Introduction to Promela and SPIN

Catalin Dima

LACL, Université Paris 12

Catalin Dima Promela & SPIN

Promela = Process Meta Language

@ A specification language ! No programming language !
@ Used for system description :
@ Specify an abstraction of the system, not the system itself.

@ Emphasize on process synchronization & coordination, not on
computation.

@ Promela uses nondeterminism as an abstraction technique.
@ Suitable for software modeling, not for hardware.

Promela & SPIN

SPIN = Simple Promela Interpreter

@ A simulator for Promela programs.

And a verifier for the properties of Promela programs.
@ In simulation mode, SPIN gives quick impressions of system behavior.

@ Nondeterminism in specification is “randomly solved”.
@ No infinite behaviors.

@ In verification mode, SPIN generates a C program that constructs an
implementation of the LTL model-checking algorithm for the given
model.

@ Then one has to compile/run this C program to get the result.
@ ... which may provide a trace for the bugs in the model.

Promela & SPIN

Hello world

@ Promela program hel | 0. pm :

active proctype main(){
printf("Hello world")

}

@ Simulating the program :

$ spin hello.pm
hello world
1 process created

@ proctype = declares a new process type.
@ acti ve = instantiate one process of this type.

Catalin Dima Promela & SPIN

Producers/Consumers

nmype = { P,C}; /+ synbols used */
ntype turn = P; /x* shared variable */

active proctype producer(){
do
(turn == P) -> [x Guard =/
printf("Produce\n");

turn = C
od
}
active proctype consuner(){
agai n:
i f
(turn == C -> [* Guard =/
printf("Consune\n");
turn = P;
goto again
fi
}

Catalin Dima Promela & SPIN

Condition statements and nondeterminism

@ Proctype consumer rewritten :

agai n:
(turn == O);
printf("Consune\n");
turn = P;
goto agai n;

@ Condition statement, blocking the process until the condition
becomes true.

@ Nondeterminism :

byte count;
active proctype counter(){
do
;1 count ++
count - -
:: (count==0) -> break
od
}

Atomic statements

@ Promela focuses on modeling distributed systems.

byte a;

active proctype pl(){
a=1;
b=a+b

}

active proctype p2(){
a=2;

}

@ Atomicity needed for avoiding race conditions :

atom c{ a=1; b=a+b }
atom c{ tnmp=y; y=x; x=tnp }

Catalin Dima Promela & SPIN

Peterson’s algorithm for mutual exclusion

bool turn, flag[2];
byte cnt;
active [2] proctype proc(){
pidi,j;
i=_pid; j=1- _pid;
agai n:
flag[i]=true;
turn=i;
(flag[j]==false || turn!=i) ->
cnt ++;
assert(cnt==1);
cnt--;
goto agai n;

Catalin Dima Promela & SPIN

Verifying Peterson’s algorithm

$ spin -a peterson. pni
creates several files nanmed pan.c, pan.t,...
$ gcc -0 pan pan.c

$./pan

Ful | statespace search for:
never claim - (none specified)
assertion violations +
accept ance cycl es - (not sel ected)
invalid end states +

State-vector 20 byte, depth reached 22, errors: 0
38 states, stored
25 states, matched
63 transitions (= stored+mat ched)
0 atom c steps

@ Errors=0!
@ The two assertions cnt ==1 (one for each proctype) are satisfied in all
runs!

Promela & SPIN

Processes in more detail

Process = instantiation of a pr oct ype.
Consisting of data declatarions and statements.
Always declared globally.

Each running process has a unique pi d,

@ Numbered in order of creation, starting with 0.
@ Referenced in the process by predefined _pi d.

@ Possibility to differentiate output from one process from output from the
others.

@ Launching other processes with r un :
proctype pr(byte x){
printf("x=%l, pid = %l\n",x, _pid)
}
init {
run pr(0); run pr(1l);
}
@ init = declaration of a process active in the initial system state.
@ Three processes created.

Catalin Dima Promela & SPIN

Processes

@ Promela processes behave like real processes.

run ~ f or k+exec.

@ run is an operator — a run statement may evaluate to false, and thus
block the “parent” process !

@ Number of created processes < 255.
@ run returns the PID of the launched process (like f or k).

Process termination = end of its code.

@ A process can “die” only if all processes instantiated lated have died
first.

atalin Dima Promela & SPIN

Processes and the “provided” statement

bool var = true;
active proctype A() provided (var=true){
L: printf("An");

var = fal se;

goto L
}
active proctype A() provided (var=fal se){
L: printf("An");

var = true;

goto L:

@ Each process may take a step only when its pr ovi ded clause holds =
invariant for that process.

@ Strict alternation

Catalin Dima Promela & SPIN

@ Data can only be global or process local.
@ Integer data types + bits + boolean.
@ C syntax for variable declarations.
@ One-dimensional arrays only.
@ nt ype = list of symbolic values, range 1..255.
@ Asingle list for a Promela program!

mype = { A B, C};

mype ={ 1, 2, 3}; /+ union of the two sets =/
@ Record structures definable :

t ypedef Fiel d{
short f=3; byte g

}

t ypedef Recor d{
byte a[3];
Field fld;

}

@ Can be used for defining multidimensional arrays.

