:

- $\bigcirc \phi$ next time, ϕ holds.
- $\Box \phi \phi$ holds forever, from now on.
- $\phi \mathcal{U}\psi \phi$ holds in every time point until ψ holds.
- $\Diamond \phi$ there exists a point in the future where ϕ will hold.

And past temporal operators:

- • ϕ last time, ϕ held.
- $\blacksquare \phi$ always before, ϕ held.
- $\phi \phi$ held sometime in the past.
- $\phi S \psi \phi$ held in every time point since ψ held.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Temporal semantics

- Transition system for *n* agents $T = (S, \succ)$:
 - $\succ \subseteq S \times S$ temporal evolution of the system.
 - Runs in T = infinite sequences of states in *S*.

• Temporal interpreted system over $T: I = (Q, \Pi, \pi)$:

• $Q = \operatorname{Runs}(\mathcal{T}) \times \mathbb{N} - \operatorname{points}$.

• $\pi: Q \rightarrow 2^{\Pi}$ – interpretation of propositional symbols.

• Semantics of temporal formulas: $(\mathcal{I}, r, n) \models \phi$.

• $(r, n) \in Q$.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Temporal semantics

- Transition system for *n* agents $T = (S, \succ)$:
 - $\succ \subseteq S \times S$ temporal evolution of the system.
 - Runs in T = infinite sequences of states in *S*.
- Temporal interpreted system over $T: I = (Q, \Pi, \pi)$:
 - $Q = \operatorname{Runs}(\mathcal{T}) \times \mathbb{N} \operatorname{points}$.
 - $\pi: \mathbf{Q} \to \mathbf{2}^{\Pi}$ interpretation of propositional symbols.
- Semantics of temporal formulas: $(\mathcal{I}, r, n) \models \phi$.

• $(r, n) \in Q$.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Temporal semantics

- Transition system for *n* agents $T = (S, \succ)$:
 - $\succ \subseteq S \times S$ temporal evolution of the system.
 - Runs in T = infinite sequences of states in *S*.
- Temporal interpreted system over $T: I = (Q, \Pi, \pi)$:
 - $Q = \operatorname{Runs}(\mathcal{T}) \times \mathbb{N} \operatorname{points}$.
 - $\pi: \mathbf{Q} \to \mathbf{2}^{\Pi}$ interpretation of propositional symbols.
- Semantics of temporal formulas: $(\mathcal{I}, r, n) \models \phi$.

• $(r, n) \in Q$.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

Temporal semantics (contd.)

- $(\mathcal{I}, r, n) \models \bigcirc \phi$ iff $(\mathcal{I}, r, n+1) \models \phi$.
- $(\mathcal{I}, \mathbf{r}, \mathbf{n}) \models \Box \phi$ iff $(\mathcal{I}, \mathbf{r}, \mathbf{m}) \models \phi$ for all $\mathbf{m} \ge \mathbf{n}$.
- $(\mathcal{I}, \mathbf{r}, \mathbf{n}) \models \Diamond \phi$ iff $(\mathcal{I}, \mathbf{r}, \mathbf{m}) \models \phi$ for some $\mathbf{m} \ge \mathbf{n}$.
- $(\mathcal{I}, r, n) \models \phi \mathcal{U} \psi$ iff $(\mathcal{I}, r, m) \models \psi$ for some $m \ge n$ and $(\mathcal{I}, r, p) \models \phi$ for all $n \le p < m$.
- $(\mathcal{I}, r, n) \models \bullet \phi$ iff $(\mathcal{I}, r, n-1) \models \phi$ (n > 0!).
- $(\mathcal{I}, r, n) \models \blacksquare \phi$ iff $(\mathcal{I}, r, m) \models \phi$ for all $m \le n$.
- $(\mathcal{I}, r, n) \models \phi \text{ iff } (\mathcal{I}, r, n+1) \models \phi \text{ for some } m \leq n.$
- $(\mathcal{I}, r, n) \models \phi \mathcal{U} \psi$ iff $(\mathcal{I}, r, m) \models \psi$ for some $m \le n$ and $(\mathcal{I}, r, p) \models \phi$ for all m .

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

Temporal semantics (contd.)

