
Introduction to Promela and SPIN

Cătălin Dima

LACL, Université Paris 12

Cătălin Dima Promela & SPIN

Promela = Process Meta Language

A specification language ! No programming language !

Used for system description :

Specify an abstraction of the system, not the system itself.

Emphasize on process synchronization & coordination, not on
computation.

Promela uses nondeterminism as an abstraction technique.

Suitable for software modeling, not for hardware.

Cătălin Dima Promela & SPIN

SPIN = Simple Promela Interpreter

A simulator for Promela programs.

And a verifier for the properties of Promela programs.

In simulation mode, SPIN gives quick impressions of system behavior.

Nondeterminism in specification is “randomly solved”.
No infinite behaviors.

In verification mode, SPIN generates a C program that constructs an
implementation of the LTL model-checking algorithm for the given
model.

Then one has to compile/run this C program to get the result.
... which may provide a trace for the bugs in the model.

Cătălin Dima Promela & SPIN

Hello world

Promela program hello.pml :

active proctype main(){
printf("Hello world")

}

Simulating the program :

$ spin hello.pml
hello world
1 process created

proctype = declares a new process type.

active = instantiate one process of this type.

Cătălin Dima Promela & SPIN

Producers/Consumers

mtype = { P,C }; /* symbols used */
mtype turn = P; /* shared variable */

active proctype producer(){
do
:: (turn == P) -> /* Guard */

printf("Produce\n");
turn = C

od
}
active proctype consumer(){
again:

if
:: (turn == C) -> /* Guard */

printf("Consume\n");
turn = P;
goto again

fi
}

Cătălin Dima Promela & SPIN

Condition statements and nondeterminism

Proctype consumer rewritten :

again:
(turn == C);
printf("Consume\n");
turn = P;
goto again;

Condition statement, blocking the process until the condition
becomes true.

Nondeterminism :

byte count;
active proctype counter(){

do
:: count++
:: count--
:: (count==0) -> break
od

}

Cătălin Dima Promela & SPIN

Atomic statements

Promela focuses on modeling distributed systems.

byte a;
active proctype p1(){

a=1;
b=a+b

}
active proctype p2(){

a=2;
}

Atomicity needed for avoiding race conditions :

atomic{ a=1; b=a+b }
atomic{ tmp=y; y=x; x= tmp }

Cătălin Dima Promela & SPIN

Peterson’s algorithm for mutual exclusion

bool turn, flag[2];
byte cnt;
active [2] proctype proc(){

pid i,j;
i=_pid; j=1- _pid;

again:
flag[i]=true;
turn=i;
(flag[j]==false || turn !=i) ->
cnt++;
assert(cnt==1);
cnt--;
goto again;

}

Cătălin Dima Promela & SPIN

Verifying Peterson’s algorithm

$ spin -a peterson.pml
creates several files named pan.c, pan.t,...

$ gcc -o pan pan.c
$./pan
Full statespace search for:

never claim - (none specified)
assertion violations +
acceptance cycles - (not selected)
invalid end states +

State-vector 20 byte, depth reached 22, errors: 0
38 states, stored
25 states, matched
63 transitions (= stored+matched)
0 atomic steps

Errors = 0 !

The two assertions cnt==1 (one for each proctype) are satisfied in all
runs !

Cătălin Dima Promela & SPIN

Processes in more detail

Process = instantiation of a proctype.

Consisting of data declatarions and statements.

Always declared globally.

Each running process has a unique pid,

Numbered in order of creation, starting with 0.
Referenced in the process by predefined pid.

Possibility to differentiate output from one process from output from the
others.

Launching other processes with run :

proctype pr(byte x){
printf("x=%d, pid = %d\n",x,_pid)

}
init {

run pr(0); run pr(1);
}

init = declaration of a process active in the initial system state.

Three processes created.

Cătălin Dima Promela & SPIN

Processes

Promela processes behave like real processes.

run ≃ fork+exec.

run is an operator – a run statement may evaluate to false, and thus
block the “parent” process !

Number of created processes ≤ 255.

run returns the PID of the launched process (like fork).

Process termination = end of its code.

A process can “die” only if all processes instantiated lated have died
first.

Cătălin Dima Promela & SPIN

Processes and the “provided” statement

bool var = true;
active proctype A() provided (var=true){
L: printf("A\n");

var = false;
goto L

}
active proctype A() provided (var=false){
L: printf("A\n");

var = true;
goto L:

}

Each process may take a step only when its provided clause holds =
invariant for that process.

Strict alternation

Cătălin Dima Promela & SPIN

Data objects

Data can only be global or process local.

Integer data types + bits + boolean.

C syntax for variable declarations.

One-dimensional arrays only.

mtype = list of symbolic values, range 1..255.

