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A puzzle game

n children play together outside,
None wants to get dirty (Dad punishes!), but would like to
see the others dirty! (kids...)
It happens that, at some moment, k of them get mud on
their foreheads

... so each of them cannot see if he’s dirty or not!

... and none signals anything to anybody who’s dirty!
Mum comes into the room and says
At least one of you has mud on his forehead
Then she asks everybody:
Does anyone of you know whether you’re dirty?
Assuming that all children are intelligent, perceptive and
truthful (!), what happens?
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Solving the puzzle game

There is a “formal” proof that
the first k − 1 times Mum asks her question, all will say No,
but
the k th time she asks her question, exactly those children
with muddy foreheads will say Yes, I am dirty!

Proof: by induction on k :
For k = 1 it’s obvious (ain’t it?).
For k = 2, the first time everybody says No.
... but then everybody will notice that the two muddy
children do not know they are dirty.
Hence muddy a concludes that, since muddy b does not
deduce that he’s the only one to be dirty, he must have
seen mud on someone else’s forehead.
So it must be his (a’s) own forehead that was muddy!
Generalize the reasoning!
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Muddy children and knowledge

All children do their reasoning provided they know some
properties...
... and deduce (know) later that the others do not know
some other properties.
Mum’s questions serve as synchronization steps.
Without these, there could be no way for children to
achieve their deductions!
Step k + 1 also represents the convergence of the system
to common knowledge.

That is, everybody knows that everybody knows that
everybody knows that ...... that a1 . . .ak are dirty
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Why studying logics of knowledge?

Epistemic logics are important in multi-agent systems.
Originally developed for AI.

Security analysis involves at least two agents: the
legitimate user(s) and the intruder(s).
In security protocol analysis, we speak about intruder
knowledge!
Information flow analysis also is concerned with the
information an agent gains about security levels to which
he is not authorized to access.

Information is closely related to knowledge.
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What characterizes a logic?

Its syntax.
Its semantics.
Its axiomatic system.
The possibility to “mechanicise” the deduction =
decidability of various decision problems.
Various interesting extensions.
Applications in the study of information flow.
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Basic knowledge operators

n agent system – call them 1,2, . . . ,n.
Kiφ : agent i knows formula φ.
Examples:

1 n children play their muddy forehead game.
2 p2 : child i has mud on his forehead.
3 K4p2 : child 4 knows that child 2 is muddy.
4 K1(K4p2 ∧ p1) :

child 1 knows that child 2 knows that 2 is muddy...
... and also knows that he himself is muddy!

All the other boolean operators: ∧,∨,¬,→ . . ..
Temporal operators will be added later!
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Cătălin Dima TLK & Security



Preliminaries
The bases

Knowledge and information flow

Syntax and semantics
Knowledge and time
Types of temporal knowledge
Axiomatics and decidability issues

Semantics
Possible worlds model: Kripke structure for n agents:
M = (S,Π, π,K1, . . . ,Kn).

S – the set of global states.
Sometimes S = S1 × . . .× Sn.
Si = local states for agent i .

Π – set of primitive propositions (like p2 : child i is muddy).
π : S → 2Π – truth value for each primite proposition in
each state.
Ki – the indistinguishibility relation (also called the
possibility relation).

Ki(s, s′) = for agent i , states s and s′ cannot be
distinguished by prior observation – i.e., according to i ’s
knowledge!
Very often Ki are reflexive, symmetric & transitive – i.e.
equivalence relations.
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Semantics (contd.)

Semantics of formulas: evaluated at each state s:
(M , s) |= φ : formula φ holds at state s.

(M, s) |= p iff p2 ∈ π(s).
(M, s) |= φ1 ∧ φ2 iff
(M, s) |= Kiφ iff (M, s′) |= φ for all s′ with Ki(s, s′).

φ is a formula that is acquired by i .
All observations bring i to consider that φ must hold.

Notation: M |= φ iff (M, s) |= φ for all s ∈ S.
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Muddy children – original situation

Kripke structure Mmud = (S,Π, π,Ki ) for n agents.
“Local state” for agent i : Si = {0,1} (muddy or not!).
S = S1 × . . .Sn – that is, 2n initial situations.