- $(\mathcal{I}, \mathbf{r}, \mathbf{n}) \models \bigcirc \phi$ iff $(\mathcal{I}, \mathbf{r}, \mathbf{n} + 1) \models \phi$.
- $(\mathcal{I}, \mathbf{r}, \mathbf{n}) \models \Box \phi$ iff $(\mathcal{I}, \mathbf{r}, \mathbf{m}) \models \phi$ for all $\mathbf{m} \ge \mathbf{n}$.
- $(\mathcal{I}, \mathbf{r}, \mathbf{n}) \models \Diamond \phi$ iff $(\mathcal{I}, \mathbf{r}, \mathbf{m}) \models \phi$ for some $\mathbf{m} \ge \mathbf{n}$.
- $(\mathcal{I}, r, n) \models \phi \mathcal{U} \psi$ iff $(\mathcal{I}, r, m) \models \psi$ for some $m \ge n$ and $(\mathcal{I}, r, p) \models \phi$ for all $n \le p < m$.
- $(\mathcal{I}, r, n) \models \bullet \phi$ iff $(\mathcal{I}, r, n-1) \models \phi$ (n > 0!).
- $(\mathcal{I}, \mathbf{r}, \mathbf{n}) \models \blacksquare \phi$ iff $(\mathcal{I}, \mathbf{r}, \mathbf{m}) \models \phi$ for all $\mathbf{m} \le \mathbf{n}$.
- $(\mathcal{I}, r, n) \models \phi \phi$ iff $(\mathcal{I}, r, n+1) \models \phi$ for some $m \le n$.
- $(\mathcal{I}, r, n) \models \phi \mathcal{U} \psi$ iff $(\mathcal{I}, r, m) \models \psi$ for some $m \le n$ and $(\mathcal{I}, r, p) \models \phi$ for all m .

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Temporal and knowledge semantics

- Temporal interpreted system *I* = (*Q*, Π, π) over a transition system *T*.
- Kripke structure over \mathcal{T} : $M_{\mathcal{T}} = (\mathcal{I}, \mathcal{K}_1, \dots, \mathcal{K}_n)$.

• $\mathcal{K}_i \subseteq \mathcal{Q} \times \mathcal{Q}$.

- Semantics : unchanged from what we've seen!
- Example formulas: $K_1 \Box p_1 \land p_2 \mathcal{U} C_{2,3} p_3$.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロン・雪と・雪と・ ヨン・

Temporal and knowledge semantics

- Temporal interpreted system *I* = (*Q*, Π, π) over a transition system *T*.
- Kripke structure over *T*: *M*_T = (*I*, *K*₁, ..., *K*_n). *K_i* ⊆ *Q* × *Q*.
- Semantics : unchanged from what we've seen!
- Example formulas: $K_1 \Box p_1 \land p_2 \mathcal{U} C_{2,3} p_3$.

Muddy children example

- Transition system: $T = (S, \succ)$ with $\succ = \{(s, s) \mid s \in S\}$.
 - Local states are unchanged during the run!
- Run identified with the (unique) state occurring in it!
 - Hence points = pairs (state, timepoint).
- Interpretation: $\pi(s, n) = \{p_i \mid s_i = 1\}.$
- Possibility relations:

 $\mathcal{K}_i((s,k),(s'.k))$ iff s = s' or supp(s), supp $(s') \ge k$ and $s_j = s'_j \ \forall j \neq i$

•
$$supp(s) = \{i \mid s_i = 1\}.$$

Draw it!

・ロット (雪) (日) (日) 日

Muddy children example

- Transition system: $T = (S, \succ)$ with $\succ = \{(s, s) \mid s \in S\}$.
 - Local states are unchanged during the run!
- Run identified with the (unique) state occurring in it!
 - Hence points = pairs (state, timepoint).
- Interpretation: $\pi(s, n) = \{p_i \mid s_i = 1\}.$
- Possibility relations:

$$\mathcal{K}_iig((m{s},m{k}),(m{s}'.m{k})ig) ext{ iff } m{s}=m{s}' ext{ or supp}(m{s}), ext{supp}(m{s}') \geq k \ ext{ and } m{s}_j=m{s}_j' ext{ } orall eta \neq i \ ext{ }$$

•
$$supp(s) = \{i \mid s_i = 1\}.$$

Draw it!

・ロット (雪) (日) (日) 日

Muddy children example

- Transition system: $T = (S, \succ)$ with $\succ = \{(s, s) \mid s \in S\}$.
 - Local states are unchanged during the run!
- Run identified with the (unique) state occurring in it!
 - Hence points = pairs (state, timepoint).
- Interpretation: $\pi(s, n) = \{p_i \mid s_i = 1\}.$
- Possibility relations:

$$\mathcal{K}_iig((s,k),(s'.k)ig) ext{ iff } s=s' ext{ or supp}(s), ext{supp}(s') \geq k \ ext{ and } s_j=s_j' ext{ } orall j
eq i$$

•
$$supp(s) = \{i \mid s_i = 1\}.$$

Draw it!