Catalin Dima Promela & SPIN

@ Variables modeling communication channels between processes.
@ Must be declared globally, if needed by two distinct processes.
chan queue = [10] of { ntype, short, Field }
@ 10 message buffer, each message composed of 3 fields.
@ Sending messages :
queue! expr 1, expr 2, expr 3;
queue! expr 1(expr 2, expr3)
@ expr 1 used as message type indication.
@ Receiving messages :

gueue?var 1, var 2, var 3;
queue?var 1(var 2, var 3)

@ Conditional reception :

queue?A(var 2, var 3) ;
gueue?var 1, 100, var 3
queue?eval (var 1), 100, var 3

@ Execute only when first field matches value of var 1.

Promela & SPIN

Other channel operations

@ Channel poll — do not remove the message from the channel :

queue?<eval (y), x>
a<b && queue?[nsg] /* test for nmessage, do not renove */

@ Sorted send :
queue! !'msg /* inserted in |exicographic order =/
@ Removing the first message matching some pattern :

gueue??2, var 2, var 3

@ Removes the first message whose first field is 2.

@ | en(queue) = buffer length.

@ Also enpty(queue), nenpty(queue), full (queue),
nful | (queue).

Catalin Dima Promela & SPIN

Rendezvous communication

chan queue = [0] of { byte }

@ The channel has zero buffering capacity.

@ A send can only be executed when a corresponding receive is executed
at the same time by some other process.

mype = { id nsg };
chan name = [0] of { ntype, byte };
active proctype A(){

nane! nsg(100) ;

nane! i d(10);
}
active proctype B(){
byte var;
if
nane?nmsg(var) -> printf("state = %@", var);
nane?id(var) -> printf("value = %", var);
fi
}

@ Second send is blocking in proctype A.

Catalin Dima Promela & SPIN

Other channel operations

@ Channel values can be sent onto channels :

chan glob = [1] of { chan };
active proctype A(){
chan loc = [1] of { byte }

gl ob!l oc;
| oc?var;
}
active proctype B(){
chan who
gl ob?who;
who! 100;
}

Catalin Dima Promela & SPIN

Executability

@ Depending on system state, any statement is executable or blocked.
@ Expressions are statements that block when evaluating to false or 0.
@ No need for “busy waiting”:

(a==b) /=* behaves like while (a!=b) skip */
/* or like :
do
(a==b) -> break
else -> skip
od

Catalin Dima Promela & SPIN

Control statements and inline definitions

@ Haveseenif, doandgoto.

br eak semantics as in C.
@ Escape sequence :

{ P} unless { E}

@ Execute P unless first statement in E is executable.
@ When P terminates, the whole block terminates.

@ Can define inline macros :

inline swap(x,y)({
byte tnp=x; x=y; y=tnp
}

@ No functions/procedures/modules.
@ Reserved type STDI Nfor input:
@ Only one message type available on STDI N:i nt .

Catalin Dima Promela & SPIN

Correctness claims

@ The main part of Promela : placing claims on a program, that SPIN has
to verify !

@ Various types :

@ Basic assertions.
End-state labels.
Progress-state labels.
Accept-state labels.
Never claims.

Trace assertions.

® © ¢ ¢ ¢

Catalin Dima Promela & SPIN

Basic assertions

@ The simplest way to prove properties about a program : check that at a
point in the program some property holds.

@ Basic assertion = assert (expressi on) : always executable.

@ But when expr essi on evaluates to false or 0, an error message is
triggered on output (and subsequent operations are done by SPIN).

@ Reuvisit the mutual exclusion example !
@ (Basic) assertions can be as complicated as desired:

assert(x=y && chan?[nsg])

Promela & SPIN

End states

@ SPIN checks whether all processes reach terminate (i.e. reach their
closing brace).

@ Some processes are not intended to terminate :
@ Schedulers, servers, etc.

@ Promela allows defining ending “states” (i.e. statements) in a process :
@ Not an error if the process linger in that state “forever”.

@ Ending states for a process declared with labels starting with end.

@ Example with a Dijsktra semaphore...

atalin Dima Promela & SPIN

End states for Dijsktra semaphores

nmype = {p, v};
chan sema = [0] of { ntype };
active proctype Dijsktra(){

end: do
:: (count == 1) -> sema!p; count = O;
:: (count == 0) -> sema?v; count = 1;
od
}
active [3] proctype user(){
do
. sema?p;
ski p;
sema! v
}

Catalin Dima Promela & SPIN

Progress states

@ We may want to check that within each cycle through system states,
something “desirable” happens.

@ E.g.: lack of starvation.
@ We may label some states with pr ogr ess labels.

@ This forces SPIN to check that each infinite execution passes through
one of the statements labeled with progress labels.