A single list for a Promela program !
mtype = { A, B, C };
mtype = { 1, 2, 3 }; /* union of the two sets */

Record structures definable :

typedef Field{
short f=3; byte g

}
typedef Record{

byte a[3];
Field fld;

}

Can be used for defining multidimensional arrays.

Cătălin Dima Promela & SPIN

Channels

Variables modeling communication channels between processes.

Must be declared globally, if needed by two distinct processes.

chan queue = [10] of { mtype, short, Field }

10 message buffer, each message composed of 3 fields.

Sending messages :

queue!expr1,expr2,expr3;
queue!expr1(expr2,expr3)

expr1 used as message type indication.

Receiving messages :

queue?var1,var2,var3;
queue?var1(var2,var3)

Conditional reception :

queue?A(var2,var3);
queue?var1,100,var3
queue?eval(var1),100,var3

Execute only when first field matches value of var1.

Cătălin Dima Promela & SPIN

Other channel operations

Channel poll – do not remove the message from the channel :

queue?<eval(y),x>
a<b && queue?[msg] /* test for message, do not remove */

Sorted send :

queue!!msg /* inserted in lexicographic order */

Removing the first message matching some pattern :

queue??2,var2,var3

Removes the first message whose first field is 2.

len(queue) = buffer length.

Also empty(queue), nempty(queue), full(queue),
nfull(queue).

Cătălin Dima Promela & SPIN

Rendezvous communication

chan queue = [0] of { byte }

The channel has zero buffering capacity.

A send can only be executed when a corresponding receive is executed
at the same time by some other process.

mtype = { id msg };
chan name = [0] of { mtype, byte };
active proctype A(){

name!msg(100);
name!id(10);

}
active proctype B(){

byte var;
if
:: name?msg(var) -> printf("state = %d", var);
:: name?id(var) -> printf("value = %d", var);
fi

}

Second send is blocking in proctype A.

Cătălin Dima Promela & SPIN

Other channel operations

Channel values can be sent onto channels :

chan glob = [1] of { chan };
active proctype A(){

chan loc = [1] of { byte }
glob!loc;
loc?var;

}
active proctype B(){

chan who;
glob?who;
who!100;

}

Cătălin Dima Promela & SPIN

Executability

Depending on system state, any statement is executable or blocked.

Expressions are statements that block when evaluating to false or 0.

No need for “busy waiting”:

(a==b) /* behaves like while (a!=b) skip */
/* or like :
do
:: (a==b) -> break
:: else -> skip
od

Cătălin Dima Promela & SPIN

Control statements and inline definitions

Have seen if, do and goto.

break semantics as in C.

Escape sequence :

{ P } unless { E }

Execute P unless first statement in E is executable.
When P terminates, the whole block terminates.

Can define inline macros :

inline swap(x,y){
byte tmp=x; x=y; y=tmp

}

No functions/procedures/modules.

Reserved type STDIN for input:

Only one message type available on STDIN : int.

Cătălin Dima Promela & SPIN

Correctness claims

The main part of Promela : placing claims on a program, that SPIN has
to verify !

Various types :

Basic assertions.
End-state labels.
Progress-state labels.
Accept-state labels.
Never claims.
Trace assertions.

Cătălin Dima Promela & SPIN

Basic assertions

The simplest way to prove properties about a program : check that at a
point in the program some property holds.

Basic assertion = assert(expression) : always executable.

But when expression evaluates to false or 0, an error message is
triggered on output (and subsequent operations are done by SPIN).

Revisit the mutual exclusion example !

(Basic) assertions can be as complicated as desired:

assert(x=y && chan?[msg])

Cătălin Dima Promela & SPIN

End states

SPIN checks whether all processes reach terminate (i.e. reach their
closing brace).

Some processes are not intended to terminate :

Schedulers, servers, etc.

Promela allows defining ending “states” (i.e. statements) in a process :

Not an error if the process linger in that state “forever”.

Ending states for a process declared with labels starting with end.

Example with a Dijsktra semaphore...

Cătălin Dima Promela & SPIN

End states for Dijsktra semaphores

mtype = {p, v};
chan sema = [0] of { mtype };
active proctype Dijsktra(){

end: do
:: (count == 1) -> sema!p; count = 0;
:: (count == 0) -> sema?v; count = 1;
od

}
active [3] proctype user(){

do
:: sema?p;
skip;
sema!v

}

Cătălin Dima Promela & SPIN

Progress states

We may want to check that within each cycle through system states,
something “desirable” happens.

E.g.: lack of starvation.

We may label some states with progress labels.

This forces SPIN to check that each infinite execution passes through
one of the statements labeled with progress labels.

Special command-line options needed also for gcc/cc and pan:

-DNP option for the compiler.
-l option for the verifier (i.e. pan).