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

.

イロト 不得 トイヨト イヨト 三日

Temporal knowledge properties of the muddy children

• $(s, 1) \models C(p_1 \lor \ldots \lor p_n)$ iff

- In general, $(s, k) \models C$
- If $(s,k) \models P_i p_i$ then $(s, k+1) \models C(P_i p_i \land P_i \neg p_i)$.
- If supp(s) = k then for each i with s_i = 1 we have (s, k) ⊨ K_ip_i.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

イロト 不得 トイヨト イヨト 三日

Temporal knowledge properties of the muddy children

- $(s,1) \models C(p_1 \lor \ldots \lor p_n)$ iff $s \neq (0,\ldots,0)$.
- In general, $(s, k) \models C$
- If $(s,k) \models P_i p_i$ then $(s, k+1) \models C(P_i p_i \land P_i \neg p_i)$.
- If supp(s) = k then for each i with $s_i = 1$ we have $(s, k) \models K_i p_i$.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

イロト イポト イヨト イヨト 三日

Temporal knowledge properties of the muddy children

- $(s,1) \models C(p_1 \lor \ldots \lor p_n)$ iff $s \neq (0,\ldots,0)$.
- In general, $(s, k) \models C \bigvee \bigwedge p_i$
- If $(s,k) \models P_i p_i$ then $(s,k) \models C(P_i p_i \land P_i \neg p_i)$.
- If supp(s) = k then for each i with s_i = 1 we have
 (s, k) ⊨ K_ip_i.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

・ロト・(部・・モト・モ・・モ

Temporal knowledge properties of the muddy children

- $(s,1) \models C(p_1 \lor \ldots \lor p_n)$ iff $s \neq (0,\ldots,0)$.
- In general, $(s, k) \models C \bigvee \bigwedge p_i$
- If $(s,k) \models P_i p_i$ then $(s,k) \models C(P_i p_i \land P_i \neg p_i)$.
- If supp(s) = k then for each *i* with $s_i = 1$ we have $(s, k) \models K_i p_i$.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

< ロ > < 同 > < 回 > < 回 > .

Synchronicity

- Agents have access to a shared clock.
 - For the muddy children, it is Mum's announcements that play the role of a clock.
 - The system is synchronous.
- Synchronous Kripke structure over a transition system T: $M = (I, \mathcal{K}_1, \dots, \mathcal{K}_n)$:
 - If $\mathcal{K}_i((r, n), (r', n'))$ then n = n'.
 - The points that *i* considers possible at (*r*, *n*) are those whose clock is *n* too.
< ロ > < 同 > < 回 > < 回 > .

Synchronicity

- Agents have access to a shared clock.
 - For the muddy children, it is Mum's announcements that play the role of a clock.
 - The system is synchronous.
- Synchronous Kripke structure over a transition system T: $M = (I, \mathcal{K}_1, \dots, \mathcal{K}_n)$:
 - If $\mathcal{K}_i((r, n), (r', n'))$ then n = n'.
 - The points that *i* considers possible at (*r*, *n*) are those whose clock is *n* too.

Perfect recall

- With the general definition of \mathcal{K}_i , agent *i*'s knowledge may vary during system evolution.
- We would like it to be only cumulative
 - What *i* learned at a point (r, n) has to be "preserved" at later points (r, n') $(n' \ge n)$.
- Kripke structure with perfect recall: $M = (\mathcal{I}, \mathcal{K}_1, \dots, \mathcal{K}_n)$:
 - Local state sequence at (*r*, *n*): sequence of *s_i*, without repetitions.
 - E.g. if *i*'s local states at instants $0 \dots 4$ are $(s_i, s_i, s'_i, s'_i, s_i)$, then $lss(r, 4) = (s_i, s'_i, s_i)$.
 - Perfect recall: equivalent points only if local state sequence is the same:

If
$$\mathcal{K}_i((r, n), (r', n'))$$
 then $lss(r, n) = lss(r', n')$

(日)