A “global state” is composed of “local states”:
s = (s1, . . . , sn).

Π = {p1, . . . ,pn}.
(Mmud , s) |= p3 iff s3 = 1.

Ki(s, s′) iff sj = s′
j for all j 6= i .

“Hypercube” representation of Mmud .
What are the states where (Mmud , s) |= K1p2?
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Other knowledge operators

i considers φ possible – Piφ –
(M , s) |= Piφ iff (M , s′) |= φ for some s′ with Ki (s, s′).

Everybody in the group G knows φ – EGφ –
(M , s) |= EGφ iff (M , s) |= Kiφ for all i ∈ G.

Distributed knowledge of φ within a group : DGφ
(M , s) |= EGφ iff (M , s′) |= φ for all s′ with Ki(s, s′) ∀i ∈ G.

Common knowledge of φ within a group G : CGφ
(M , s) |= CGφ iff (M , s) |= Ek

Gφ for all k .
That is, each agent knows that each other agent knows that
.... knows that φ holds.
Stronger than EG and distributed knowledge!

What about P2p2,E1,2p2,E1,2p3,D1,2p3,C1,2p3 in Mmud ?
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Evolving knowledge

Consider again the muddy children Kripke structure Mmud .
What happens when Mum speaks the first time?
Answer: state (0,0, ...,0) disappears!

After Mum’s announcement, it is common knowledge that
someone has mud on his forehead!

What happens when Mum speaks the second time?
All states with only one 1 dissapear!

After Mum’s announcement, it is common knowledge that
at least two children are dirty!

And so on...
But this is not exactly captured by our system model!
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Incorporating temporal operators

Future temporal operators:
©φ – next time, φ holds.
2φ – φ holds forever, from now on.
φUψ – φ holds in every time point until ψ holds.
3φ – there exists a point in the future where φ will hold.

And past temporal operators:
 φ – last time, φ held.
�φ – always before, φ held.
�φ – φ held sometime in the past.
φSψ – φ held in every time point since ψ held.

Other operators can be added (e.g. fixpoints).
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Cătălin Dima TLK & Security



Preliminaries
The bases

Knowledge and information flow

Syntax and semantics
Knowledge and time
Types of temporal knowledge
Axiomatics and decidability issues

Incorporating temporal operators

Future temporal operators:
©φ – next time, φ holds.
2φ – φ holds forever, from now on.
φUψ – φ holds in every time point until ψ holds.
3φ – there exists a point in the future where φ will hold.

And past temporal operators:
 φ – last time, φ held.
�φ – always before, φ held.
�φ – φ held sometime in the past.
φSψ – φ held in every time point since ψ held.

Other operators can be added (e.g. fixpoints).
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Temporal semantics

Transition system for n agents T = (S,�):
�⊆ S × S – temporal evolution of the system.
Runs in T = infinite sequences of states in S.

Temporal interpreted system over T : I = (Q,Π, π):
Q = Runs(T ) × N – points.
π : Q → 2Π – interpretation of propositional symbols.

Semantics of temporal formulas: (I, r ,n) |= φ.
(r , n) ∈ Q.
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Temporal semantics (contd.)

(I, r ,n) |= ©φ iff (I, r ,n + 1) |= φ.
(I, r ,n) |= 2φ iff (I, r ,m) |= φ for all m ≥ n.
(I, r ,n) |= 3φ iff (I, r ,m) |= φ for some m ≥ n.
(I, r ,n) |= φUψ iff (I, r ,m) |= ψ for some m ≥ n and
(I, r ,p) |= φ for all n ≤ p < m.
(I, r ,n) |=  φ iff (I, r ,n − 1) |= φ (n > 0!).
(I, r ,n) |= �φ iff (I, r ,m) |= φ for all m ≤ n.
(I, r ,n) |= �φ iff (I, r ,n + 1) |= φ for some m ≤ n.
(I, r ,n) |= φUψ iff (I, r ,m) |= ψ for some m ≤ n and
(I, r ,p) |= φ for all m < p ≤ m.
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Temporal and knowledge semantics

Temporal interpreted system I = (Q,Π, π) over a transition
system T .
Kripke structure over T : MT = (I,K1, . . .Kn).