Cătălin Dima Promela & SPIN

Peterson algorithm with progress states

bool turn, flag[2];
byte cnt;
active [2] proctype proc(){

pid i,j;
i=_pid; j=1- _pid;

again:
flag[i]=true;
turn=i;
(flag[j]==false || turn !=i) ->

progress:
cnt++;
assert(cnt==1);
cnt--;
goto again;

}

Starvation freedom must be ensured in a correct mutual exclusion algorithm !

Cătălin Dima Promela & SPIN

Fairness defined and checked

Weak fairness :

If a process P reaches a point where it has an executable
statement, and the executability of that statement never
changes, then P should eventually proceed by executing the
statement.

Strong fairness :

If a process P reaches a point where it has an executable
statement, and the executability of that statement occurs
infinitely often from there on, then P should eventually
proceed by executing the statement.

Enabling weak fairness : -f option for pan.

Cătălin Dima Promela & SPIN

Example fairness

byte x;
active proctype A(){

do
:: x=2;

progress: skip
od

}
active proctype B(){

do
:: x=3;
od

}

Each fair cycle is a progress cycle !

$./pan -l -f
Full statespace search for:

....
non-progress cycles + (fairness enabled)

State-vector 20 byte, depth reached 4, errors: 0

Cătălin Dima Promela & SPIN

“Never” claims

Used for checking properties over sequences.

Each temporal logic formula can be transformed into a “never” claim.

“Never” claim = complement of the LTL formula that has to be checked.

A “never” claim is like a new process whose traces must never occur as
traces of the system.

Similarly to an assert, SPIN checks that there exists no run of the
system which is also a run of the code inside the “never” claim.

An example :

never{
do
:: !p -> break
:: else
od

}

Checks that p is true in any system state.

Cătălin Dima Promela & SPIN

Never claims and temporal logic

We would like to check the following property:

Every system state in which p is true eventually leads to a
system state in which q holds, and in between p must
remain true.

An LTL formula for this:
2(p → pUq)

A never claim for this:

never{
S0 : do

:: p && !q -> break
:: true
od

S1 :
accept: do

:: !q
:: !(p || q) -> break
od

}

Cătălin Dima Promela & SPIN

Rules for specifying never claim

Only statements that do not have side effects.

Hence no assignments and no channel read/write.

Channel poll operations and arbitrary condition statements are allowed.

Some predefined variables can be used only in never claims.

Accept states = formalize Büchi acceptance conditions for the never
claim!

Cătălin Dima Promela & SPIN

Generating never claims from LTL formulas

Can be generated from LTL formulas: the -f option for SPIN.

Grammar :

ltl ::= bop | (ltl) | ltl binop ltl | unop ltl

where

bop is true or false.
unop is [] (always), <> (sometimes) or ! (negation).
binop is U (until), V (dual of until), or the boolean operators: &&,
||, \/ , /\, ->, <->.

The -DNXT option for SPIN adds also the nexttime operator X.

Cătălin Dima Promela & SPIN

Generating never claims for LTL formulas

Example :

$ spin -f ’[]p’
never { /* []p */
accept_init:
T0_init:

if
:: ((p)) -> goto T0_init
fi;

}
$ spin -f ’!(<> p)’
....
$ spin -f ’[] (p U (q U r))’
....

Atomic formulas p,q,r can be defined with macros in the Promela
model:

#define p (a<b)
#define q (len(x)<5 && a==b)

Cătălin Dima Promela & SPIN

Predefined variables and functions for never claims

np is false in all system states where at least one running process is
currently at a progress control-flow state.

last holds the instantiation number of the process that performed the
last step.

pc value(pid) returns the current control state of the process having
the pid.

enabled(pid) tells whether process pid has at least one statement
executable in the current state.

procname[pid]@label returns nonzero only if the next statement
that can be executed by pid is labeled with label.

Cătălin Dima Promela & SPIN

Trace assertions

Similar to never claims, but referring to message channels:

trace{
do
:: q1!a ; q2!b
od

}

Only simple send/receive statements (no ordering).

No data objects can be declared in trace assertions.

Don’t care values occurring on channels can be specified with the
predefined variable .

May contain end states, progress states and accept states.

Cătălin Dima Promela & SPIN

Using SPIN for bug tracing

When the pan verifier generated by SPIN/gcc reports an error, it
generates a trail file which shows the problem.

$./pan -l -f
pan: non-progress cycle (at depth 4)
pan: wrote fair.pml.trail

The trail file can be then interpreted by SPIN to show us the problem:

$ spin -t -p fair.pml
Starting A with pid 0
Starting B with pid 1
spin: couldn’t find claim (ignored)
....

Many other options for SPIN – check with spin --.

Cătălin Dima Promela & SPIN