Perfect recall

- With the general definition of \mathcal{K}_i , agent *i*'s knowledge may vary during system evolution.
- We would like it to be only cumulative
 - What *i* learned at a point (r, n) has to be "preserved" at later points (r, n') $(n' \ge n)$.
- Kripke structure with perfect recall: $M = (\mathcal{I}, \mathcal{K}_1, \dots, \mathcal{K}_n)$:
 - Local state sequence at (*r*, *n*): sequence of *s_i*, without repetitions.
 - E.g. if *i*'s local states at instants $0 \dots 4$ are $(s_i, s_i, s'_i, s'_i, s_i)$, then $lss(r, 4) = (s_i, s'_i, s_i)$.
 - Perfect recall: equivalent points only if local state sequence is the same:

If
$$\mathcal{K}_i((r, n), (r', n'))$$
 then $lss(r, n) = lss(r', n')$

・ロット (雪) (日) (日) 日

Perfect recall

- With the general definition of \mathcal{K}_i , agent *i*'s knowledge may vary during system evolution.
- We would like it to be only cumulative
 - What *i* learned at a point (r, n) has to be "preserved" at later points (r, n') $(n' \ge n)$.
- Kripke structure with perfect recall: $M = (\mathcal{I}, \mathcal{K}_1, \dots, \mathcal{K}_n)$:
 - Local state sequence at (*r*, *n*): sequence of *s_i*, without repetitions.
 - E.g. if *i*'s local states at instants $0 \dots 4$ are $(s_i, s_i, s'_i, s'_i, s_i)$, then $lss(r, 4) = (s_i, s'_i, s_i)$.
 - Perfect recall: equivalent points only if local state sequence is the same:

If
$$\mathcal{K}_i((r, n), (r', n'))$$
 then $lss(r, n) = lss(r', n')$

・ロット (雪) (日) (日) 日

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Synchrony & perfect recall

- Perfect recall does not mean $K_i \phi \rightarrow \Box K_i \phi$!
- Example: muddy children with $\phi = P_i p_i \wedge P_i \neg p_i$.
- Dual notion: no learning:
 - Speaks about future local state sequence.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

< ロ > < 同 > < 回 > < 回 > .

3

Synchrony & perfect recall

- Perfect recall does not mean $K_i \phi \rightarrow \Box K_i \phi!$
- Example: muddy children with $\phi = P_i p_i \wedge P_i \neg p_i$.
- Dual notion: no learning:
 - Speaks about future local state sequence.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

ヘロト ヘ戸ト ヘヨト ヘヨト

3

Axioms for knowledge without time

Pr Axioms and rules for the propositional operators.

- **K**. Distribution axiom: $(K_i \phi \wedge K_i (\phi \rightarrow \psi) \rightarrow K_i \psi)$
- **T**. Knowledge axiom: $K_i \phi \rightarrow \phi$
- **4**. Positive introspection axiom: $K_i \phi \rightarrow K_i K_i \phi$
- **5**. Negative introspection axiom: $\neg K_i \rightarrow K_i \neg K_i \phi$

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

Axioms for knowledge without time

- Pr Axioms and rules for the propositional operators.
- **K**. Distribution axiom: $(K_i \phi \land K_i (\phi \rightarrow \psi) \rightarrow K_i \psi)$
- **T**. Knowledge axiom: $K_i \phi \rightarrow \phi$
- **4**. Positive introspection axiom: $K_i \phi \rightarrow K_i K_i \phi$
- **5**. Negative introspection axiom: $\neg K_i \rightarrow K_i \neg K_i \phi$

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

Correctness and completeness

• Knowledge generalization rule:

If $M \models \phi$ then $M \models K_i \phi$

• The whole = system $S5_n$.

Theorem

For any structure M in which each possibility relation \mathcal{K}_i is an equivalence, and all agents i, the above axioms and rule hold.

Theorem

 $S5_n$ is a sound and complete axiomatization of the logic of knowledge in which \mathcal{K}_i are all equivalence relations.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

Correctness and completeness

• Knowledge generalization rule:

If $M \models \phi$ then $M \models K_i \phi$

• The whole = system $S5_n$.

Theorem

For any structure M in which each possibility relation \mathcal{K}_i is an equivalence, and all agents *i*, the above axioms and rule hold.

Theorem

 $S5_n$ is a sound and complete axiomatization of the logic of knowledge in which \mathcal{K}_i are all equivalence relations.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

Correctness and completeness

• Knowledge generalization rule:

If $M \models \phi$ then $M \models K_i \phi$

• The whole = system $S5_n$.