Ki ⊆ Q × Q.
Semantics : unchanged from what we’ve seen!
Example formulas: K12p1 ∧ p2UC2,3p3.
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Muddy children example

Transition system: T = (S,�) with �= {(s, s) | s ∈ S}.
Local states are unchanged during the run!

Run – identified with the (unique) state occurring in it!
Hence points = pairs (state, timepoint).

Interpretation: π(s,n) = {pi | si = 1}.
Possibility relations:

Ki
(

(s, k), (s′.k)
)

iff s = s′ or supp(s), supp(s′) ≥ k
and sj = s′

j ∀j 6= i

supp(s) = {i | si = 1}.
Draw it!
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Temporal knowledge properties of the muddy children

(s,1) |= C(p1 ∨ . . . ∨ pn) iff .
In general, (s, k) |= C
If (s, k) |= Pipi then (s, k + 1) |= C(Pipi ∧ Pi¬pi).
If supp(s) = k then for each i with si = 1 we have
(s, k) |= Kipi .
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Temporal knowledge properties of the muddy children

(s,1) |= C(p1 ∨ . . . ∨ pn) iff s 6= (0, . . . ,0).
In general, (s, k) |= C
If (s, k) |= Pipi then (s, k + 1) |= C(Pipi ∧ Pi¬pi).
If supp(s) = k then for each i with si = 1 we have
(s, k) |= Kipi .

Cătălin Dima TLK & Security



Preliminaries
The bases

Knowledge and information flow

Syntax and semantics
Knowledge and time
Types of temporal knowledge
Axiomatics and decidability issues

Temporal knowledge properties of the muddy children

(s,1) |= C(p1 ∨ . . . ∨ pn) iff s 6= (0, . . . ,0).
In general, (s, k) |= C

∨

|S|≥k

∧

j∈S
pi

If (s, k) |= Pipi then (s, k + 1) |= C(Pipi ∧ Pi¬pi).
If supp(s) = k then for each i with si = 1 we have
(s, k) |= Kipi .
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Synchronicity

Agents have access to a shared clock.
For the muddy children, it is Mum’s announcements that
play the role of a clock.
The system is synchronous.

Synchronous Kripke structure over a transition system T :
M = (I,K1, . . . ,Kn):

If Ki
(

(r , n), (r ′, n′)
)

then n = n′.
The points that i considers possible at (r , n) are those
whose clock is n too.
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Perfect recall

With the general definition of Ki , agent i ’s knowledge may
vary during system evolution.
We would like it to be only cumulative

What i learned at a point (r , n) has to be “preserved” at
later points (r , n′) (n′ ≥ n).

Kripke structure with perfect recall: M = (I,K1, . . . ,Kn):
Local state sequence at (r , n): sequence of si , without
repetitions.
E.g. if i ’s local states at instants 0 . . . 4 are (si , si , s′

i , s′

i , si),
then lss(r , 4) = (si , s′

i , si).
Perfect recall: equivalent points only if local state sequence
is the same:

If Ki
(

(r , n), (r ′, n′)
)

then lss(r , n) = lss(r ′, n′)
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Synchrony & perfect recall

Perfect recall does not mean Kiφ→ 2Kiφ!
Example: muddy children with φ = Pipi ∧ Pi¬pi .
Dual notion: no learning:

Speaks about future local state sequence.
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Axioms for knowledge without time

Pr Axioms and rules for the propositional operators.
K. Distribution axiom: (Kiφ ∧ Ki(φ→ ψ) → Kiψ

T. Knowledge axiom: Kiφ→ φ

4. Positive introspection axiom: Kiφ→ KiKiφ

5. Negative introspection axiom: ¬Ki → Ki¬Kiφ
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K. Distribution axiom: (Kiφ ∧ Ki(φ→ ψ) → Kiψ

T. Knowledge axiom: Kiφ→ φ

4. Positive introspection axiom: Kiφ→ KiKiφ

5. Negative introspection axiom: ¬Ki → Ki¬Kiφ
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Correctness and completeness

Knowledge generalization rule:

If M |= φ then M |= Kiφ

The whole = system S5n.