@ Special command-line options needed also for gcc/ cc and pan:

@ - DNP option for the compiler.
@ -| option for the verifier (i.e. pan).

Promela & SPIN

Peterson algorithm with progress states

bool turn, flag[2];

byte cnt;
active [2] proctype proc(){
pidi,j;
i=_pid; j=1- _pid;
agai n:
flag[i]=true;
turn=i;
(flag[j]==false || turn!=i) ->
progress:
cnt ++;
assert(cnt==1);
cnt--;
goto agai n;
}

Starvation freedom must be ensured in a correct mutual exclusion algorithm !

Catalin Dima Promela & SPIN

Fairness defined and checked

@ Weak fairness :

If a process P reaches a point where it has an executable
statement, and the executability of that statement never
changes, then P should eventually proceed by executing the
statement.

@ Strong fairness :

If a process P reaches a point where it has an executable
statement, and the executability of that statement occurs
infinitely often from there on, then P should eventually
proceed by executing the statement.

@ Enabling weak fairness : - f option for pan.

Promela & SPIN

Example fairness

byte x;

active proctype A(){
do

X=2;

progress: skip
od

}

active proctype B(){
do
1lX=3;
od

}

Each fair cycle is a progress cycle !

$./pan -1 -f
Ful | statespace search for:

non- progress cycles + (fairness enabl ed)
State-vector 20 byte, depth reached 4, errors: 0

Catalin Dima Promela & SPIN

“Never” claims

Used for checking properties over sequences.
Each temporal logic formula can be transformed into a “never” claim.
“Never” claim = complement of the LTL formula that has to be checked.

A “never” claim is like a new process whose traces must never occur as
traces of the system.

Similarly to an assert, SPIN checks that there exists no run of the
system which is also a run of the code inside the “never” claim.

An example :
never {
do
I'p -> break
el se
od
}
Checks that p is true in any system state.

Catalin Dima Promela & SPIN

Never claims and temporal logic

@ We would like to check the following property:

Every system state in which p is true eventually leads to a
system state in which g holds, and in between p must
remain true.

@ An LTL formula for this:

O(p — pUaq)
@ A never claim for this:
never {
SO : do
i p && 'q -> break
11 true
od
Sl
accept: do
g
2o (p|] g -> break
od
}

Catalin Dima Promela & SPIN

Rules for specifying never claim

Only statements that do not have side effects.

Hence no assignments and no channel read/write.

Channel poll operations and arbitrary condition statements are allowed.
Some predefined variables can be used only in never claims.

Accept states = formalize Biichi acceptance conditions for the never
claim!

Catalin Dima Promela & SPIN

Generating never claims from LTL formulas

@ Can be generated from LTL formulas: the - f option for SPIN.

@ Grammar :
[tl ==bop|(Itl)]|It] binopltl |unopltl

where

@ bopistrueorfal se.
@ unopis[] (always), <> (sometimes) or! (negation).
@ binop is U (until), V (dual of until), or the boolean operators: &&,

[\ TN\ -> <>
@ The - DNXT option for SPIN adds also the nexttime operator X.

Catalin Dima Promela & SPIN

Generating never claims for LTL formulas

@ Example :
$ spin-f "[]p
never { [« [1p */
accept _init:
TO_init:
if

:: ((p)) -> goto TO_ init
fi;

}

$ spin -f "1 (<> p)

$ spin-f '[] (pU(qUr))

@ Atomic formulas p, q, r can be defined with macros in the Promela
model:

#define p (a<b)
#define q (len(x)<5 && a==hb)

Catalin Dima Promela & SPIN

Predefined variables and functions for never claims

@ _np is false in all system states where at least one running process is
currently at a progress control-flow state.

@ _| ast holds the instantiation number of the process that performed the
last step.

@ pc_val ue(pi d) returns the current control state of the process having
the pi d.

@ enabl ed(pi d) tells whether process pi d has at least one statement
executable in the current state.

@ procnane[pi d] @ abel returns nonzero only if the next statement
that can be executed by pi d is labeled with | abel .

Catalin Dima Promela & SPIN

Trace assertions

@ Similar to never claims, but referring to message channels:

trace{
do
gl'la ; g2!'b
od
}

@ Only simple send/receive statements (no ordering).

No data objects can be declared in trace assertions.

@ Don't care values occurring on channels can be specified with the
predefined variable _.

@ May contain end states, progress states and accept states.

Catalin Dima Promela & SPIN

Using SPIN for bug tracing

@ When the pan verifier generated by SPIN/gcc reports an error, it
generatesatrail file which shows the problem.

$./pan -1 -f
pan: non-progress cycle (at depth 4)
pan: wote fair.pnl.trail

@ The trail file can be then interpreted by SPIN to show us the problem:

$ spin -t -p fair.pn
Starting Awith pid 0
Starting Bwith pid 1
spin: couldn't find claim(ignored)

@ Many other options for SPIN — check with spi n --.

Catalin Dima Promela & SPIN