Theorem

For any structure M in which each possibility relation \mathcal{K}_i is an equivalence, and all agents i, the above axioms and rule hold.

Theorem

 $S5_n$ is a sound and complete axiomatization of the logic of knowledge in which \mathcal{K}_i are all equivalence relations.

Common knowledge and distributed knowledge

- **O** Defining axiom for "everibody knows": $E_G \phi \rightarrow \bigwedge_{i \in G} K_i \phi$
- Pixpoint axiom for common knowledge: $C_G \phi \leftrightarrow E_G(\phi \land C_G \phi)$
- Induction rule for common knowledge: If $M \models E_G(\phi \land C_G \phi)$ then $M \models C_G \phi$
- Subgroup axioms: $E_G \phi \to E_H \phi$ for all $H \subseteq G$.
- Similarly for C_G and D_G .
- System $S5_n^C$ correct and complete.

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Axiomatizing time

$\bullet \ \square$ and \diamond can be expressed in terms of ${\cal U}$

How?

• Axioms for \bigcirc and \mathcal{U} :

- Distributivity: $\bigcirc \phi \land \bigcirc (\phi \rightarrow \psi) \rightarrow \bigcirc \psi$.
- Linear time: $\neg \bigcirc \phi \leftrightarrow \bigcirc \neg \phi$.
- Fixpoint axiom for until: $\phi \mathcal{U}\psi \leftrightarrow \psi \lor (\phi \land \bigcirc (\phi \mathcal{U}\psi))$.
- Next time rule: from ϕ infer $\Box \phi$.
- Until inference rule: from $\phi' \to \neg \psi \land \bigcirc \phi'$ infer $\phi' \to \neg (\phi \mathcal{U} \psi)$.

・ロット (雪) (日) (日) 日

Axiomatizing time

- $\bullet \ \square$ and \diamondsuit can be expressed in terms of $\mathcal U$
 - How?
- Axioms for \bigcirc and \mathcal{U} :
 - Distributivity: $\bigcirc \phi \land \bigcirc (\phi \rightarrow \psi) \rightarrow \bigcirc \psi$.
 - Linear time: $\neg \bigcirc \phi \leftrightarrow \bigcirc \neg \phi$.
 - Fixpoint axiom for until: $\phi \mathcal{U}\psi \leftrightarrow \psi \lor (\phi \land \bigcirc (\phi \mathcal{U}\psi))$.
 - Next time rule: from ϕ infer $\Box \phi$.
 - Until inference rule: from $\phi' \to \neg \psi \land \bigcirc \phi'$ infer $\phi' \to \neg (\phi \mathcal{U} \psi)$.

Combining time and knowledge axiomatically

General systems: no additional axioms!
Knowledge and time are independent in general!
Perfect recall: they do interact

 $(KT1) \qquad K_i \Box \phi \to \Box K_i \phi$

- Formulas known to be always true must always be known to be true (!)
- Synchrony & perfect recall: stronger interaction

 $(KT2) \qquad K_i \bigcirc \phi \to \bigcirc K_i \phi$

Theorem

 $S5_n^U + KT2$ is a sound and complete axiomatization for synchrony and perfect recall.

Combining time and knowledge axiomatically

- General systems: no additional axioms!
 - Knowledge and time are independent in general!
- Perfect recall: they do interact

$$(KT1) \qquad K_i \Box \phi \to \Box K_i \phi$$

- Formulas known to be always true must always be known to be true (!)
- Synchrony & perfect recall: stronger interaction

$$(KT2) \qquad K_i \bigcirc \phi \to \bigcirc K_i \phi$$

Theorem

 $S5_n^U + KT2$ is a sound and complete axiomatization for synchrony and perfect recall.

Syntax and semantics Knowledge and time Types of temporal knowledge Axiomatics and decidability issues

(日)

Satisfiability – pure knowledge case

Theorem

The satisfiability problem for $S5_n$ is PSPACE-complete – and thus, the validity problem for $S5_n$ is co-PSPACE-complete. The satisfiability problem for $S5_n^C$ is EXPTIME-complete – and thus the validity problem for $S5_n^C$ is co-EXPTIME-complete.

Based on theorems on the existence of *finite models*.

(日)

-

Model checking

• Basic case – no common knowledge, no time:

Theorem

There is an algorithm that, given a Kripke structure *M*, a state *s* and a formula ϕ , determines in time $O(|M| \times |\phi|)$, whether $(M, s) \models \phi$.