Theorem
For any structure M in which each possibility relation Ki is an
equivalence, and all agents i, the above axioms and rule hold.

Theorem
S5n is a sound and complete axiomatization of the logic of
knowledge in which Ki are all equivalence relations.
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Common knowledge and distributed knowledge

1 Defining axiom for “everibody knows”: EGφ→
∧

i∈G Kiφ
2 Fixpoint axiom for common knowledge:

CGφ↔ EG(φ ∧ CGφ)

3 Induction rule for common knowledge:
If M |= EG(φ ∧ CGφ) then M |= CGφ

4 Subgroup axioms: EGφ→ EHφ for all H ⊆ G.
5 Similarly for CG and DG.
6 System S5C

n – correct and complete.
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Axiomatizing time

2 and 3 can be expressed in terms of U
How?

Axioms for © and U :
Distributivity: ©φ ∧©(φ → ψ) → ©ψ.
Linear time: ¬© φ ↔ ©¬φ.
Fixpoint axiom for until: φUψ ↔ ψ ∨ (φ ∧©(φUψ)).
Next time rule: from φ infer 2φ.
Until inference rule: from φ′ → ¬ψ∧©φ′ infer φ′ → ¬(φUψ).
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Combining time and knowledge axiomatically
General systems: no additional axioms!

Knowledge and time are independent in general!
Perfect recall: they do interact

(KT 1) Ki2φ→ 2Kiφ

Formulas known to be always true must always be known
to be true (!)

Synchrony & perfect recall: stronger interaction
(KT 2) Ki © φ→ ©Kiφ

Theorem
S5U

n + KT 2 is a sound and complete axiomatization for
synchrony and perfect recall.
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Satisfiability – pure knowledge case

Theorem
The satisfiability problem for S5n is PSPACE-complete – and
thus, the validity problem for S5n is co-PSPACE-complete.
The satisfiability problem for S5C

n is EXPTIME-complete – and
thus the validity problem for S5C

n is co-EXPTIME-complete.

Based on theorems on the existence of finite models.
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Model checking

Basic case – no common knowledge, no time:

Theorem
There is an algorithm that, given a Kripke structure M, a state s
and a formula φ, determines in time O(|M| × |φ|), whether
(M, s) |= φ.

Common knowledge, no until:

Theorem
The model checking problem for synchronous perfect recall
systems and the temporal logic with common knowledge but
without until is PSPACE-complete.
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Model checking

Until, no common knowledge:

Theorem
The model checking problem for synchronous perfect recall
systems and the temporal logic of knowledge with until but
without common knowledge is decidable in nonelementary
time.

Full (future) temporal logic and knowledge operators:

Theorem
The model checking problem for synchronous perfect recall
systems and the temporal logic of knowledge with until and
common knowledge is undecidable.
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1 Preliminaries
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Logics of knowledge and security

2 The bases
Syntax and semantics
Knowledge and time
Types of temporal knowledge
Axiomatics and decidability issues

3 Knowledge and information flow
Classical information flow properties
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Noninterference and its “derivatives”

Noninterference (Goguen & Meseguer, 1982):
One group of users [...] is noninterfering with
another group of users if what[ever] the first group
of users does [...] has no effect on what the
second group of users can see.

Variants
Separability (McLean, 1994),
Generalized noninterference (McCullough, 1987),
Nondeducibility on strategies (Wittbold & Johnson, 1990),
Forward correctability, the Perfect Security Property, etc.,
etc.
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Synchronous trace model

HI – high-level inputs, HO – high-level outputs,
H = HI ∪ HO, HI ∩ HO = ∅.
LI – low-level inputs, LO – low-level outputs, L = LI ∪ LO,
LI ∩ LO = ∅.
System states Q = LI × HI × LO × HO.
Traces = infinite sequences of states in Q – denoted Tr(Q).
HI-projection of a trace ρ = ρ HI = sequence of HI-actions in
ρ.