• Common knowledge, no until:

Theorem

The model checking problem for synchronous perfect recall systems and the temporal logic with common knowledge but without until is **PSPACE-complete**.

▲ロト ▲圖 と ▲ 国 と ▲ 国 と

Model checking

• Until, no common knowledge:

Theorem

The model checking problem for synchronous perfect recall systems and the temporal logic of knowledge with until but without common knowledge is decidable in nonelementary time.

• Full (future) temporal logic and knowledge operators:

Theorem

The model checking problem for synchronous perfect recall systems and the temporal logic of knowledge with until and common knowledge is **undecidable**.

Preliminaries

- The muddy children puzzle
- Logics of knowledge and security

2 The bases

- Syntax and semantics
- Knowledge and time
- Types of temporal knowledge
- Axiomatics and decidability issues

Showledge and information flow

Classical information flow properties

・ロト・(部・・モト・モ・・モ

Noninterference and its "derivatives"

• Noninterference (Goguen & Meseguer, 1982):

One group of users [...] is noninterfering with another group of users if what[ever] the first group of users does [...] has no effect on what the second group of users can see.

Variants

- Separability (McLean, 1994),
- Generalized noninterference (McCullough, 1987),
- Nondeducibility on strategies (Wittbold & Johnson, 1990),
- Forward correctability, the Perfect Security Property, etc., etc.

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ

Noninterference and its "derivatives"

• Noninterference (Goguen & Meseguer, 1982):

One group of users [...] is noninterfering with another group of users if what[ever] the first group of users does [...] has no effect on what the second group of users can see.

- Variants
 - Separability (McLean, 1994),
 - Generalized noninterference (McCullough, 1987),
 - Nondeducibility on strategies (Wittbold & Johnson, 1990),
 - Forward correctability, the Perfect Security Property, etc., etc.

Synchronous trace model

- HI high-level inputs, HO high-level outputs, $H = HI \cup HO$, $HI \cap HO = \emptyset$.
- LI low-level inputs, LO low-level outputs, $L = LI \cup LO$, $LI \cap LO = \emptyset$.
- System states $Q = LI \times HI \times LO \times HO$.
- Traces = infinite sequences of states in Q denoted Tr(Q).
- *HI*-projection of a trace $\rho = \rho|_{HI}$ = sequence of *HI*-actions in ρ .

• $\rho|_{HO}, \rho|_{LI}, \rho|_{LO}, \rho|_{H}, \rho|_{L}$ defined similarly.

k-length prefix of a trace ρ[1..k] = sequence of k initial states.

Synchronous trace model

- HI high-level inputs, HO high-level outputs, $H = HI \cup HO$, $HI \cap HO = \emptyset$.
- LI low-level inputs, LO low-level outputs, $L = LI \cup LO$, $LI \cap LO = \emptyset$.
- System states $Q = LI \times HI \times LO \times HO$.
- Traces = infinite sequences of states in Q denoted Tr(Q).
- *HI*-projection of a trace $\rho = \rho |_{HI}$ = sequence of *HI*-actions in ρ .

• $\rho|_{HO}, \rho|_{LI}, \rho|_{LO}, \rho|_{H}, \rho|_{L}$ defined similarly.

k-length prefix of a trace ρ[1..k] = sequence of k initial states.

Synchronous trace model

- HI high-level inputs, HO high-level outputs, $H = HI \cup HO$, $HI \cap HO = \emptyset$.
- LI low-level inputs, LO low-level outputs, $L = LI \cup LO$, $LI \cap LO = \emptyset$.
- System states $Q = LI \times HI \times LO \times HO$.
- Traces = infinite sequences of states in Q denoted Tr(Q).
- *HI*-projection of a trace $\rho = \rho |_{HI}$ = sequence of *HI*-actions in ρ .
 - $\rho|_{HO}, \rho|_{LI}, \rho|_{LO}, \rho|_{H}, \rho|_{L}$ defined similarly.
- k-length prefix of a trace ρ[1..k] = sequence of k initial states.

Synchronous trace model

- HI high-level inputs, HO high-level outputs, $H = HI \cup HO$, $HI \cap HO = \emptyset$.
- LI low-level inputs, LO low-level outputs, $L = LI \cup LO$, $LI \cap LO = \emptyset$.
- System states $Q = LI \times HI \times LO \times HO$.
- Traces = infinite sequences of states in Q denoted Tr(Q).
- *HI*-projection of a trace $\rho = \rho |_{HI}$ = sequence of *HI*-actions in ρ .