ρ HO , ρ LI , ρ LO , ρ H , ρ L defined similarly.
k -length prefix of a trace ρ[1..k ] = sequence of k initial
states.
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Cătălin Dima TLK & Security



Preliminaries
The bases

Knowledge and information flow
Classical information flow properties

Synchronous trace model

HI – high-level inputs, HO – high-level outputs,
H = HI ∪ HO, HI ∩ HO = ∅.
LI – low-level inputs, LO – low-level outputs, L = LI ∪ LO,
LI ∩ LO = ∅.
System states Q = LI × HI × LO × HO.
Traces = infinite sequences of states in Q – denoted Tr(Q).
HI-projection of a trace ρ = ρ HI = sequence of HI-actions in
ρ.

ρ HO , ρ LI , ρ LO , ρ H , ρ L defined similarly.
k -length prefix of a trace ρ[1..k ] = sequence of k initial
states.
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Synchronous trace model

Tr(Q) = a transition system, with traces ' runs.
We may further define KH((ρ,m), (ρ′,m)) iff ρ H = ρ′ H .
Similarly for KL.

Synchronous with perfect recall!
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Information flow properties in trace systems

Separability:

∀ρ, ρ′ ∈ Tr(Q) ∃ρ′′ ∈ Tr(Q), ρ′′ H = ρ H , ρ
′′

L = ρ′ L

Generalized Noninterference:

∀ρ, ρ′ ∈ Tr(Q) ∃ρ′′ ∈ Tr(Q), ρ′′ HI = ρ HI , ρ
′′

L = ρ′ L
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Information flow in the TLK framework
Kripke structure over an interpreted system
MT = (I,K1, . . . ,Kn).

Agent i maintains total secrecy w.r.t. agent j in MT if
∀(r ,n), (r ′,n′) ∈ Q,Ki (r ,n) ∩Kj(r ′,n′) 6= ∅

Here Ki(r ,n) =
{

(r ′′,n′′) | Ki((r ,n), (r ′′ ,n′′))
}

.
Synchronous total secrecy: synchronous system & total
secrecy.

Theorem
Suppose that the (Kripke structure corresponding to the) trace
system Tr(Q) is limit closed. Then Tr(Q) satisfies separability iff
H maintains total secrecy w.r.t. L.
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Generalized noninterference in TLK

j-information function = f : Q → X (X any set!) such that
f (r ,m) = f (r ′,m′) ⇒ Kj((r ,m), (r ′,m′))

Synchronous form: f (r ,m)= f (r ′,m) ⇒ Kj((r ,m), (r ′,m)).
Example, in trace systems: f : Q → HI∗,
f (ρ,m) = ρ[1..m] HI .

Given f a j-information function, H maintains total
f -secrecy if

∀(r ,m) ∈ Q,∀v ∈ X ,Ki(r ,m) ∩ f−1(v) 6= ∅

Theorem
Suppose that the (Kripke structure corresponding to the) trace
system Tr(Q) is limit closed. Then Tr(Q) satisfies generalized
noninterference iff H maintains total f -secrecy w.r.t. L.
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Information flow in syntactic form

Formula φ is i-local in system M if
∀(r ,m), (r ′,m′) with Ki((r ,m), (r ′ ,m′)),

(I, r ,m) |= φ iff (I, r ′,m′) |= φ

Syntactic characterization: I |= Kiφ ∨ Ki¬φ.

Theorem
Suppose M is a synchronous system. Then agent i maintains
total secrecy w.r.t. agent j in system M iff for every i-local
formula φ, I |= Pj�3φ.

More constraints on formulas φ for GNI and NDS.
Cătălin Dima TLK & Security
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Sujets de stage de M2 recherche
Model checking des propriétés de sécurité:

Formalisation des propriétés de fuite d’information dans
des langages de programmation et/ou protocles de
sécurité.
Comparaison d’outils de model checking des logiques
épistemiques: MCMAS, MCK, LYS, par rapport leur
expressivité en relation avec l’analyse de propriétés de
sécurité.
Synthse d’algorithmes de model checking pour NDS
(Wittbold & Johnson).
Analyse de propriétés de fuite d’information par
abstraction.

Deux sujets possibles.
Cătălin Dima TLK & Security
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