• $\rho|_{HO}, \rho|_{LI}, \rho|_{LO}, \rho|_{H}, \rho|_{L}$ defined similarly.

k-length prefix of a trace ρ[1..k] = sequence of k initial states.

Classical information flow properties

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Synchronous trace model

• Tr(Q) = a transition system, with traces \simeq runs.

- We may further define $\mathcal{K}_H((\rho, m), (\rho', m))$ iff $\rho|_H = \rho'|_H$.
- Similarly for \mathcal{K}_L .
 - Synchronous with perfect recall!

Classical information flow properties

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆

Synchronous trace model

- Tr(Q) = a transition system, with traces \simeq runs.
- We may further define $\mathcal{K}_H((\rho, m), (\rho', m))$ iff $\rho|_H = \rho'|_H$.
- Similarly for \mathcal{K}_L .
 - Synchronous with perfect recall!

< 日 > < 同 > < 回 > < 回 > < □ > <

3

Information flow properties in trace systems

• Separability:

$$\forall \rho, \rho' \in \mathsf{Tr}(\mathcal{Q}) \; \exists \rho'' \in \mathsf{Tr}(\mathcal{Q}), \rho'' \big|_{\mathcal{H}} = \rho \big|_{\mathcal{H}}, \rho'' \big|_{\mathcal{L}} = \rho' \big|_{\mathcal{L}}$$

• Generalized Noninterference:

$$\forall \rho, \rho' \in \mathsf{Tr}(\mathcal{Q}) \; \exists \rho'' \in \mathsf{Tr}(\mathcal{Q}), \rho'' \big|_{HI} = \rho \big|_{HI}, \rho'' \big|_{L} = \rho' \big|_{LI}$$

Information flow in the TLK framework

Kripke structure over an interpreted system $M_T = (I, \mathcal{K}_1, \dots, \mathcal{K}_n).$

• Agent *i* maintains total secrecy w.r.t. agent *j* in M_T if

 $\forall (r, n), (r', n') \in Q, \mathcal{K}_i(r, n) \cap \mathcal{K}_j(r', n') \neq \emptyset$

- Here $\mathcal{K}_i(r, n) = \{(r'', n'') \mid \mathcal{K}_i((r, n), (r'', n''))\}.$
- Synchronous total secrecy: synchronous system & total secrecy.

Theorem

Suppose that the (Kripke structure corresponding to the) trace system Tr(Q) is limit closed. Then Tr(Q) satisfies separability iff H maintains total secrecy w.r.t. L.

Information flow in the TLK framework

Kripke structure over an interpreted system $M_T = (I, \mathcal{K}_1, \dots, \mathcal{K}_n).$

• Agent *i* maintains total secrecy w.r.t. agent *j* in M_T if

 $\forall (r,n), (r',n') \in Q, \mathcal{K}_i(r,n) \cap \mathcal{K}_j(r',n') \neq \emptyset$

- Here $\mathcal{K}_i(r, n) = \{(r'', n'') \mid \mathcal{K}_i((r, n), (r'', n''))\}.$
- Synchronous total secrecy: synchronous system & total secrecy.

Theorem

Suppose that the (Kripke structure corresponding to the) trace system Tr(Q) is limit closed. Then Tr(Q) satisfies separability iff H maintains total secrecy w.r.t. L.

Generalized noninterference in TLK

- *j*-information function = $f : Q \to X$ (X any set!) such that $f(r, m) = f(r', m') \Rightarrow \mathcal{K}_j((r, m), (r', m'))$
 - Synchronous form: $f(r, m) = f(r', m) \Rightarrow \mathcal{K}_j((r, m), (r', m)).$
 - Example, in trace systems: $f : Q \rightarrow HI^*$, $f(\rho, m) = \rho[1..m]|_{HI}$.

Given f a j-information function, H maintains total f-secrecy if

 $\forall (r,m) \in Q, \forall v \in X, \mathcal{K}_i(r,m) \cap f^{-1}(v) \neq \emptyset$

Theorem

Suppose that the (Kripke structure corresponding to the) trace system Tr(Q) is limit closed. Then Tr(Q) satisfies generalized noninterference iff H maintains total f-secrecy w.r.t. L.

Generalized noninterference in TLK

• *j*-information function = $f : Q \to X$ (X any set!) such that $f(r, m) = f(r', m') \Rightarrow K_{-}((r, m), (r', m'))$

 $f(r,m) = f(r',m') \Rightarrow \mathcal{K}_j((r,m),(r',m'))$

- Synchronous form: $f(r, m) = f(r', m) \Rightarrow \mathcal{K}_j((r, m), (r', m))$.
- Example, in trace systems: $f : Q \rightarrow HI^*$, $f(\rho, m) = \rho[1..m]|_{HI}$.
- Given f a j-information function, H maintains total f-secrecy if

 $\forall (r,m) \in Q, \forall v \in X, \mathcal{K}_i(r,m) \cap f^{-1}(v) \neq \emptyset$

Theorem

Suppose that the (Kripke structure corresponding to the) trace system Tr(Q) is limit closed. Then Tr(Q) satisfies generalized noninterference iff H maintains total f-secrecy w.r.t. L.

Generalized noninterference in TLK

• *j*-information function = $f : Q \rightarrow X$ (X any set!) such that

$$f(r,m) = f(r',m') \Rightarrow \mathcal{K}_j((r,m),(r',m'))$$

- Synchronous form: $f(r, m) = f(r', m) \Rightarrow \mathcal{K}_j((r, m), (r', m))$.
- Example, in trace systems: $f : Q \to HI^*$, $f(\rho, m) = \rho[1..m]|_{HI}$.

Given f a j-information function, H maintains total f-secrecy if

$$\forall (r,m) \in Q, \forall v \in X, \mathcal{K}_i(r,m) \cap f^{-1}(v) \neq \emptyset$$

Theorem

Suppose that the (Kripke structure corresponding to the) trace system Tr(Q) is limit closed. Then Tr(Q) satisfies generalized noninterference iff H maintains total f-secrecy w.r.t. L.

▲ 帰 ▶ → ● 三

Information flow in syntactic form

• Formula ϕ is *i*-local in system *M* if

$$\forall (r, m), (r', m') \text{ with } \mathcal{K}_i((r, m), (r', m')), \\ (\mathcal{I}, r, m) \models \phi \text{ iff } (\mathcal{I}, r', m') \models \phi$$

• Syntactic characterization: $\mathcal{I} \models K_i \phi \lor K_i \neg \phi$.

Theorem

Suppose M is a synchronous system. Then agent i maintains total secrecy w.r.t. agent j in system M iff for every i-local formula ϕ , $\mathcal{I} \models P_j \diamondsuit \Diamond \phi$.

• More constraints on formulas ϕ for GNI and NDS.

Information flow in syntactic form

• Formula ϕ is *i*-local in system *M* if

$$\forall (r, m), (r', m') \text{ with } \mathcal{K}_i((r, m), (r', m')), \ (\mathcal{I}, r, m) \models \phi \text{ iff } (\mathcal{I}, r', m') \models \phi$$

• Syntactic characterization: $\mathcal{I} \models K_i \phi \lor K_i \neg \phi$.

Theorem

Suppose M is a synchronous system. Then agent i maintains total secrecy w.r.t. agent j in system M iff for every i-local formula ϕ , $\mathcal{I} \models P_j \blacklozenge \Diamond \phi$.

• More constraints on formulas ϕ for GNI and NDS.
Information flow in syntactic form

• Formula ϕ is *i*-local in system *M* if

$$\forall (r, m), (r', m') \text{ with } \mathcal{K}_i((r, m), (r', m')), \ (\mathcal{I}, r, m) \models \phi \text{ iff } (\mathcal{I}, r', m') \models \phi$$

• Syntactic characterization: $\mathcal{I} \models K_i \phi \lor K_i \neg \phi$.

Theorem

Suppose M is a synchronous system. Then agent i maintains total secrecy w.r.t. agent j in system M iff for every i-local formula ϕ , $\mathcal{I} \models P_j \blacklozenge \Diamond \phi$.

• More constraints on formulas ϕ for GNI and NDS.

・ロット (雪) (日) (日) 日

Sujets de stage de M2 recherche

Model checking des propriétés de sécurité:

- Formalisation des propriétés de fuite d'information dans des langages de programmation et/ou protocles de sécurité.
- Comparaison d'outils de model checking des logiques épistemiques: MCMAS, MCK, LYS, par rapport leur expressivité en relation avec l'analyse de propriétés de sécurité.
- Synthse d'algorithmes de model checking pour NDS (Wittbold & Johnson).
- Analyse de propriétés de fuite d'information par abstraction.

Deux sujets possibles.